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Abstract 

Forest resource information, such as species composition, stem 

density and DBH, is the basis of sustainable forest management. This 

study first attempted to measure forest resources at the individual tree 

level using high-resolution images by combining GPS, RS, and 

Geographic Information System (GIS) technologies. The images were 

acquired by the WorldView-2 satellite with a resolution of 0.5 m in the 

panchromatic band and 2.0 m in the multispectral bands. Field data of 

90 plots were used to verify the interpreted accuracy. The tops of trees 

in three groups, namely ≥10 cm, ≥15 cm, and ≥20 cm DBH (diameter 

at breast height), were extracted by the individual tree crown (ITC) 

approach using filters with moving windows of 3 × 3 pixels, 5 × 5 

pixels and 7 × 7 pixels, respectively. In the study area, there were 

1,203,970 trees of DBH over 10 cm, and the interpreted accuracy was 

73.68 ± 15.14% averaged over the 90 plots. The numbers of the trees 

that were ≥15 cm and ≥20 cm DBH were 727,887 and 548,919, with 

an average accuracy of 68.74 ± 17.21% and 71.92 ± 18.03%, 

respectively. The pixel-based classification showed that the classified 

accuracies of the 16 classes obtained using the eight multispectral 

bands were higher than those obtained using only the four standard 

bands. The increments ranged from 0.1% for the water class to 17.0% 
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for Metasequoia glyptostroboides, with an average value of 4.8% for 

the 16 classes. In addition, to overcome the “mixed pixels” problem, a 

crown-based supervised classification, which can improve the 

classified accuracy of both dominant species and smaller classes, was 

used for generating a thematic map of tree species. The improvements 

of the crown- to pixel-based classification ranged from −1.6% for the 

open forest class to 34.3% for Metasequoia glyptostroboides, with an 

average value of 20.3% for the 10 classes. All tree tops were then 

annotated with the species attributes from the map, and a tree count of 

different species indicated that the forest of Purple Mountain is mainly 

dominated by Quercus acutissima, Liquidambar formosana and Pinus 

massoniana. The findings from this study lead to the recommendation 

of using the crown-based instead of the pixel-based classification 

approach in classifying mixed forests. 

Additionally, enhanced methods are required for mapping the forest 

aboveground biomass (AGB) over a large area in Chinese forests. This 

study attempted to develop an improved approach to retrieving 

biomass by combining PALSAR (Phased Array type L-band Synthetic 

Aperture Radar) and WorldView-2 data. A total of 33 variables with 

potential correlations with forest biomass were extracted from the 

above data. However, these parameters had poor fits to the observed 
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biomass. Accordingly, the synergies of several variables were 

explored to identify improved relationships with the AGB. Using 

principal component analysis and multivariate linear regression 

(MLR), the accuracies of the biomass estimates obtained using 

PALSAR/ALOS and WorldView-2 data were improved to 

approximately 65% to 71%. In addition, using the additional dataset 

developed from the fusion of FBD (fine beam dual-polarization) and 

WorldView-2 data improved the performance to 79% with an RMSE 

(root mean square error) of 35.13 Mg/ha when using the MLR method. 

Moreover, a further improvement (R2 = 0.89, relative RMSE = 

17.08%) was obtained by combining all the variables mentioned 

above. For the purpose of comparison with MLR, a neural network 

approach was also used to estimate the biomass. However, this 

approach did not produce significant improvements in the AGB 

estimates. Consequently, the final MLR model was recommended to 

map the AGB of the study area. Finally, analyses of estimated error in 

distinguishing forest types and vertical structures suggested that the 

RMSE decreases gradually from broad-leaved to coniferous to mixed 

forest. In terms of different vertical structures (VS), VS3 has a high 

error because the forest lacks undergrowth trees, while VS4 forest, 

which has approximately the same amounts of stems in each of the 
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three DBH (diameter at breast height) classes (DBH > 20, 10 ≤ DBH 

≤ 20, and DBH < 10 cm), has the lowest RMSE. This study 

demonstrates that the combination of PALSAR and WorldView-2 data 

is a promising approach to improve biomass estimation. 

Because most plantations of China received little management, 

many problems arose in these man-made forests, e.g., low species 

richness and diversity, little landscape-level diversity, and poor growth 

because of high planting densities. The poor scenic and ecological 

value of most Chinese forests cannot meet the requirements of modern 

forestry. Therefore, improving the quality of the existing forests has 

become an urgent topic of study in China. Currently, thinning and 

replanting are the two most common methods of forest management in 

China. Accordingly, the forests at Purple Mountain were classified 

into three types: broadleaved, coniferous, and mixed forest by an 

object-based classification approach using a recent Landsat-8 imagery. 

Finally, we developed some recommendations for the management of 

the forests in the study area based on the results of the above studies. 

Keywords Forest measurement; WorldView-2; PALSAR; Landsat-8; 

Synergy; Individual tree crown approach; Object-based classification; 

Stepwise regression; Forest management; Purple Mountain National 

Forest Park 
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Chapter 1 Introduction 

1.1 Forest Measurement at the Individual Level 

Traditional field surveys for forest resource management include 

the number of trees, species and measurements of DBH and tree 

height in small sample plots. Three to five plots are usually 

established in each compartment (the minimum unit of forest 

management). The structure of the entire forest resource is estimated 

by multiplying these measured values by the total forest area. 

However, this method is less accurate for large forests in which stand 

conditions, species and stem densities vary [1]. It is nearly impossible 

to obtain spatially-explicit stand information on tree species 

composition and distribution patterns over large areas purely on the 

basis of field assessments [2]. However, because the forests of China 

are vast, with a total area of approximately 195.45 million hectares in 

2008 [3], conducting national forest inventories by the sample plot 

method every five years is too costly and time-consuming. Therefore, 

the acquisition of spatially detailed forest information over large areas 

by other enhanced methods has become an urgent topic of study [4,5]. 

This task has been enabled by the advent of remote sensing 

techniques, which can obtain various types of spatial information 

simultaneously, such as the coverage type of the ground surface, 
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position, and DEM (Digital Elevation Model) data. The launch of the 

LANDSAT satellite in 1972 enabled the study of forests at a global 

scale. For tree species classification at the crown scale in forests with 

high species diversity, data with both high spatial and spectral 

resolution that can identify objects of small sizes, such as cars and tree 

crowns, are required [6–8]. Since the 1990s, airborne digital sensors 

with four multispectral bands and very high spatial resolution have 

been applied successfully for forest studies in developed countries, 

such as the USA, Canada, Germany and Japan [9–12]. However, due 

to their wide field of view, aerial photos are subject to strong effects 

caused by the bi-directional reflectance characteristics of most land 

cover types [2]. Depending on the sun-view-geometry, which varies 

with the position of the object within the image, the spectral signature 

of an object can differ significantly [2]. Although these effects can be 

useful in special image analysis techniques [13], they are usually 

regarded as a limiting factor in the automated analysis of aerial images. 

Due to high costs and their limited availability, airborne data have 

gained only limited acceptance for operational use. 

Commercial satellites, including IKONOS, QuickBird, GeoEye-1 

and WorldView-2, were launched successfully in 1999, 2001, 2008 

and 2009, respectively. These satellites can obtain imagery at low cost 
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for several areas simultaneously with a very high resolution of 1 m or 

less in panchromatic mode, enabling the measurement of forest 

resources at the individual tree level by satellite remote sensing and 

computer technology [14–16]. In recent years, the damaged ecological 

environment of China has required forest conservation instead of 

wood harvest. For the purpose of forest protection, many forest parks 

and nature reserves have been established in China, and most of them 

have been transformed from state-owned forest farms whose goal of 

operation in the past was the production of wood. However, because 

of little management, there were many problems in these young 

man-made forests, such as low species richness and diversity, simple 

structure and poor growth because of high density. The management 

of these areas requires spatially detailed information concerning the 

forest on a large scale. In addition, in modern forest management, the 

selective thinning approach was used to replace the traditional 

clear-cutting of trees. Accurate forest information at the individual tree 

level is of high importance for the selection of target trees. Therefore, 

individual tree crown delineation methods have received greater 

attention from researchers in the forest remote sensing field [17–20]. 

Several algorithms can automate tree crown delineation. Extraction 

methods for delineating tree crowns include three main approaches: 
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bottom-up, top-down and template matching algorithms. The 

valley-following method is a bottom-up algorithm. Top-down 

algorithms can be divided into watershed, multiple-scale edge 

segments, threshold-based spatial clustering and double-aspect 

methods. The template-matching algorithms match a synthetic image 

model or template of a tree crown to radiometric values [21–23]. The 

valley-following method, developed by Gougeon [24], has been 

successfully used to extract tree crowns and tops of man-made 

coniferous forests in temperate zones by using aerial photographs [18–

20]. Additionally, the individual tree crown (ITC) approach using the 

valley-following method has been successfully programmed by the 

Pacific Forestry Centre of the Canadian Forest Service, which made it 

possible to delineate tree crowns and tops on a large scale. This 

approach can be used to gather detailed crown information at the stand 

level over a large area for forest inventories [14]. However, the 

usefulness of this method for various types of vegetation remains to be 

verified. In addition, few studies of the semi-automatic extraction of 

tree tops, the delineation of tree crowns, and tree quantifications of 

forests using satellite images with high resolution have been reported 

[2,25]. 

The WorldView-2, a new satellite-borne sensor, was launched by 
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DigitalGlobe in 2009. Its very high spatial resolution (0.5 m in the 

panchromatic band and 2.0 m in multispectral bands) and four new 

multispectral bands (Coastal, Yellow, Red-Edge and NIR2) in addition 

to the four standard bands (Blue, Green, Red and NIR1) were 

expected to have high potential for forest studies, because the satellite 

provides more abundant multispectral information compared to 

traditional optical sensors [2,26,27]. In this study, using WorldView-2 

data, we attempt to first quantify the forest resources of the Purple 

Mountain in Nanjing at the tree level by applying the ITC approach, a 

semi-automatic approach of tree crown delineation with a 

valley-following algorithm, and tree top extraction with a local 

maxima filtering technique [28]. We also hope to clarify the validity of 

this method for various forest types with complicated spatial 

structures in the transitional zone between subtropical and 

warm-temperate forests. Therefore, the entire mountain, which is 

mainly composed of man-made single forests, secondary deciduous 

forest and coniferous-broadleaved mixed forest dominated by Pinus 

massoniana, Liquidambar formosana and Quercus acutissima, was 

the object of interest in this study. Finally, we focus on the question of 

whether the four additional bands of WorldView-2 can improve the 

classification accuracy significantly compared to the four standard 
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bands. 

1.2 Estimation of Forest Aboveground Biomass 

Precise quantification of forest aboveground biomass (AGB) on a 

regional to global scale is of increasing importance in the context of 

reducing emissions from deforestation and forest degradation in 

developing countries (REDD+) and compliance with the Kyoto 

Protocol [29–31]. In a forest inventory, the sample plotting method 

provides very accurate AGB values at the plot level [32]. Due to the 

high cost of this traditional plot-based investigation for AGB and the 

difficulties of its implementation in remote areas, interest in the use of 

remotely sensed data acquired from spaceborne or airborne sensors to 

estimate forest AGB has increased in recent decades. Remote sensing 

provides a key source of data for updated, consistent, and spatially 

explicit assessment of forest biomass and its dynamics, particularly in 

large countries with limited accessibility [33,34]. 

Optical images have long been used to estimate forest parameters 

and assess wood biomass [35–37]. Estimating the AGB has been 

mainly achieved by using spectral reflectance and/or vegetation 

indices, such as the normalized difference vegetation index (NDVI), 

which is computed from the red and near-infrared (NIR) bands [38–

40]. However, a major limitation of vegetation indices is that these 
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indices reach a saturation level during the estimation of high-density 

biomass [41–43]. The saturation point varies greatly depending on the 

source data and the vegetation type and ranges from 15 to 100 Mg/ha 

for visible/NIR vegetation indices [39,44]. Other studies have also 

indicated that the NDVI approaches a saturation level when the 

vegetation age is greater than 15 years in tropical forests [36]. In 

addition, optical remote sensing provides limited information on the 

vertical distribution of forest structure [45], and compiling a 

temporally and radiometrically consistent cloud-free datasets over 

large areas is not always possible [34]. 

Over the past two decades, a large number of researchers have 

contributed to the study of the application of radar (Radio Detection 

and Ranging) for forestry [46,47]. Many studies have shown that 

forest biomass can be retrieved using SAR (Synthetic Aperture Radar) 

data because SAR can penetrate cloud and forest canopies [48–50]. 

The major advantage of all SAR systems is the weather- and 

daylight-independency of the system [48,51,52]. In addition, 

numerous studies have also reported that long-wavelength (e.g., L and 

P bands) SAR is more appropriate than short-wavelength (e.g., X and 

C bands) SAR for forest biomass estimations [53,54]. In this case, the 

detected radiation is mostly due to backscattering from the branches 
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and stems of the trees, and thus L- and P-band SAR should respond 

characteristically to forest volume and biomass [50,55,56]. 

Additionally, long wavelength can travel without having a sight. The 

successful launch of ALOS (Advanced Land Observing Satellite) in 

2006 increased the potential for the use of radar to measure AGB 

because PALSAR/ALOS is the first long-wavelength (L-band, 23-cm 

wavelength) SAR satellite sensor with the capability of collecting 

cross-polarized HV (horizontal-send, vertical-receive) and VH 

(vertical-send, horizontal-receive) data in addition to HH 

(horizontal-send, horizontal-receive) and VV (vertical-send, 

vertical-receive) data. Although the ALOS satellite stopped to operate 

in April 2011, the systematically collected PALSAR data from this 

satellite show great potential for AGB estimates on a large scale 

[53,57,58]. However, AGB estimation using the biomass-PALSAR 

backscattering relationship remains problematic due not only to the 

saturation at high biomass levels (i.e., the backscatter power no longer 

increases with AGB or volume) but also to the spatial heterogeneity of 

forests, which can generate unclear data [31,49,59]. 

Light detection and ranging (LiDAR) data can provide detailed 

vegetation structure measurements at discrete locations covering 

circular or elliptical footprints from a few centimeters to tens of 
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meters in diameter [60,61]. LiDAR instruments mounted on airplanes 

emit active laser pulses and measure various echoes of the signal, 

resulting in accurate AGB estimations for various forests with no 

saturation at higher biomass levels [62–64]. However, LiDAR systems 

are often limited to airborne acquisition, which is better suited to 

providing samples (e.g., transects) rather than full wall-to-wall 

coverage over large areas [32,65,66]. Therefore, even though LiDAR 

provides the best estimates of forest biomass, observations over large 

areas remain problematic, making complete coverage at landscape and 

regional scales uncommon, with data costs often dictating government 

support for LiDAR or its inclusion in collection activities [67]. 

The globally and freely available Landsat TM (Thematic Mapper) 

and ETM+ (Enhanced Thematic Mapper Plus) data, which have a 

medium resolution (30 m for TM/ETM+ multispectral bands), have 

been widely used for mapping forest biomass on a regional to global 

scale in numerous studies [34,42,68,69]. However, the limited spatial 

detail misses small-scale biomass variability. In recent years, the 

successful launch of a number of commercial satellites with high 

resolution from tens of centimeters to a few meters (e.g., IKONOS, 

QuickBird, SPOT5, GeoEye-1, WordView-1&2) has provided an 

approach to this problem. The WorldView-2, launched in October 
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2009, acquires data with more multispectral bands (eight bands) and 

higher spatial resolution (0.5 m in the panchromatic band and 2 m in 

the multispectral bands) than previously launched satellite sensors 

while reducing the unnecessary redundancy found in hyper-spectral 

data [70]. These high spectral and spatial resolutions were expected to 

have great potential for forest studies [37]. WorldView-2 images have 

been successfully used for land cover classification and tree species 

identification with higher accuracy than that obtained using traditional 

sensors with four bands [2,71,72]. However, few studies have used 

WorldView-2 data to estimate forest AGB [73]. 

Recently, the fusion of optical, radar, and/or LiDAR data for 

estimating forest biomass has become a popular approach that 

attempts to overcome the limitations associated with the use of single 

sensors. However, most studies of these studies have mainly focused 

on temperate and tropical forests [43,54,61,62,66,74,75]. Estimating 

forest biomass in China has mainly been achieved by conducting 

national forest inventories using the sample plotting method every five 

years. Because the forests of China are vast, with a total area of 

approximately 195.45 million hectares in 2008 [3], developing 

improved remotely sensed methods that can accurately retrieve forest 

biomass on a large scale has become an urgent topic of study. Thus, in 
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this study, a combination of ALOS PALSAR and WorldView-2 data 

was used to develop an enhanced approach to AGB retrieval in an 

attempt to meet the continued need for both new experimental data 

and further improvement of existing models for biomass estimation. 

The aims of the present study were the following: 

1. To evaluate the possibility of retrieving forest AGB using 

WorldView-2 data; 

2. To determine if a new index generated from the combination of 

ALOS PALSAR and WorldView-2 data can increase the AGB 

inversion accuracy; 

3. To assess the potential of combining ALOS PALSAR and 

WorldView-2 data to map the forest AGB; and 

4. To compare the predictive capability of the multivariate stepwise 

model with that of an artificial neural network (ANN) model for 

estimating biomass. 

1.3 Present Condition of Chinese Forests 

Currently, increasing numbers of developing countries are giving 

special consideration to the planning of green environments in their 

urban development activities. Consequently, a total of 746 national 

forest parks have been established in China in the past 30 years 

(1982–2011) [76]. However, most of these parks were directly 
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transformed from state-owned forest farms whose purpose had been 

wood production. As in many countries, almost all of the native 

forests of China have been harvested through clear-cutting. These 

forests were replaced by repeated rotations of plantations in the 

1950s–1970s [77]. Because these plantations received little 

management, many problems arose in these young man-made forests, 

e.g., low species richness and diversity, little landscape-level diversity, 

and poor growth because of high planting densities [78]. The poor 

scenic and ecological value of most Chinese forests cannot meet the 

requirements of modern forest tourism. Therefore, improving the 

quality of the existing forests has become an urgent topic of study in 

China. 

 

 

 

 

 

 

 

 

 



 13 

Chapter 2 Materials and Methods 

2.1 Study Area 

The study area, Purple Mountain National Park (32°01ʹ–32°06ʹN, 

118°48ʹ–118°53ʹE) (Figure 1), is a well-known historic and scenic site 

in China that is popular with tourists. It has an area of approximately 

4500 ha and is situated in the center of Nanjing City in southeastern 

Jiangsu Province, China. The altitude above sea level ranges from 20 

to 449 m with an average annual precipitation ranging from 1000 to 

1050 mm and average sunshine hours of approximately 2213 h per 

year. The annual mean temperature is 15.4 °C, with an extremely 

highest temperature of 40.7 °C in August and an extremely lowest 

temperature of −14.0 °C in January. The zonal soil color is yellow 

brown, with purple forest soil found on the northern mountain with a 

steep slope [71]. 

The zonal vegetation type in Nanjing is deciduous broad-leaved 

mixed forest with some evergreen trees. However, because of 

long-term wars and human disturbances, all of the natural forests in 

Purple Mountain National Park have been damaged, with the 

exception of some areas around Linggu Temple and Ming Xiaoling 

Mausoleum. Since the 1930s, greater attention has been paid to 

afforestation in the study area. The mountain was covered completely 
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by forest vegetation until the 1960s. In the late 1970s, many 

coniferous trees died from pine wilt disease. Many broad-leaved trees, 

such as Quercus acutissima and Pistacia chinensis, successfully 

invaded and grew in the gaps left by this disease. Concurrently, the 

surviving zonal vegetation recovered favorably because cutting was 

forbidden. Today, the forests of Purple Mountain are mainly composed 

of manmade single forests approximately 60 to 80 years of age, as 

well as secondary deciduous forests and coniferous-broadleaved 

mixed forests dominated by Pinus massoniana, Quercus fabri, 

Liquidambar formosana, and Quercus acutissima [71]. 
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Figure 1. Location map of the study area with vegetation types in 2002 and 

the plot positions investigated in September 2011. The location map was cited 

from Google Earth, and the vegetation map was from the ArcGIS (GIS, 

Geographic Information System) database established in 2002. 
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2.2 Field Measurements 

In this study, we selected the entire mountain, with an area of 

approximately 30 km2, as the research object. A total of 90 plots with 

sizes of 15 × 15 m, 20 × 20 m or 25 × 25 m were established in 

September 2011, for testing the accuracy of the interpretation of the 

tree tops and the supervised classification of tree species (Figure 1). 

Most plots had a size of 20 × 20 m. The plots were larger in 

heterogeneous areas and smaller in homogeneous forests. These plots 

were chosen on the basis of forest conditions, various terrains, and 

accessibility for measurement and were distributed in different forest 

types. The measurements were conducted for different forest growth 

stages, which ranged from regrowing young forest to dense mature 

forest. 

All trees with a DBH larger than 5 cm were surveyed, and the 

species, DBH, and height were recorded. In addition, the center of 

each plot was located by GPS (Garmin MAP 60CS, accuracy ±3 m). 

All central points of the 90 plots were recorded when the GPS steadily 

displayed the highest accuracy of ±3 m. The average DBH, tree height, 

stem density, volume, and AGB in each plot were calculated, and the 

90 plots were divided into three stand types: broad-leaved (B), 

coniferous (C), and mixed (M) forest (Table 1). The conditions of the 
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90 plots are documented in Table 1. 

Table 1. The condition of the 90 plots surveyed in September 2011. DBH, 

diameter at breast height. B, broad-leaved; M, mixed; C, coniferous. 

No. 
Density 

(Stem/ha) 
Average 

DBH (cm) 
Average 

Height (m) 
AGB 

(Mg/ha) 
Forest 
Type 

1 311 36.2 12.0 272.8 B 
2 1956 10.1 8.6 80.6 B 
3 1467 13.0 10.0 119.3 M 
4 1289 12.4 9.5 100.9 C 
5 1378 16.2 10.8 203.1 C 
6 844 16.6 11.2 112.7 B 
7 1644 12.2 9.4 101.9 M 
8 1956 12.7 9.5 165.6 M 
9 1100 17.2 11.4 180.1 M 
10 1156 16.5 11.1 160.0 M 
11 1375 14.0 10.0 117.5 M 
12 1244 13.2 9.4 142.0 C 
13 2075 10.7 8.4 158.1 C 
14 1822 11.6 8.9 170.5 M 
15 844 17.8 11.3 170.0 B 
16 1644 11.9 8.6 147.7 M 
17 1650 13.6 10.4 124.7 B 
18 650 15.7 11.1 72.7 M 
19 1333 13.0 9.2 159.3 M 
20 1125 13.4 9.3 121.7 B 
21 1400 10.2 7.9 99.1 B 
22 1325 15.4 10.3 341.5 B 
23 1156 13.5 9.6 106.2 B 
24 978 19.4 12.4 207.1 B 
25 1289 12.2 9.2 108.4 B 
26 800 16.1 10.3 158.3 M 
27 1689 10.8 8.7 103.3 B 
28 1689 10.3 8.9 70.0 M 
29 1378 11.9 9.3 159.7 B 
30 1467 12.2 9.2 126.0 B 
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Table 1. Cont. 

No. 
Density 

(Stem/ha) 
Average 

DBH (cm) 
Average 

Height (m) 
AGB 

(Mg/ha) 
Forest 
Type 

31 1422 15.5 10.8 169.1 M 
32 1467 15.9 10.8 145.1 M 
33 550 27.9 14.4 242.2 M 
34 1067 16.6 10.0 278.0 B 
35 889 20.4 11.6 268.1 B 
36 1200 13.4 9.6 147.7 B 
37 1333 11.1 9.4 54.8 B 
38 1911 8.4 7.9 51.1 B 
39 1800 11.4 9.2 102.4 M 
40 800 17.2 11.2 164.0 M 
41 933 14.9 10.7 154.1 B 
42 2533 9.5 8.0 121.7 M 
43 2711 9.3 7.9 195.4 M 
44 1556 12.6 9.5 142.0 M 
45 1600 12.5 9.4 134.4 M 
46 2000 11.9 8.8 176.0 M 
47 1422 12.9 9.6 107.7 M 
48 711 18.0 11.0 266.3 B 
49 1022 12.5 9.4 87.6 M 
50 2178 11.2 8.8 153.2 M 
51 2178 10.1 8.4 103.6 M 
52 1378 12.6 9.4 132.5 M 
53 1422 15.4 10.4 204.3 M 
54 1778 12.1 9.2 120.4 M 
55 1067 13.6 10.1 96.3 M 
56 1111 15.3 11.0 106.5 C 
57 1200 11.0 8.9 82.4 B 
58 1156 14.8 10.3 138.7 B 
59 1689 11.9 9.7 90.6 B 
60 1911 10.8 8.6 221.6 M 
61 1067 10.0 8.0 81.2 M 
62 1467 10.6 8.7 121.7 B 
63 1111 14.6 10.4 124.0 B 
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Table 1. Cont. 

No. 
Density 

(Stem/ha) 
Average 

DBH (cm) 
Average 

Height (m) 
AGB 

(Mg/ha) 
Forest 
Type 

64 1644 13.5 9.8 156.4 C 
65 1175 11.5 8.6 100.4 B 
66 1250 13.2 9.5 108.3 B 
67 533 11.3 9.0 40.4 B 
68 533 17.5 11.1 116.6 B 
69 889 9.9 8.4 40.7 B 
70 1556 10.0 8.2 75.5 M 
71 1111 11.4 8.6 155.8 B 
72 1778 10.2 8.3 99.7 B 
73 1378 15.2 9.9 179.3 B 
74 933 17.7 10.9 331.2 B 
75 1956 10.1 8.4 140.4 B 
76 1911 10.6 8.7 82.8 B 
77 1289 13.8 10.4 153.5 B 
78 1467 13.5 10.1 115.5 B 
79 2000 11.6 9.4 119.0 C 
80 978 8.6 7.7 35.5 B 
81 1556 14.1 10.5 166.6 C 
82 978 20.6 12.7 233.3 B 
83 1289 14.9 10.6 129.4 B 
84 1022 21.0 12.4 258.5 B 
85 800 16.1 11.3 105.7 B 
86 933 15.8 10.7 138.2 B 
87 400 10.1 8.5 25.5 B 
88 356 15.4 11.1 53.3 B 
89 1156 18.0 11.7 227.7 B 
90 1200 17.8 11.3 192.6 B 
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2.3 Satellite Imagery and GIS Data 

One of the optical images was acquired by the WorldView-2 

satellite on 10 December 2011 during good weather and clear skies. At 

this time of the year, the leaves of some of the deciduous tree species 

had fallen, and some trees had leaves that were turning yellow, while 

the evergreen trees were full of chlorophyll, providing good 

conditions for tree species identification and classification. The 

satellite has a panchromatic band (0.46–0.80 μm) with 0.5-m ground 

resolution at the nadir and eight multispectral bands with 2.0-m 

resolution. In addition to the four standard colors, Blue (0.45–0.51 

μm), Green (0.51–0.58 μm), Red (0.63–0.69 μm), and Near Infrared 1 

(NIR1) (0.77–0.90 μm), four new, additional bands were available: 

Coastal Blue (0.40–0.45 μm), Yellow (0.59–0.63 μm), Red-Edge 

(0.71–0.75 μm), and Near Infrared 2 (NIR2) (0.86–1.04 μm). The size 

of the image was 8868 lines × 9358 pixels at the nadir with 16-bit data 

stored, and the geometric projection was UTM (Universal Transverse 

Mercator) WGS 84 Zone 50 North. The satellite data were ordered as 

the premium product level, suggesting that the data had been 

sensor-corrected, ortho-rectified, and geo-corrected by the data 

provider, DigitalGlobe Inc. [73]. According to DigitalGlobe, the 

geolocation accuracy of the delivered image ranges from 4.6 m to 10.7 
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m (CE90). This accuracy was verified by comparing the data to the 

standard map of the mountain created by an infrared airborne 

photograph taken in 1991 with an accuracy of 5 m. The two datasets 

were in good agreement, as verified by matching spatial positions 

such as the intersections of roads, single buildings, and water areas. 

The optical data were atmospherically corrected using the Fast 

Line-of-Sight Atmospheric Analysis of Spectral Hypercubes 

(FLAASH) algorithm in ENVI 4.8 software. The reflectance values of 

the eight multispectral bands were then used to calculate vegetation 

indices and to correlate with the observed forest biomass. 

Another optical imagery used for the classification of stand types in 

our study was acquired by the Landsat-8 satellite on 11 August 2013 

during good weather and clear skies. The OLI (Operational Land 

Imager) sensor of the Landsat-8 satellite has a panchromatic band 

(0.500–0.680 μm) with 15-m ground resolution at the nadir and eight 

multispectral bands with 30-m resolution. In addition to the four 

standard colors, Blue (0.450–0.515 μm), Green (0.525–0.600 μm), 

Red (0.630–0.680 μm), and Near Infrared (NIR) (0.845–0.885 μm), 

four additional bands were available: Coastal (0.433–0.453 μm), Short 

Wavelength Infrared 1 (SWIR1) (1.560–1.660 μm), Short Wavelength 

Infrared 2 (SWIR2) (2.100–2.300 μm), and Cirrus (1.360–1.390 μm). 
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The geometric projection of the image was UTM WGS 84 Zone 50 

North. The accuracy of the image was verified by comparing the data 

to the standard map of the mountain created in 1991 with an accuracy 

of 5 m. The two datasets were in good agreement, as verified by 

matching spatial positions such as the intersections of roads, single 

buildings, and water areas. 

The two scenes of SAR data used in this study were collected by 

the ALOS PALSAR sensor in fine beam dual-polarization mode 

(FBD) (HH and HV polarizations) on 11 October 2010, with an 

off-nadir angle of 34.3° and in polarimetric mode (PLR) (HH, HV, VH, 

and VV polarizations) on 22 March, 2011, with an off-nadir angle of 

21.5°. These PALSAR datasets were ordered as L1.1 level with the 

single look complex (SLC) format. The FBD data had a spatial 

resolution of 9.4 m in slant range and 3.2 m in azimuth. The spatial 

resolution of the PLR data was 9.4 m in slant range and 3.5 m in 

azimuth [79]. The detailed processing and analysis approaches of the 

SAR data will be introduced at the corresponding chapter later. 

In addition, in this study, geographic data such as the boundary line 

of the mountain and the forest base maps were obtained from the 

ArcGIS (GIS, Geographic Information System) database, which was 

established in 2002 based on the forest inventory data of 662 plots 



 23 

investigated by a special project in 2001 [80]. This database was also 

used to support the field investigation. The field data for the 90 plots 

surveyed in September 2011 were inputted into the above database, 

including stem density, average DBH (diameter at breast height of 1.3 

m), average tree height, forest type, dominant species, volume, AGB, 

and GPS (Global Positioning System) data for the plot center. These 

data were used to test the accuracy of the interpreted tree tops, to 

perform a supervised classification of tree species, and to test the 

accuracy of the forest biomass inversion. 
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Chapter 3 Interpretation of Forest Resources at the 

Individual Tree Level 

3.1 Data Analysis Method 

The research flow chart in Figure 2 provides an overview of the 

methods. 

 

Figure 2. Research flow chart. ITC, individual tree crown. 

3.1.1 Interpretation of Tree Tops 

Tree tops were interpreted with the ITC approach using 

WorldView-2 imagery in PCI Geomatica v9.1 software with the ITC 

Suite [18,28,81]. First, preprocessing for tree top interpretations was 

necessary to normalize the panchromatic band based on its own range 

in the illumination image, which was performed twice to smooth using 

an averaging filter of 5 × 5 pixels (2.5 by 2.5 m) [18,28]. Second, an 
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NDVI (Normalized Difference Vegetation Index) image was generated 

using the Vegetation Index Image function. Third, a bitmap of the 

non-vegetation area was automatically created using the NVEG 

MASK function of the ITC Suite by comparing (normalized or not) 

the NIR and the visible values [28]. In this step, man-made structures, 

such as buildings and roads, soil and water zones, were extracted with 

good results, but some grass areas composed of herbs could not be 

extracted, because the grasses had similar multispectral characteristics 

to the forest area; an error in which some forest area was identified as 

non-vegetation area was generated from the automatic extraction, due 

to the image acquired in December 2011. These two problems were 

solved by the following approach: first, the minimum and maximum 

values of the NDVI and/or panchromatic band were found for the 

grass and misclassified forest areas (in this study, the panchromatic 

value of 40 to 80 and the NDVI value of 170 to 195 could be used to 

separate the grass areas and to correct the misclassified forests, 

respectively); second, two bitmaps for these areas were established by 

the THR (Thresholding Image to Bitmap) function; finally, the correct 

non-forested regions of the image were extracted by the 

non-vegetation zone plus grass and minus misclassified forest area by 

the BLO function (Bitmap Logical Operation). 
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The ITC isolation image was produced by using the 

valley-following algorithm. Using the normalized panchromatic band 

and the non-forested mask, this method treats the spectral values as 

topography, with shaded and darker areas representing valleys and 

bright pixels delineating the tree crowns [18]. This method produces a 

bitmap of segments of valley and crown materials in forest areas. A 

rule-based system follows the boundary of each segment of crown 

material to create isolations, which are taken to represent tree crowns, 

while the pixel with the highest gray value at each tree crown is 

interpreted as the tree top by the local maxima filtering technique [28]. 

Because of the coverage of canopy trees, small trees in the understory 

were difficult to interpret [1,11]. Therefore, based on the present 

condition of the surveyed plots, all forests at Purple Mountain were 

divided into three groups: trees ≥ 10 cm DBH, ≥ 15 cm DBH and ≥ 20 

cm DBH. We attempted to extract the tops of trees in these three 

groups by using filters with a moving window of 3 × 3 pixels (1.5 × 

1.5 m), 5 × 5 pixels (2.5 × 2.5 m) and 7 × 7 pixels (3.5 × 3.5 m), 

respectively, which, in theory, may extract trees with crown diameters 

of more than 1.5 m, 2.5 m and 3.5 m, respectively. 

The field data for the 90 plots were used to test the accuracy. We 

verified the correspondence of the observed and estimated tree 
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densities in the central point of each plot and calculated the accuracy 

of the interpretation of the tree tops. The interpreted accuracy of tree 

tops can be calculated by the following formula: 

100)D1( I SS DD                                  (1) 

where Φ is the interpreted accuracy (%), DI is the stem density of trees 

interpreted by the ITC method and DS is the stem density of trees in 

the surveyed plot. 

3.1.2 Supervised Classification and Counting for Different Tree 

Species 

Based on forest inventory data and other information, including 

photos linked in Google Earth and existing thematic maps, the 

WorldView-2 imagery of the study area was classified into 16 classes 

by using a supervised classification process of eight multispectral 

bands with the Maximum Likelihood algorithm in ERDAS Imagine 

v8.6 and in MultiSpec Win32. In spite of having attempted to define 

an exhaustive list of classes and having enhanced the statistics, there 

will still be some pixels that have a low likelihood of being members 

of even the most likely class. Though the probability results map will 

show where these pixels are, the MultiSpec thresholding capability 

can provide quantitative information about them. For example, if a 

threshold of 2% is selected, the threshold level will be calculated, such 
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that 2% of an ideal Gaussian distribution with the same mean vector 

and covariance matrix will be thresholded in each class [82]. The 

lower the threshold value is, the higher the rate of classified pixels, 

whereas the lower the classified accuracy. The threshold was set at the 

2% default in our study, because the 2% level had the best 

classification results compared to other values. Additionally, to 

overcome the “mixed pixels” problem of the pixel-based classification 

(i.e., some pixels within a tree crown may be classified into two or 

more different classes), an object-based supervised classifier (called 

crown-based classification) was designed for tree species 

classification in the ITC Suite [28], which was used to generate 

another thematic map of the tree species in this study. This 

crown-based classification was completed by the ITCSC (Individual 

Tree Crown Supervised Classifier) function of the ITC Suite. The 

ITCSC classified the individual tree crowns (ITCs) of the image into 

different species using a Maximum-Likelihood (ML) decision rule 

[28]. The classification was based on comparing the signature of each 

ITC, one by one, with the ITC-based signatures of the various species. 

The species signatures were produced by the ITCSSG (Individual Tree 

Crown Species Signatures Generation) program using the training 

areas created at the section of the pixel-based classification. Finally, 
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when the tree tops interpretation and the supervised classification 

processes were completed, all tree tops were annotated with a species 

attribute from the species thematic map delineated by the crown-based 

classification using an overlay by the extraction function in ArcGIS 

v9.2. The total number of trees of different species at Purple Mountain 

was counted using the summarize function. 

 

3.2 Results 

3.2.1 Interpretation of Tree Tops 

In this study, the tree tops of the three groups, ≥10 cm DBH, ≥15 

cm DBH and ≥20 cm DBH, were extracted using filters with moving 

windows of 3 × 3 pixels, 5 × 5 pixels and 7 × 7 pixels, respectively. 

For the total mountain, there were 1,203,970 trees of DBH over 10 cm, 

and the accuracy of interpretation was 73.68 ± 15.14% (average value 

and standard deviation) averaged for the 90 plots. The number of trees 

≥15 cm and ≥20 cm DBH is 727,887 and 548,919, with an average 

accuracy of 68.74 ± 17.21% and 71.92 ± 18.03%, respectively. 

According to the composition of tree species, the 90 plots were 

divided into three types: broad-leaved forest, coniferous forest and 

mixed forest. The average interpretation accuracies of the different 

forest types in the three groups were calculated as shown in Figure 3 
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(average value and standard deviation). In the broad-leaved forest, the 

accuracy in the DBH ≥10 cm layer was higher than that in the DBH 

≥15 cm layer and the DBH ≥20 cm layer, indicating that with the 

growth of broad-leaved trees, the tree tops become difficult to identify, 

in contrast to coniferous forests [18]. There is no significant difference 

in accuracy between the three groups for mixed forest. 

 

Figure 3. The difference in accuracy between forest types for the three 

groups. 

 

In addition, the effects of stem density in the surveyed plots on 

interpretation accuracy were analyzed. The regressions of stem density 

and interpreted accuracy were performed as shown in Figure 4. The 

results indicate that the accuracy decreases as the stem density 

increases, because the chance of overlap between crowns increases 

with incremental stem density. 
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(a) 

 
(b) 

 
(c) 

Figure 4. Regression of accuracy and stem density of the surveyed plots. (a) 

3 × 3 pixels for DBH ≥ 10 cm; (b) 5 × 5 pixels for DBH ≥ 15 cm; (c) 7 × 7 

pixels for DBH ≥ 20 cm. 
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3.2.2 Pixel-Based Supervised Classification of Tree Species 

Based on forest inventory data and other information, a supervised 

classification was performed on the WorldView-2 imagery with eight 

multispectral bands in the MultiSpec Win32 software. The imagery 

was classified into two types of land cover with a total of 16 classes. 

One of these types was non-forested area with five classes: building, 

water, soil, road and grass; and the other was forest area: open forest, 

eight main tree species, bamboo and shadow (Figure 5). The open 

forest was defined as the zones composed of nursery, shrubland or 

sparse trees. The shadow class mainly formed from the northern 

regions neighboring mountain ridges, where the abrupt slope and trees 

with fallen leaves with small sizes and low density led to the shaded 

and darker areas. 
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Figure 5. Distribution of 16 classes classified by MultiSpec Win32 for eight 

multispectral bands. Of: open forest; Cd: Cedrus deodara; Mg: Metasequoia 

glyptostroboides; Pco: Platycladus orientalis; Pm: Pinus massoniana; Pe: 

Pinus elliottii; Pno: Platanus orientalis; Ba: bamboo; Lf: Liquidambar 

formosana; Qa: Quercus acutissima; Sh: shadow. 
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In the process of classification, 282 training areas with a total 

number of 194,117 pixels (4.0 m2/pixel) were created for the 16 

classes (for a detailed number of each class, see Table 2). Using the 

mean digital number (DN, representing the reflectance of the objects 

on sunshine) of the test pixels of each class for all multi-color bands, a 

straight-line map was used to compare the spectral characteristics of 

the different classes (Figure 6). Band DNs for the spectral values were 

highest for Green (ranging 0.51–0.58 μm), either in non-forested areas 

or forest areas, and lowest for Red (0.63–0.69 μm) for most of the 

classes. The mean DNs of the Blue band (0.45–0.51 μm) for most of 

the classes in non-forest regions were higher than those of other bands. 

However, most tree species had nearly equal spectral values in the 

Blue, Red-Edge, NIR1 and NIR2 bands. In addition, the water and 

shadow classes had similar trend lines, with the lowest DN value in 

band NIR2. The DN values of broad-leaved trees were greater than 

those of conifers, and Platanus orientalis was the highest for most 

bands. Although the DNs of most bands differed markedly between 

broad-leaved and coniferous trees, little discrepancy was found in 

some conifers, such as Platycladus orientalis and Pinus massoniana, 

which was disadvantageous for classifying them. Additionally, the 

statistical test of separability using the Transformed Divergence 
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method indicated a good separability between most of the classes 

(Table 3). 

 

Figure 6. Comparison of the mean digital number (DN) values of different 

classes using a line chart. The abbreviations are the same as in Figure 5. 

 

The confusion matrix for the test areas for the 16 classes using 

WorldView-2 imagery with eight bands by MultiSpec Win32 is shown 

in Table 2. Non-forested areas are typically classified with high 

accuracy, with the exception of road type, because the spectral 

signatures of many road pixels are similar to those of buildings and 

were misclassified as buildings. Regarding tree species, the confusion 

matrix indicated the dominant species in the canopy layer, Pinus 

massoniana and Quercus acutissima, which were classified at 80.6% 

and 93.0%, respectively. However, the accuracy of another dominant 

species, Liquidambar formosana, was relatively low at 67.5%, 
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because it was in the subdominant layer and many individuals were 

covered by Quercus acutissima. By contrast, some species were 

misclassified with low accuracy. For example, Platycladus orientalis 

and Platanus orientalis were misclassified into Pinus massoniana and 

open forest, respectively, mainly due to their low proportion and 

because most of the forest in the study area was composed of 

uneven-aged mixed forest with a complex spatial structure. 

MultiSpec Win32 is the common software for land cover and forest 

classification and has been used for forest studies worldwide free of 

charge. ERDAS Imagine is the comprehensive software available for 

processing remote sensing images, such as geometric and ortho 

correction, image enhancement and classification and integration with 

GIS (Geographic Information System). In this study, using the same 

training areas, a supervised classification on the same WorldView-2 

image with eight multispectral bands was completed by ERDAS 

Imagine 8.6. Although the classified accuracies of Cedrus deodara 

and Metasequoia glyptostroboides obtained by ERDAS were higher 

than those determined by MultiSpec, most of the class accuracies 

determined by MultiSpec were better than those determined by 

ERDAS, with an average increment of 1.8% for the 16 classes (Figure 

7). Therefore, we selected the results classified by MultiSpec Win32 
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for the output thematic map and to conduct the subsequent study. In 

addition, to clarify whether the four additional bands of WorldView-2 

could improve the classification accuracy significantly compared to 

the four standard bands, the object image with the four standard bands 

(Blue, Green, Red, and NIR1) was classified again using the same test 

pixels by MultiSpec Win32. The results indicated that the classified 

accuracies of the 16 classes obtained by using all of the multispectral 

bands were higher than those obtained by using only the four standard 

bands. The increments ranged from 0.1% for the water class to 17.0% 

for Metasequoia glyptostroboides, with an average value of 4.8% for 

the 16 classes (Figure 7). 

 

Figure 7. Spider chart representing the user accuracies for different 

classification approaches. The abbreviations are the same as in Figure 5. 
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3.2.3 Object-Based Supervised Classification of Tree Species 

For the purpose of avoiding the “mixed pixels” effect of the 

pixel-based classification, a crown-based supervised classification was 

performed on the forest areas with eight multispectral bands in PCI 

Geomatica v9.1 with the ITC Suite. As a consequence, with a 

magnified area, the crown-based thematic map of tree species was 

generated and documented in Figure 8 by overlaying the non-forest 

classes produced by the pixel-based classification. When the 

object-based classification was completed, a total number of 500 

random sample trees were used for the accuracy assessment. The 500 

sample points were generated by the stratified random rule, and the 

minimum number of each species was 30. Then, all sample trees were 

assigned their reference classes based on forest inventory data and 

other additional information, including photos linked in Google Earth 

and existing thematic maps. Finally, an accuracy report was generated 

and displayed in Table 4. The results indicated that the ITC-based 

classification was much better than the pixel-based classification for 

the forested area, although the overall accuracy of the latter was 

slightly higher than that of the former, because the overall accuracy 

for the pixel-based classification included the non-forested classes, 

such as water, building and soil, with very good classified results. The 
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improvements of the object- to pixel-based classification ranged from 

−1.6% for the open forest class to 34.3% for Metasequoia 

glyptostroboides, with an average value of 20.3% for the 10 classes. 

 

Figure 8. Distribution of tree species classified by the crown-based approach 

for eight multispectral bands. (a) the magnified area displayed by delineated 

tree crowns overlaying the panchromatic band; (b) the magnified area 

displayed by R: G: B = 7(NIR1): 5(Red): 2(Blue); (c) the magnified area 

displayed by object-based classified tree crowns overlaying the panchromatic 

band; (d) the crown-based classification map of tree species at Purple 

Mountain by overlaying the non-forested classes. The abbreviations are the 

same as in Figure 5. 
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Table 4. Error matrix for the 10 classes classified by the ITC-based 

classification approach. 

Class 
Name * Of Cd Mg Pco Pm Pe Pno Ba Lf Qa Number 

Samples 

Producer’s 
Accuracy 

(%) 
Of 30 0 1 0 0 0 1 0 1 0 33 90.9 
Cd 0 27 1 2 2 2 1 2 0 0 37 73.0 
Mg 1 0 34 0 0 0 5 0 5 0 45 75.6 
Pco 0 5 0 19 1 4 0 1 0 0 30 63.3 
Pm 0 1 0 2 57 2 0 2 0 1 65 87.7 
Pe 0 1 1 3 3 33 0 1 0 0 42 78.6 

Pno 2 2 4 0 0 0 34 0 8 0 50 68.0 
Ba 0 2 0 1 2 2 1 22 0 1 31 71.0 
Lf 1 1 4 3 1 0 4 0 71 2 87 81.6 
Qa 0 0 0 1 0 0 0 0 1 78 80 97.5 

Total 34 39 45 31 66 43 46 28 86 82 500  
User’s 

Accuracy 
(%) 

88.2 69.2 75.6 61.3 86.4 76.7 73.9 78.6 82.6 95.1   

Notes: Overall classification accuracy (405/500) = 81.0%; Kappa Statistic (X100) = 76.3%; Kappa 

Variance = 0.000001. * Of: open forest; Cd: Cedrus deodara; Mg: Metasequoia glyptostroboides; Pco: 

Platycladus orientalis; Pm: Pinus massoniana; Pe: Pinus elliottii; Pno: Platanus orientalis; Ba: 

bamboo; Lf: Liquidambar formosana; Qa: Quercus acutissima. 

 

3.2.4 Counting Trees of Different Species in the Study Area 

In this study, using an overlay from the extraction function in 

ArcGIS v9.2, all tree tops extracted by the ITC method were 

annotated with species attributes from the thematic map classified by 

the crown-based approach using the WorldView-2 image with eight 

multispectral bands. The total number of trees of different species at 

Purple Mountain was counted using the summarize function in 

ArcGIS (Figure 9). 
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Figure 9. Tree count of different species at Purple Mountain. 

 

The count indicated that the density of the forest in the study area 

was mainly dominated by Liquidambar formosana and Quercus 

acutissima in three layers. Pinus massoniana was the dominant 

species compared with other coniferous species. The results were in 

accordance with forest inventory data. 
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3.3 Discussions 

In modern forest management, pure stands are replaced by 

heterogeneous, mixed stands. Therefore, spatially detailed forest 

information over large areas is of great importance. The traditional 

forest inventory method using sample plotting is nearly impossible to 

accomplish due to its low accuracy and scale limitation. Therefore, 

enhanced methods are required to obtain spatially explicit information 

on tree species composition and distribution patterns [2]. This study 

attempted to acquire forest resource information at the individual tree 

level by using remote sensing techniques on a large scale. 

Tree tops were first interpreted by the ITC method. This approach is 

very effective for extracting tree tops of even-aged single forests using 

a filter of a moving window with a single size. For a large forest 

composed of uneven-aged stands with different tree crown sizes, the 

homogeneity function of the ITC Suite can be used to separate young 

tree areas from mature forests [1,24]; the tops of small and large-sized 

trees can then be interpreted by using filters with different moving 

window sizes on small and large tree areas, respectively. However, 

because cutting has been forbidden since the 1980s, there are few 

stands of a single species or size distributed at Purple Mountain today, 

and most forests have a complex spatial structure that is difficult to 
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interpret using a filter with a fixed moving window. Therefore, the 

forests in the study area were divided into three groups: trees ≥10 cm 

DBH, ≥15 cm DBH and ≥20 cm DBH. The tree tops in the three 

groups were then extracted by using filters with a moving window of 

3 × 3 pixels (1.5 × 1.5 m), 5 × 5 pixels (2.5 × 2.5 m) and 7 × 7 pixels 

(3.5 × 3.5 m), respectively, which, in theory, should extract trees with 

crown diameters of greater than 1.5 m, 2.5 m and 3.5 m, respectively. 

Although the tree crowns were delineated using the individual tree 

crown approach based on the DBH knowledge of the 90 plots, the 

interpreted results of the tree crowns and tree tops are independent of 

the DBH information. Consequently, this approach can also be used to 

delineate the trees in the areas with no DBH information. In the 

even-aged forests, the trees can be easily mapped using a fixed 

moving window, because of the approximately same crown sizes. 

Additionally, the trees in the areas having a mixed DBH class can be 

delineated using a similar method as our study. The filter window 

size(s) can be determined by roughly estimating the tree crown sizes 

combining the spatial resolution of the remotely sensed data. When 

the tree crown delineations were completed, the DBH inversion of the 

interpreted trees may be true using the correlations between the tree 

crowns and DBHs of observed trees. This topic will be verified in the 
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next study using the 10 large-sized plots investigated in May 2012, in 

which the detailed position information of the individual trees was 

recorded in addition to the crown sizes. 

In addition, we selected the entire mountain, which has an area of 

approximately 30 km2, as the research study area and established 90 

plots distributed in different forest types to test accuracy. Due to time 

limitations and the large number of plots, we only measured DBH and 

the height of the trees ≥5 cm DBH and did not include the coordinates 

of every tree. The center of every plot was noted by GPS (Garmin 

MAP 60CS, accuracy ± 3 m) and as sample points. We considered that 

the observed stem density in sample points could represent the 

condition of forest stands around sample points. For extracted trees, 

the densities in every central point were calculated by the buffer 

function in ArcGIS v9.2. Finally, we verified the agreement of the 

observed and estimated tree densities in every central point and 

calculated the interpreted accuracy. We plan to verify the agreement of 

the observed and estimated trees individually by creating some large 

size plots in our next study. 

WorldView-2 was expected to have great potential for forest studies, 

because the satellite has higher spatial resolution and can provide 

more abundant multispectral information compared with traditional 
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sensors. The findings of our study suggested that the four new bands 

(Coastal, Yellow, Red-Edge and NIR2) of the WorldView-2 have a 

positive effect on the species classification. The classified accuracies 

of the 16 classes obtained using all of the eight multispectral bands 

were higher than those obtained using only the four standard bands. 

The improvements ranged from 0.1% for the water class to 17.0% for 

Metasequoia glyptostroboides, with an average value of 4.8% for the 

16 classes. 

At Purple Mountain, most stands have a complex spatial structure, 

with more than two layers and many regenerated species that differ 

from those of the canopy trees distributed in understories and the gaps 

between tree crowns, complicating the identification of individual tree 

crowns and species. The broad-leaved species, Quercus acutissima, 

the most dominant species in the canopy layer, was classified with 

good user accuracy. In the late 1970s, many large Pinus massoniana 

trees, the dominant coniferous species, were damaged by pine wilt 

disease. Broad-leaved trees, including Quercus acutissima and 

Pistacia chinensis, successfully invaded the gaps and had good growth. 

As a result, Pinus massoniana has been classified with an accuracy of 

80.6%. Another dominant species, Liquidambar formosana, had 

relatively lower classification performance, because it was in a 
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subdominant layer and many individuals were covered by Quercus 

acutissima. However, some species were misclassified by the 

pixel-based classification with low accuracy, due mainly to their low 

proportion. The season in which the images were acquired also had 

negative effects on tree species classification in some cases. In winter, 

the leaves of some deciduous tree species had fallen, and some trees 

were turning yellow or dying off, which would lead to a change in 

forest reflectance in the spectrum. Therefore, it is essential to classify 

forests by combining the data acquired in summer with those acquired 

in winter using other classification methods in future studies. 

For the classification analysis of images with very high spatial 

resolution, object-based approaches are superior over pixel-based 

approaches when the pixel size is significantly smaller than the 

average size of the objects of interest [83,84]. Immitzer et al also 

found that by classifying objects instead of pixels, the user accuracies 

could increase significantly for most tree species in a forest study of a 

temperate zone [2], and the positive impact was higher for conifers 

than broadleaved trees. Additionally, there may be a “mixed pixels” 

issue in the pixel-based classification, i.e., the pixels within the tree 

crowns of large sizes might be classified into two or more different 

classes. The ITC-based classifier presented by Gougeon [28] can 
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overcome this “mixed pixels” problem, which classifies the pixels 

within the single crown into the same species by comparing the 

signature of each tree crown with the ITC-based signatures of the 

various species using the Maximum-Likelihood algorithm. The results 

of the present study indicated that the crown-based classification 

improves the classified accuracy of both dominant species and smaller 

classes. This result is because the ITC-based classification cannot only 

avoid the pixels within tree crowns being classified into non-forested 

classes, such as building and road, but it can also mitigate the effect of 

the shadows between tree crowns on species classification. Therefore, 

the findings from this study lead to the recommendation of using the 

ITC-based instead of the pixel-based classification approach in 

classifying highly mixed forests. 

Generally, the DN values of forestland in NIR bands were higher 

than those in other bands, such as Blue, Green and Red [85–87]. 

However, we determined that the band with the highest DN values 

was Green (0.51–0.58 μm) for all of the species rather than the NIRs 

in this study, and the spectral values of forest areas in NIR bands were 

much lower than those of other published studies [2,18,88]. It is likely 

that the reflectances of forestland on NIRs were mainly affected by the 

structure of tree cells, and the image used in this study was taken in 
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December 2011, when the low temperature in the study area inhibited 

the growth of trees and induced dormancy, thus resulting in changes in 

cell structure, such as a decrease in water content. The details of the 

influencing mechanisms require further study. 

All of the extracted tree tops were annotated with species attributes 

from the thematic map established by the ITC-based supervised 

classifications, and the numbers of trees of different species were 

counted in this study. We studied how to interpret other parameters of 

forest resources, such as tree height, DBH and volume at the 

individual level, automatically by remote sensing. An available 

method to measure tree height using DSM (Digital Surface Model) 

minus DTM (Digital Terrain Model), which might be extracted from 

airborne LiDAR data, was reported by Katoh [89]. However, it is very 

difficult to interpret DBH information directly using satellite or 

airborne imagery. It has become possible to measure the DBHs of 

individual trees by regression models of DBH as the dependent 

variable and tree height as the independent variable and combining the 

location information of the extracted tree tops. Moreover, with the 

development of computer technology, some software, such as E3De 

v3.1, can automatically create three-dimensional models of individual 

trees using airborne LiDAR data with high point-densities, potentially 
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enabling the interpretation of DBH. However, its usefulness needs to 

be verified in future studies. 
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3.4 Conclusions 

The present study has measured the forest resources at Purple 

Mountain at the individual tree level using the WorldView-2 data by 

combining GPS, RS, and Geographic Information System (GIS) 

technologies. The tree tops were first interpreted by the ITC approach. 

Second, the study area was classified into two types of land cover with 

a total of 16 classes using the pixel-based classification. The results of 

our study suggested that the four new bands (Coastal, Yellow, 

Red-Edge and NIR2) of the WorldView-2 have a positive effect on the 

species classification. To overcome the “mixed pixels” problem of the 

pixel-based approach, a crown-based supervised classification was 

used for generating a thematic map of tree species. The findings from 

this study lead to the recommendation of using the crown-based 

instead of the pixel-based classification approach in classifying mixed 

forests. Finally, all tree tops were annotated with the species attributes 

from the thematic map, and a tree count of different species indicated 

that the forest of Purple Mountain is mainly dominated by Quercus 

acutissima, Liquidambar formosana and Pinus massoniana. 
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Chapter 4 Estimating Forest Aboveground Biomass 

4.1 Data Analysis Method 

The research flow chart in Figure 10 provides an overview of the 

methods. 

 

Figure 10. Research flow chart. DEM: Digital Elevation Model; BC: 

Backscattering Coefficient; NDVI: Normalized Difference Vegetation Index; 

RVI: Radar Vegetation Index; PDP: Polarimetric Decomposition Parameters; 

CVI: Combined Volume Index. 
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4.1.1 Field Data 

In our investigation, the aboveground biomass ranged from 

approximately 25 Mg/ha for regenerating stands to 342 Mg/ha for 

mature, highly stocked stands. The observed dataset (n = 90) was 

randomly split into 70% and 30% portions for a calibration dataset (n 

= 63) and a validation independent dataset (n = 27), respectively. 

Because the number of surveyed plots was limited, obtaining a similar 

AGB distribution in both datasets was also considered when making 

the division. Consequently, the calibration dataset, which had a 

biomass value of 140.78 ± 57.68 Mg/ha (average ± standard 

deviation), was used to train the prediction models, while the 

validation dataset, which had a biomass value of 142.90 ± 71.79 

Mg/ha, was separately used to test the quality and reliability of the 

prediction models. 

Generally, the AGB of a forest can be accurately estimated by 

summing the biomass of all the individual trees in the plot, which can 

be calculated using allometric equations based on the DBH and the 

height of the trees [44,59,90]. However, no allometric equations are 

available for the study area. Therefore, we used the method presented 

by Fang et al. [91] to estimate the AGB of the 90 plots. First, the 

volumes of all individual trees were calculated using a volume table 
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based on the DBH and height of the trees. Next, the total volumes in 

each plot were summed. Then, the biomass of each plot was estimated 

by the regression between biomass (B) and total volume (V), 

expressed as: 

baVB                                             (2) 

where a and b are coefficients that vary with forest types and have 

been listed in [91] for different forests. 

4.1.2 PALSAR Pre-Processing 

The pre-processing was completed using the ENVI SARscape 

software. To reduce speckle and generate square pixels, the two 

PALSAR datasets were first multi-looked using factors of 1 and 4 for 

FBD image and factors of 1 and 7 for PLR data, respectively, for the 

range and azimuth directions. The datasets were then calibrated to 

obtain SAR backscattering images. The updated calibration factor 

provided by JAXA was used for absolute calibration [92]. In addition, 

the images were speckle filtered using the Lee Refined Filter during 

processing. 

SAR data are acquired in a side-looking geometry, which leads to a 

number of distortions in the imagery. Terrain correction removes these 

geometry-induced distortions by making use of a digital elevation 

model (DEM). The process of terrain correction can be divided into 
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two separate parts: geometric terrain correction and radiometric terrain 

correction. Geometric terrain correction adjusts the individual pixels 

of an amplitude image to ensure their proper location (i.e., it places 

the ridgelines and valleys were they geometrically belong). 

Radiometric terrain correction adjusts the brightness of the pixels with 

respect to the observation geometry, as defined by the incidence angle 

as well as the slope and aspect of the local terrain. Castel et al. [49] 

reported that areas of sloped terrain can induce 2–7 dB dispersion on 

radar backscattering. Therefore, the area having slopes facing the 

radar sensor without radiometric normalization would have higher 

backscatter coefficients than flatter areas, which is a problem when 

assessing properties of backscatter [67]. Hence, these topographic 

effects were addressed through radiometric normalization of the 

backscatter coefficient. To obtain a better representation of the 

backscatter coefficient for distributed targets (i.e., the forest areas), a 

conversion from sigma nought to gamma nought was applied [67,93]. 

In this study, using the DEM data with a resolution of 30 m 

downloaded from the ASTER GDEM website, the two images were 

geometrically and radiometrically terrain corrected and geo-coded to 

the zone 50 north of the UTM projection and were outputted as 

GeoTIFF maps with a pixel size of 10 m. 
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4.1.3 Polarimetry and Other Parameters of the PLR/PALSAR 

Data 

In addition to backscatter intensities, a target decomposition 

technique was applied to the PLR data to obtain polarimetric products. 

Polarimetric decomposition provides information about the scattering 

properties from the targets [51,94–97]. The relationships between a 

feature’s physical properties and its polarimetric behavior can be 

interpreted by examining the underlying scattering mechanisms; the 

scattering process can change between forest stands of different 

structural types and ages [67]. In our study, the entropy (H), alpha (α) 

angle, and anisotropy (A) decomposition parameters and the 

combination of H(1–A) were generated using the PolSARpro v4.2 

software provided by the European Space Agency (ESA). For detailed 

information about these decomposition parameters, please see 

previous studies [51,95,97,98]. 

The RVI (radar vegetation index) derived from the PLR/PALSAR 

data can also be used to analyze the scattering from the vegetated area 

[99]. Woody vegetation has high cross-polarization components and 

high RVI values [97]. The RVI is derived from the radar 

backscattering coefficient (γ°) of the HH, HV, and VV polarizations 

[100]. 
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)2/(8 0000
HVVVHHHVRVI                            (3) 

In addition, the PolSARPro works with two different domains. One 

domain is the coherency matrix T3, which is derived from the Pauli 

scattering vector k. The other is the covariance matrix C3, which is 

based on the lexicographic scattering vector Ω. Often, the polarimetric 

data in the PolSARPro are stored as a T3 matrix because the diagonal 

matrix elements allow a physical interpretation. The T11 element 

represents single-bounce scattering (e.g., waters and roads), the T22 

element shows the feature of double-bounce scattering (e.g., 

buildings), and the T33 element indicates the properties of volume 

scattering (e.g., forest vegetations). Therefore, the T33 map was also 

used to retrieve the forest AGB in our study. 

4.1.4 Calculating NDVIs and CVIs (Combined Volume Index) 

NDVI was selected because this vegetation index is commonly used 

to estimate biomass [101–104]. As shown in Figure 10, the 

atmospherically corrected image was used to generate the NDVI maps. 

To match the pixel size of the backscatter coefficient maps, the optical 

image had to be resampled to a spatial resolution of 10 m. Then, a 

standard NDVI map was produced using band 7 (NIR1) and band 5 

(Red) according to the following formula: 

))/((NDVI RedNIR1RedNIR15-7 RRRR                          (4) 
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where R is the reflectance value. The other 3 developed NDVIs, 

NDVI8-5, NDVI7-6, and NDVI8-6, were also calculated by the same 

method using band 8 (NIR2) and band 5 (Red), band 7 (NIR1) and 

band 6 (Red-Edge), and band 8 (NIR2) and band 6 (Red-Edge), 

respectively. 

In addition, as described in the Introduction section, optical images 

can provide the most information about tree crowns, such as LAI (leaf 

area index) and crown density, while SAR data measure forests based 

on backscattering from the branches and stems of the trees. 

Accordingly, the synergistic use of optical and SAR sensors was 

expected to have great potential for biomass estimation. Moreover, we 

determined that the observed AGB was positively correlated with the 

backscatter coefficient of the HV/FBD data by a moderate R2 

(coefficient of determination) value and was negatively correlated 

with bands 1 to 6 of the WorldView-2 image fitted by a compound 

function expressed by the Equation (7). In our study, the trend line of 

this function was similar to the exponential function in the correlation 

with the observed biomass but had greater significance than the latter 

in the model test (Table 5). Therefore, a new parameter denoted the 

combined volume index (CVI) because of the good linear 

relationships between the CVIs and plot volume was generated by 
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combining the HV backscattering of the FBD data and the eight 

multispectral bands of WorldView-2 image in this study. The CVI can 

be expressed as follows: 

)/()(CVI i
0

i
0

i RR HVHV                               (5) 

where γ°HV is the backscatter coefficient of the HV/FBD data and Ri is 

the reflectance value of the WorldView-2 bands (1 to 8). Before 

calculating CVIs, the backscattering and reflectance images were 

resampled to the data type of unsigned 8 bit integers. 

4.1.5 Establishing the Relationships between the Observed AGB 

and Parameters 

In Table 5, a total of 33 variables that may be correlated with the 

forest biomass were first fitted with the observed AGB using the 

following 8 functions (Equations (6) to (13)). Then, the best-fitting 

equation for each variable (except for bands 7 and 8 of WorldView-2 

due to their insufficient correlation with the AGB), as judged by the R2 

value and significance, was used for the linear transformations. The 

linear-transformed variables were then used to perform the subsequent 

principal component analysis (PCA). Finally, the results of the PCA 

were used to model the biomass by multivariate stepwise regression. 

The coefficients (b0, b1) of the best-fitted model for each variable are 

listed in Table 5. 
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(a) Linear function: 

xbby 10                                            (6) 

(b) Compound function: 

xbby 10                                             (7) 

(c) Growth function: 

)( 10 xbbey                                             (8) 

(d) Logarithmic function: 

xbby ln10                                          (9) 

(e) S function: 

)/( 10 xbbey                                           (10) 

(f) Exponential function: 

xbeby 1
0                                             (11) 

(g) Inverse function: 

xbby /10                                           (12) 

(h) Power function: 

1
0

bxby                                             (13) 

As shown in Table 5, most of the fitted equations are curvilinear 

models, indicating that implementing linear transformations for these 

parameters is essential before performing the multivariate linear 

regression (MLR). In addition, it is easily deduced that Equations (14), 
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(15), and (16) are equivalent. Thus, the maps of these parameters 

fitted by curvilinear models had to be operated using the formula 

listed in the last column of Table 5. Moreover, because some 

parameters were generated from other parameters, a multicollinearity 

problem will remain if these parameters are directly used as 

independent variables to perform the multivariate stepwise regression. 

Consequently, on the basis of their sources, these parameters were 

divided into five datasets: A (FBD/ALOS), B (PLR/ALOS), C 

(WorldView-2), D (CVIs), and E (all 31 parameters) (Table 5). A PCA 

was then performed for each dataset. As a result, 2, 5, 4, 3, and 7 

principal components (PC) were extracted from the dataset A to E, 

with cumulative variances of 99.99%, 98.31%, 99.09%, 99.56%, and 

92.03%, respectively. Normality tests showed that these PCs are 

normally distributed. Finally, the relationships between the forest 

AGB and the above principal components were established using a 

stepwise linear regression approach. 

]b)f(x[a]b)f(x[a]b)f(x[aY(X) nnn22221111 nmmm       (14) 

n2211nn222111 bbb)f(xa)f(xa)f(xaY(X) nn mmmmmm   (15) 

NMMM n )f(x)f(x)f(xY(X) n2211                    (16) 

where mn, an, bn, Mn, and N are constants. 
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Table 5. Regression models between the observed aboveground biomass 

(AGB) as the dependent variable and the parameters derived from different 

RS (remote sensing) sources as the independent variables. 

RS Sources Parameter Best Equation b0 b1 
R2 

(sig.) 

Linear 

Transform 

FBD/ALOS 

(dataset A) 

F-HH Growth 6.095 0.127 0.43 * Exp(b1x) 

F-HV Growth 6.333 0.104 0.51 ** Exp(b1x) 

F-HV/HH Logarithmic 110.087 82.843 0.24 * ln(x) 

PLR/ALOS 

(dataset B) 

P-HH Inverse 127.077 −78.192 0.41 * b1/x 

P-HV Compound 162.352 1.018 0.36 * b1
x 

P-VH Linear 174.712 2.447 0.22 ns x 

P-VV Linear 156.054 1.902 0.19 ns x 

Entropy (H) Growth 3.674 1.343 0.33 * Exp(b1x) 

Alpha (α) Compound 63.892 1.016 0.35 * b1
x 

Anisotropy (A) Compound 155.239 0.377 0.23 ns b1
x 

H(1–A) Growth 4.144 1.003 0.37 * Exp(b1x) 

RVI Compound 74.608 2.152 0.45 * b1
x 

T33 S 5.043 −0.025 0.40 * Exp(b1/x) 

WorldView-2 

(dataset C) 

Band 1 (Coastal) Compound 199.643 0.986 0.35 * b1
x 

Band 2 (Blue) Compound 226.947 0.980 0.41 * b1
x 

Band 3 (Green) Compound 211.070 0.985 0.39 * b1
x 

Band 4 (Yellow) Compound 192.902 0.988 0.32 * b1
x 

Band 5 (Red) Compound 179.355 0.990 0.36 * b1
x 

Band 6 (Red-Edge) Compound 167.905 0.996 0.23 ns b1
x 

Band 7 (NIR1) – – – <0.1 – 

Band 8 (NIR2) – – – <0.1 – 

NDVI7-5 Growth 4.517 0.002 0.33 * Exp(b1x) 

NDVI8-5 Growth 4.545 0.002 0.37 * Exp(b1x) 

NDVI7-6 Compound 7.233 1.020 0.42 * b1
x 

NDVI8-6 Compound 5.256 1.021 0.44 * b1
x 

FBD/ALOS & 

WorldView-2 

(dataset D) 

CVI1 Linear −132.333 62.275 0.52 ** x 

CVI2 Linear −114.558 54.896 0.62 ** x 

CVI3 Linear −107.183 46.293 0.60 ** x 

CVI4 Linear −95.233 41.881 0.49 * x 

CVI5 Linear −65.017 32.089 0.56 ** x 

CVI6 Linear −36.260 26.556 0.41 * x 

CVI7 Linear −67.279 19.682 0.20 ns x 

CVI8 Linear −110.518 24.296 0.24 ns x 

ns Not significant. * Significant at the 0.05 level.  

** Significant at the 0.01 level. x: Pixel value of the parameter maps. 
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Although MLR was the approach frequently used to predict 

changes in forest biomass in previous studies [69,105,106], several 

problems remain with these models. For example, not all variables are 

linearly correlated with the AGB [55,107], and thus the variables not 

included in the linear models should be analyzed by another statistical 

method. Accordingly, the artificial neural network (ANN) approach, a 

very useful modeling technique for non-linear problems [75], was also 

used to produce predictive models to estimate the AGB using the 

multilayer perception (MLP) algorithm. For each dataset (A, B, C, D, 

and E), three MLP models, called MLP1, MLP2, and MLP3, were 

achieved using the principal components that were included in the 

MLR model, using all the principal components extracted from the 

corresponding dataset as mentioned above, and using all the original 

variables (i.e., not linear-transformed) from each dataset (in datasets C 

and E, the bands 7 and 8 of WorldView-2 were included), respectively. 

4.1.6 Error Assessments of Estimated to Observed AGB 

In this study, the coefficient of determination (R2) of the actual vs. 

predicted AGB and the absolute and relative RMSEs (root mean 

square error) were used to evaluate the quality and reliability of the 

estimate models for forest biomass. The absolute RMSE (Mg/ha) of 

each biomass estimated model was calculated as SQRT(SUM(BE − 
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BO)2/n), where BE is the estimated biomass, BO is the AGB derived 

from the inventory data, and n is the number of the plots. The relative 

RMSE (%) was defined as RMSE/Mean(BO) × 100. 
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4.2 Results 

In our study, using the single variables derived from the 

PALSAR/ALOS and WorldView-2 data explained only approximately 

20% to 50% of the variance in the plot-level measurements for the 

forest biomass (Table 5). Accordingly, combinations of several 

variables were considered to improve the relationships with the AGB. 

4.2.1 Estimating Forest Biomass Using the FBD/PALSAR Data 

Numerous studies have found that polarization ratios have 

advantages for biomass estimation because these ratios do not saturate 

as quickly as single polarization data [106,108]. Moreover, ratios are 

known to mitigate topographic effects [109] and to reduce forest 

structural effects due to forest type [110,111]. However, the 

relationship of the polarization ratio of the FBD data with the field 

biomass was worse than that of the single polarization data in our 

study. Thus, we attempted to investigate whether the combination of 

the three variables could improve the biomass estimation. Using the 

calibration dataset (n = 63), stepwise linear regression was first used 

to establish a relationship between the observed AGB as the dependent 

variable to be predicted and the two principal components (PC), which 

were extracted from the linear-transformed backscatter coefficients 

(HH and HV) of the FBD data and the ratio of HV to HH as possible 
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independent variables. The regression can be expressed as the 

following: 

a2a1 6.289523.18978.137B PP                         (17) 

where B is the estimated biomass and Pa1 and Pa2 are the two principal 

components of dataset A. The FBD/PALSAR-derived MLR model 

explained approximately 68% of the variance in the validation dataset 

(n = 27) and produced a relative RMSE of 31.74% (Table 6). An 

F-test indicated that the model is significant at the 0.01 level (P = 

0.008). 

Table 6. Performance of the multivariate linear regression (MLR) and 

multilayer perception (MLP) models for the AGB estimation. 

Dataset Models 

Calibration (n = 63) Independent Validation (n = 27) 
R2 Actual 

vs. 
Predicted 

RMSE/(Mg/ha) 
Relative 

RMSE/% 

R2 Actual 
vs. 

Predicted 
RMSE/(Mg/ha) 

Relative 
RMSE/% 

A 
MLR 0.70 ** 43.09 30.61 0.68 ** 45.36 31.74 
MLP1 0.67 ** 46.98 33.37 0.67 ** 47.85 33.48 
MLP3 0.71 ** 42.77 30.38 0.68 ** 46.33 32.42 

B 

MLR 0.75 *** 38.55 27.38 0.71 *** 42.82 29.97 
MLP1 0.67 ** 47.21 33.53 0.64 ** 51.99 36.38 
MLP2 0.63 ** 53.66 38.12 0.64 ** 52.58 36.79 
MLP3 0.73 *** 41.35 29.37 0.68 ** 46.76 32.72 

C 

MLR 0.70 ** 42.87 30.45 0.65 ** 49.40 34.57 
MLP1 0.65 ** 51.11 36.30 0.59 * 57.23 40.05 
MLP2 0.69 ** 44.58 31.67 0.66 ** 48.52 33.95 
MLP3 0.72 *** 40.71 28.92 0.70 ** 41.97 29.37 

D 

MLR 0.83 *** 30.75 21.84 0.79 *** 35.13 24.58 
MLP1 0.70 ** 42.99 30.54 0.68 ** 44.02 30.80 
MLP2 0.67 ** 46.89 33.31 0.66 ** 47.33 33.12 
MLP3 0.78 *** 34.41 24.44 0.75 *** 37.88 26.51 

E 

MLR 0.91 *** 22.39 15.90 0.89 *** 24.41 17.08 
MLP1 0.80 *** 34.92 24.80 0.76 *** 37.30 26.10 
MLP2 0.83 *** 31.09 22.08 0.81 *** 33.55 23.48 
MLP3 0.93 *** 19.57 13.90 0.89 *** 24.38 17.06 

* Significant at the 0.05 level. ** Significant at the 0.01 level. *** Significant at the 0.001 level. 
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Based on the multilayer perception (MLP) algorithm, the neural 

network approach was also used to produce several models to estimate 

the AGB using the FBD/PALSAR dataset (A). However, there was no 

MLP2 model for this dataset because the two principal components 

were included in the MLR model. The MLP1 and MLP3 models were 

created using the two PCs and directly using the values of HH, HV, 

and HV/HH in the FBD data, respectively. The MLP1 model for AGB 

estimation had a moderate fit of R2 = 0.67 with a relative RMSE of 

33.48% in the validation dataset (Table 6). In other words, 

approximately 33% of the variance in the observed AGB was not 

explained by this model. The MLP3 model explained approximately 

68% of the variance and showed a relative RMSE of 32.42%. There 

was little difference in explaining the variance between the three 

models derived from dataset A, possibly because the two principal 

components included most of the information in the dataset, with a 

very high cumulative variance of 99.99%. 

4.2.2 Estimating Forest Biomass Using the PLR/PALSAR Data 

Although some variables of the PLR/PALSAR data (dataset B) 

were significantly correlated with forest biomass, most of them had 

poor fits and explained less than 40% of the variance. For the purpose 

of increased accuracy, an MLR model was also established for the 
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AGB estimation using the five PCs of the PLR dataset as possible 

independent variables. The regression can be expressed as follows: 

4bb3b21b 295.147.9707.099417.12134.140B PPPP      (18) 

where B is the estimated biomass and Pb1, Pb2, Pb3, and Pb4 are the 

principal components produced from the ten linear-transformed 

parameters of the PLR/PALSAR data (Table 5). This linear model 

showed an R2 of 0.71 and a relative RMSE of 29.97% when validated 

with the independent testing dataset (Table 6). An F-test indicated that 

the MLR model is significant at the 0.001 level (P < 0.001). 

In addition, three MLP models, called MLP1, MLP2, and MLP3, 

were used for the biomass estimate using the four PCs included in the 

MLR regression, using all five PCs extracted from the PLR/PALSAR 

data, and using the ten parameters that were not linear-transformed, 

respectively. The MLP1 and MLP2 models had the lowest fits to the 

observed AGB in the validation dataset, with an R2 of 0.64 and 

relative RMSEs of 36.38% and 36.79%, respectively. The MLP3 

model explained approximately 68% of the variance and had a relative 

RMSE of 32.72%. 

4.2.3 Estimating Forest Biomass Using the WorldView-2 Data 

Four principal components with a cumulative variance of 99.09% 

were extracted from the ten linear-transformed parameters of the 
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WorldView-2 data (except for bands 7 and 8) to perform MLR. Three 

of the PCs were included by the stepwise approach. The MLR model 

can be expressed by the following equation: 

c43c1c 4.260177.5770.7335.154B PPP                 (19) 

where B is the estimated biomass and Pc1, Pc3, and Pc4 are the PCs 

extracted from dataset C. This WorldView-2 derived linear model was 

only able to explain approximately 65% of the variance, with a 

relative RMSE of 34.57% in the validation plots (Table 6). 

Regarding the MLP-based models, MLP1 and MLP2 were 

moderately correlated with the observed biomass by an R2 of 0.59 and 

0.66, respectively, whereas MLP3 had the highest correlation with the 

AGB, which explained approximately 70% of the variance and led to 

a relative RMSE of 29.37%. For the WorldView-2 data, we found that 

the best MLP-based model (R2 = 0.70 and RMSE = 41.97 Mg/ha for 

the validation data) was more highly correlated with the AGB than the 

MLR-based model (R2 = 0.65, RMSE = 49.40 Mg/ha), primarily due 

to the use of bands 7 and 8 in the MLP3 model. 

4.2.4 Estimating Forest Biomass Using the CVIs 

Table 5 indicates that the eight CVI variables developed from the 

combination of the FBD/ALOS and WorldView-2 data had the 

best-fitted linear correlations with the AGB when using the eight 
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functions (Equations (6) to (13)) to fit. Therefore, the values of the 

eight CVIs were directly used to perform the principal component 

analysis without linear transformation. Three PCs with a cumulative 

variance of 99.56% were extracted from the CVI dataset. Then, using 

the 63 calibration plots, the MLR model was obtained by the stepwise 

linear approach and can be expressed as the following: 

d21d 822.9586.16651.148B PP                         (20) 

where B is the estimated biomass and Pd1 and Pd2 are the two principal 

components of the dataset D. The analysis of variance indicated that 

the CVI dataset provided a significant improvement in the predicted 

values and had a lower relative RMSE compared to the use of single 

PALSAR or optical sensor data. This MLR model was able to explain 

an additional 11% and 14% of the variability in the plot-level biomass 

compared with the MLR models of the FBD and WorldView-2 data, 

respectively. 

In terms of the three MLP-based models, MLP1 and MLP2 only 

explained approximately 68% and 66% of the variance and produced a 

relative RMSE of 30.80% and 33.12%, respectively. The MLP3 model 

was the most significantly correlated to the observed AGB at the 0.001 

level, with a relative RMSE of 26.51% in the validation plots (Table 

6). However, in contrast to the MLR model using dataset D, a slightly 
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poor explanation for the percentage variance was observed for the 

MLP3 model when validated with the independent testing dataset, 

possibly due to the good linear relationships between the AGB and the 

CVI variables. 

4.2.5 Estimating Forest Biomass by Combining the PALSAR and 

WorldView-2 Sensors 

As mentioned above, modeling forest biomass using the fusion of 

FBD/ALOS and WorldView-2 data provided improved fits relative to 

their respective individual values. However, although the result is 

promising, no more than 80% of the variability of the field biomass 

could be explained by the models derived from this fusion. Previous 

studies have reported increased accuracy when simultaneously using 

several datasets from different sensors [43,58,61,75,107,112] or using 

SAR images from more than one date [106,113,114] or further 

improvement of the model. Using the 31 variables in Table 5, seven 

PCs with a cumulative variance of 92.03% were produced as possible 

independent variables to achieve the multivariate stepwise regression. 

According to the component matrix, the first PC was dominated by the 

eight CVIs, the second PC was mainly composed of the variables of 

the WorldView-2 dataset and called the optical factor, while the third 

PC was called the vegetation index factor because it was dominated 
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by the RVI of the PLR data, the NDVIs of WorldView-2, and CVI1 

to 4. The other four PCs were named as comprehensive factors. As a 

result, the linear model can be expressed as follows: 

e64ee3e21e 13.093270.108.27413.084887.13418.141B PPPPP              

(21) 

where B is the estimated biomass and Pe1, Pe2, Pe3, Pe4, and Pe6 are the 

principal components extracted from the dataset E. The standardized 

regression coefficients of the five PCs were 0.702, 0.681, 0.392, 0.519, 

and 0.677, respectively, which can be used to explain the relative 

weight of these factors in the model. The predicted value of this MLR 

model showed a significantly improved correlation (P < 0.001) with 

the observed biomass, which was able to explain approximately 89% 

of the variance and give a much lower RMSE of 24.41 Mg/ha (relative 

RMSE = 17.08%) for the validation dataset (Table 6). The 

improvement obtained by combining the two PALSAR datasets and 

the WorldView-2 image is in agreement with the results of previous 

studies [44,54,58,75,107,115], which found that integrating the optical 

and SAR data for estimating forest biomass can counterbalance the 

limitations associated with each of the different available optical and 

radar data types. 

The MLP-based models using dataset E also showed good fits with 
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the field biomass in our study. The MLP3 model was the most 

correlated to the AGB, with an R2 of 0.93 and 0.89 for the training and 

testing data and a relative RMSE of 13.90% and 17.06%, respectively. 

However, MLP1 and MLP2 explained approximately 76% and 81% of 

the variance and produced a relative RMSE of 26.10% and 23.48% for 

the validation data, respectively. 

4.2.6 Best Estimated Model Selection and AGB Mapping in Study 

Area 

The validations of the forest biomass estimation models in Table 6 

yielded the following results: (1) the MLP3 models had better fits than 

the MLP1 and MLP2 models, which were established using the 

principal components extracted from the linear-transformed variables 

in the five datasets, indicating the high capability of the neural 

network model for non-linear problems [101,107]; and (2) the 

validation accuracy during model development improved as the 

information content of the datasets increased, i.e., the best 

performances were obtained by the models using dataset E, followed 

by the models using dataset D, while using the single images produced 

the lowest correlations. For comparison purposes, the predicted vs. 

observed biomass of the testing samples (n = 27) was plotted for the 

MLR and MLP3 models using the five datasets and is displayed in 
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Figure 11. The plot shows the fairly high agreements between the 

estimates and observations of MLR and MLP models using dataset E. 

In addition, the differences in the absolute bias of the estimated vs. 

observed biomass between the MLR and MLP models and between 

the five datasets were tested by analysis of variance (ANOVA). The 

results suggest that the models established using dataset E exhibited a 

significantly lower bias at the 0.05 level than the models established 

using the other four datasets, while a highly consistent bias 

distribution was observed in the MLR and MLP3 of dataset E (F = 

0.000, P = 0.995). Although the MLP3 model (R2 = 0.93) fit the AGB 

slightly better than the MLR model (R2 = 0.91) in the calibration plots, 

the two models had the same R2 = 0.89 for the testing data, indicating 

that the MLR model was more stable than the MLP model. In addition, 

the MLP-based model is more difficult to interpret than the MLR 

regression because it has one or more hidden layer(s) and may 

therefore appear to be a “black box”. Accordingly, the MLR model 

derived from dataset E was further used to retrieve the AGB of forests 

in the study area at the pixel level. The forest mask map and the 

land-use classification were generated in a previous study using the 

WorldView-2 image [71]. The overlay of the AGB map with the 

land-use classification is displayed in Figure 12. 
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Figure 11. Comparison of the estimated and observed AGB for the MLR and 

MLP3 models using different datasets (Mg per hectare). The dashed line is 

the 1:1 line. 
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Figure 12. AGB mapping in the study area retrieved by the MLR model using 

dataset E. 

 

The extrapolations using the predicted models for the remaining 

area might lead to the overestimated or underestimated biomass due to 

the limited number of calibration and validation plots, because these 
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plots usually had a smaller range of AGB values than the existent in 

the whole study area. Consequently, the reliability of the finally 

recommended model was tested by the quantitative comparison of the 

two AGB mappings retrieved by the MLR and MLP3 models using 

dataset E. The two biomass maps showed a very high correlation with 

an R2 of 0.993. In addition, a total of 1500 random points were 

produced from the forest area. The AGB values of these points in the 

above two maps (MLR and MLP3) were then extracted for 

establishing a linear regression between the MLR value as the 

dependent variable (y) and the MLP3 value as the independent 

variable (x) (Figure 13). The result indicates that the two datasets were 

in good agreement. 

 

Figure 13. Linear regression between the AGB values in the 1500 random 

points predicted by the MLR and MLP3 models using dataset E (Mg/ha). 
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4.2.7 The Effects of Forest Type and Vertical Structure on AGB 

Estimation 

In this study, the forests in the 90 plots were divided into three types 

(broad-leaved, coniferous, and mixed forest, Table 1) and five vertical 

structures (VS1, VS2, VS3, VS4, and VS5, Figure 14) to analyze the 

effects of different forest types and structures on AGB retrieval. In 

Figure 14, the lengths of the bold lines represent the relative numbers 

of the stems of the three DBH classes (DBH > 20, 10 ≤ DBH ≤ 20, 

and DBH < 10 cm) in the plots. For example, in VS1, the ratio of 

stems decreased with increased DBH in a pyramid shape, while the 

inverse relationship was observed for VS3 in the form of an inverted 

pyramid. In VS5, the number of stems at 10 ≤ DBH ≤ 20 cm is far less 

than that at DBH > 20 and DBH < 10 cm. Due to the limited number 

of validation plots (n = 27), these 27 samples were divided into nine 

groups such that each group included a low, moderate, and high 

biomass plot. Then, each group with three plots was used once to 

replace three plots of the calibration data for achieving the MLR and 

MLP models using the dataset E (i.e., nine iterations), yielding a total 

of 270 accumulated validation samples for the accuracy assessment of 

the biomass estimation. The absolute and relative RMSEs of the 

multivariate stepwise regressions and the MLP-based models using 
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the dataset E with 10 iterations are shown in Table 7, in which the 

forest types and the vertical structures are distinguished. The results 

indicate that the relative RMSE decreases gradually from 

broad-leaved to coniferous to mixed forest. VS4, in which the stem 

ratio was approximately the same in the 3 DBH classes, had a lower 

absolute RMSE, whereas VS3, in which the forest was dominated by 

large-size trees and lacked undergrowth trees, has the highest RMSE 

of the five vertical structures. 

 

Figure 14. Vertical Structure Charts. 

Table 7. The absolute and relative RMSEs of the MLR and MLP3 models 

using dataset E with 10 iterations for different forest types and vertical 

structures. 

Forest Types and 

Vertical Structures 

MLR Models Using the Dataset E  MLP3 Models Using the Dataset E 

RMSE/(Mg/ha) 
Relative 

RMSE/% 

 
RMSE/(Mg/ha) 

Relative 

RMSE/% 

Broadleaved (n = 137) 31.44 21.92  29.80 20.78 

Coniferous (n = 34) 23.63 16.41  21.71 15.08 

Mixed (n = 99) 15.89 11.51  18.99 13.75 

VS1 (n = 130) 18.56 15.34  20.35 16.82 

VS2 (n = 36) 21.82 17.25  19.76 15.62 

VS3 (n = 29) 58.94 24.74  56.88 23.88 

VS4 (n = 33) 12.11 9.54  11.27 8.87 

VS5 (n = 42) 34.49 20.26  32.69 19.21 
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4.2.8 The Effects of Other Factors on AGB Estimation 

Pine forests are widely distributed over a lot of countries that are 

counting on REDD+ programs for revenue generation through 

biomass conservation. With the purpose of the probable implications 

of our research for these countries, we analyzed the effect of the 

relative number of pine trees in the plots on the AGB estimates by 

dividing the above 270 accumulated validation samples into three 

groups: the relative number of pine trees ranging from 0% to 30% 

(PR1), 30% to 60% (PR2), and over 60% (PR3), respectively. The 

absolute and relative RMSEs of the three groups are documented in 

Table 8. The results indicate that PR2 and PR3 had lower RMSEs, 

whereas PR1, in which the forests were mainly dominated by 

broad-leaved trees, had the highest RMSEs of the three groups. In 

other words, the method developed by our study can be used to 

accurately estimate the AGB of the forests containing pine trees more 

than 30%. 

In addition, we selected the slope and the aspect as environmental 

factors that could possibly impact the retrieval of the AGB. The slope 

was generated from the DEM with a spatial resolution of 30 m and 

ranged from 0° to 31° in the 90 plots. The aspect was defined as north 

(Azimuth ranging from 0° to 22.5° and 337.5° to 360°), northeast 
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(22.5° to 67.5°), east (67.5° to 112.5°), southeast (112.5° to 157.5°), 

south (157.5° to 202.5°), southwest (202.5° to 247.5°), west (247.5° to 

292.5°), and northwest (292.5° to 337.5°), and there was no flat type 

in the field plots. We first analyzed the relationships between the slope 

and the RMSEs. No significant correlations (P > 0.05) have been 

found, suggesting that the corrected measures mitigated the effect of 

different effective back-scattering surface areas caused by the local 

topography and SAR imagery geometry [116,117]. However, when 

the 270 validation samples were divided into three groups as gentle 

slope (GS, 0° to 10°), moderate slope (MS, 10° to 20°), and steep 

slope (SS, 20° to 31°) for counting estimated errors, we found that SS 

had the highest absolute and relative RMSEs of the three groups 

(Table 8). In terms of the aspects, the directions of northeast, east, 

southeast, south, and southwest had lower relative RMSEs less than 

15%, whereas the other three directions had the relative RMSEs of 

approximately 20%. 
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Table 8. The absolute and relative root mean square errors (RMSEs) of the 

MLR and MLP3 models using dataset E with 10 iterations for the relative 

numbers of pine trees in plots, slopes, and aspects. GS, gentle slope; MS, 

moderate slope; SS, steep slope. 

Other Three 

Factors 

MLR Models Using the Dataset E  MLP3 Models Using the Dataset E 

RMSE/(Mg/ha) 
Relative 

RMSE/% 

 
RMSE/(Mg/ha) 

Relative 

RMSE/% 

PR1 (n = 148) 32.06 22.40  30.25 21.13 

PR2 (n = 75) 16.37 11.84  19.26 13.93 

PR3 (n = 47) 21.59 15.03  20.08 13.98 

GS (n = 129) 19.76 14.31  18.43 13.35 

MS (n = 93) 22.88 15.52  23.21 15.75 

SS (n = 48) 31.08 22.37  30.34 21.84 

North (n = 25) 25.87 20.67  26.31 21.02 

Northeast (n = 16) 20.94 14.34  19.76 13.53 

East (n = 15) 13.85 12.91  15.16 14.13 

Southeast (n = 52) 18.57 13.17  16.71 11.85 

South (n = 42) 15.98 12.24  14.66 11.23 

Southwest (n = 36) 19.31 13.65  19.10 13.50 

West (n = 39) 33.02 21.17  31.27 20.05 

Northwest (n = 45) 30.65 19.90  30.92 20.08 
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4.3 Discussions 

Mapping the spatial distribution of forest aboveground biomass is 

an important and challenging task. For a given ecosystem, these maps 

can be used to monitor forests and capture national deforestation 

processes; forest degradation; and the effects of conservation actions, 

sustainable management and the enhancement of carbon stocks [56]. 

In China, the national biomass estimation was mainly completed by 

conducting national forest inventories using the sample plotting 

method every five years, which is difficult to be implemented in 

remote areas. In recent years, although some common approaches of 

remote sensing have been used for estimating Chinese forest biomass 

on a landscape to regional scale using optical images [39,118] or SAR 

data [59], the development of enhanced methods (e.g., the combined 

use of different sensors) that can accurately retrieve forest biomass 

remains an important topic of study [119] due to not only the vast size 

of forests in China but also the limited usefulness of empirical models 

for different forests. Therefore, this study developed an improved 

approach that exploits the synergy of ALOS PALSAR and 

WorldView-2 data to integrate the advantages of both sensors for 

biomass estimation. 

Although the ratio of radar backscattering is often effective for 
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estimating forest biomass [108–111], our results did not confirm this, 

most likely because the SAR data were adequately geometrically and 

radiometrically terrain corrected to reduce topographic effects during 

pre-processing. Acquiring the datasets during the dry seasons (October 

for the FBD and March for the PLR) also helped mitigate the 

influence of soil and surface moisture on L-band microwave 

backscatter [120], which can be particularly strong when low levels of 

aboveground biomass are present [121]. Moreover, another reason for 

the poor correlation between the ratio of backscattering and the 

observed AGB may be the high biomass level in the study area, which 

is far greater than the reported saturation of approximately 60–100 

Mg/ha for L-band SAR. 

In our study, in addition to the backscattering coefficients of 

PLR/PALSAR data, several decomposition parameters, such as 

entropy and Alpha, and other variables (i.e., RVI and T33) were used 

to retrieve the AGB. Although the single variables of the PLR data had 

relatively low fits with the field biomass, the combined use of these 

variables in principal component analysis improved the estimate 

accuracy to approximately 71%. In addition, based on the ability of 

multispectral images to provide surface information about tree crowns 

and ability of SAR data to measure forests based on backscattering 
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from the branches and stems of the trees, a new variable called CVI 

(combined volume index) was developed using the HV backscattering 

of the FBD data and the bands of the WorldView-2 image. The CVI 

dataset yielded a significant improvement in the biomass estimation 

compared to the use of single PALSAR or an optical sensor. Moreover, 

we found that the first PC extracted from the dataset E was dominated 

by the eight CVIs and had the highest weight in the final MLR model. 

Consequently, the results of this study recommend the use of these 

variables introduced above in the AGB estimation of forests. However, 

this conclusion is based on empirical models and should be further 

studied and verified in other forests and different seasons [69,122]. 

The results from this study suggest that the standard NDVI 

calculated from band 7 (NIR1, 0.77–0.90 μm) and band 5 (Red, 0.63–

0.69 μm) of the WorldView-2 data had the lowest correlation with the 

surveyed AGB in the 4 NDVIs. This poor correlation reflected the 

saturation level reached on densely vegetated areas [69,101,103,123]. 

In the highly dense forests, the red band, which can be absorbed by 

vegetation, reaches a peak, while the reflectance of near infrared 

continues to increase due to multiple scattering effects [102]. 

Furthermore, it is likely that the WorldView-2 image was acquired in 

December, when the leaves of some of the tree species had fallen and 
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the reflectance of multispectral bands was easily disturbed by the 

undergrowth vegetation and the ground surface, in which the forest 

was dominated by deciduous trees. However, we also found that many 

forests dominated by deciduous trees had similar reflectance 

characteristics with the evergreen forests by comparing their spectral 

features. This result probably resulted from the distribution of 

evergreen broad-leaved trees under the deciduous trees. Accordingly, 

the difference of the reflectance between deciduous and evergreen 

broad-leaved forests in the study area needs to be clarified by further 

study using another WorldView-2 image acquired in summer. 

In addition, we found that the developed NDVIs computed from the 

NIRs and the additional red-edge band were slightly better fitted to the 

AGB than those calculated from the NIRs and the red band. This 

result was consistent with previous studies indicating that red-edge or 

longer wavelengths result in higher correlations with biomass in dense 

vegetations than the standard NDVI [41]. The indices calculated from 

the red-edge may be more sensitive to vegetation properties such as 

canopy biomass and chlorophyll content than other electromagnetic 

spectrums [37,124]. A slight change in these vegetation properties will 

lead to a shift in the red-edge curve [125]. In addition, the expanded 

NDVIs computed from the red-edge and NIRs can mitigate the effects 
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of the atmospheric and water absorption and soil background [126]. 

As a consequence, the additional bands of the WorldView-2 satellite 

are able to estimate biomass in highly dense forests. However, these 

bands should be further tested by application to other forests during 

different seasons. 

Most previous studies used a simple logarithmic or exponential 

function to establish relationships between the AGB and the 

backscattering coefficients of the SAR data [47,56,59,127]. However, 

when using the eight functions listed in the methods section for fitting, 

we determined that the variables had different best-fitted models, as 

judged by the R2 value and significance. For most parameters of 

PALSAR data, the compound and growth functions had better fits than 

the other functions. In fact, the trend lines of the two functions were 

similar to those of the exponential or logarithmic functions in 

correlation with the observed biomass, but they had higher 

significance than the latter in the model test. Finding the best-fitted 

function is favorable for the improvement of AGB retrieval when 

using the MLR method to estimate the biomass because implementing 

linear transformations for these curvilinear-correlated variables is 

essential before performing the multivariate stepwise regression. 

However, the neural network approach did not improve the AGB 
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estimation when using linear transformations, as indicated by the 

higher correlation with the observed biomass for the MLP3 models 

than for the MLP1 and MLP2 models in the five datasets. 

MLR is a common approach used for estimating the biomass of 

forests [69,105,106]. However, with the increasingly synergistic use of 

different sensors, the MLR method has some limitations, e.g., the 

estimate accuracy no longer improves when additional variables are 

added [58] because not all parameters are linearly correlated with the 

biomass [42,55,101,104]. Accordingly, for the purpose of comparison 

with the multivariate stepwise regression, the neural network approach 

was also used to develop several estimated models using the 

multilayer perception algorithm. Several studies have indicated that 

the neural network approach significantly improves forest biomass 

estimation [38,55,75,101,107]. However, in this study, the results 

obtained using the network approach were inconsistent for different 

datasets. Overall, the MLP3 models had slightly better fits to the field 

biomass in the calibration plots. However, for dataset D, the MLP 

models were more poorly fitted to the AGB than the MLR model in 

the training and testing plots. The superior fit of the MLR model may 

be due to the good linear correlations between the biomass and the 

CVI variables. In terms of dataset E, although the MLP3 model was 
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slightly better correlated with the AGB than the MLR model in the 

calibration plots, the two models had the same R2 value for the testing 

data, suggesting that the MLR model was more stable than the MLP 

model. As a result, our study recommended using the final MLR 

model rather than the MLP approach to map the AGB in the study 

area. 

Figure 12 suggests that the final stepwise model can be used to 

retrieve the forest biomass when the AGB level is approximately 10 

Mg/ha to 450 Mg/ha, levels that are typical of most subtropical and 

warm temperate zone forests in China [91], indicating that the 

approach generated by our study can provide some knowledge for 

AGB estimation in China. However, slightly lower R2 values and 

higher RMSEs were obtained in our study compared with previous 

studies [59,67,74,106,114]. Several factors may explain the relatively 

poor results. First, to contain the biomass levels of the study area, we 

investigated plots with AGBs that ranged from approximately 25 to 

342 Mg/ha. Because no AGB plots lower than 60 Mg/ha were found 

in the closed stand, some plots with lower biomasses had to be located 

in open forest land, where the reflectance of remote sensors is easily 

affected by the ground surface, leading to high RMSEs at these plots. 

For example, the reflectance of NIRs in the closed forest is evidently 
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higher than that in open forest land. Second, the inexact calculation of 

the observed AGB could also lead to a high RMSE. Generally, the 

biomass of individual trees in the plot can be accurately estimated 

using allometric equations on the basis of the DBH and the height of 

the trees [44,59,90]. However, no allometric equations were available 

for the study area, indicating that further basic research is needed in 

this region. Therefore, we had to use the method presented by [91], in 

which the biomass of each plot is estimated from the regression of the 

biomass and the total volume of the plot. Although this method is 

considered accurate for AGB estimation over a large area and has been 

adopted by numerous researchers, the accuracy must be improved by 

incorporating more forest field data on a regional scale. 

Moreover, we have analyzed the effects of different forest types and 

vertical structures on the biomass estimate. In terms of forest types, 

the RMSE decreases gradually from broad-leaved to coniferous to 

mixed forest. In the study area, most of the broad-leaved stands are 

composed of secondary forests derived from clear-cutting of the land. 

These stands have disorganized structures and lower AGBs, resulting 

in a higher RMSE for broad-leaved forest than for the other stands. 

However, the coniferous forests, which have a regular spatial structure 

and a higher AGB, are derived from manmade plantations that were 
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planted approximately 60 to 80 years ago. The mixed forests are 

mainly composed of coniferous trees with large sizes distributed in the 

upper layer and broad-leaved trees in the understory. These forests 

have a complicated spatial structure and high canopy density, 

increasing their sensitivity to the signals of both SAR and optical 

sensors and reducing ground surface effects. Of the five vertical 

structures, VS3 has the highest errors because the forest lacks 

undergrowth trees; the absence of undergrowth trees reduces the 

random scattering of the forest and enhances the single reflection of 

the ground surface on the SAR. By contrast, the VS4 forest, which has 

approximately same ratio of stems as the three DBH classes, has a 

complex spatial structure in which the scattering is characterized by a 

high degree of randomness and thus has the lowest estimated error. 

Finally, we have analyzed the effects of the relative numbers of pine 

trees in plots, slopes, and aspects on the AGB estimation. We found 

that the PR1 group, in which the relative number of pine trees in the 

plots ranged from 0% to 30%, has higher average RMSEs than the 

other two groups, because most plots in PR1 were dominated by 

broad-leaved forests. By contrast, PR2 has the lowest RMSEs of the 

three groups, because most plots in PR2 were composed of mixed 

forests that had lower estimated errors than other forest types. 
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Additionally, although no significant correlations between the slope 

and the RMSEs have been found, the plots within steep slope had the 

highest average error. Two reasons may explain this result. First, the 

DEM data with a spatial resolution of 30 m was used for geometric 

and radiometric terrain correction, which is difficult to mitigate the 

effect of the steep topography on the back-scattering [49,117]. 

Consequently, this issue requests future studies using a high resolution 

DEM. Second, many forests in the plots within steep slope had the 

vertical structure of VS3 that had the highest estimated error of the 

five vertical structures. In terms of aspects, the plots facing the 

directions of west, northwest, and north had higher estimated errors 

than those facing other directions. The steep topography of the three 

directions, which had an average slope of 14°, 13°, and 11°, 

respectively, probably leads to this result. 
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4.4 Conclusions 

In our study, the single variables derived from the PALSAR/ALOS 

and WorldView-2 data correlated very poorly with the observed 

biomass and were able to explain only approximately 20% to 50% of 

the variance. Accordingly, combinations of several variables were 

considered to improve the relationship with the AGB. Using principal 

component analysis and multivariate stepwise regression, the 

performances of the FBD, PLR, and optical data for biomass 

estimation were improved to 65% to 71%. In addition, using the 

additional dataset derived from the combination of FBD/PALSAR and 

WorldView-2 data increased the performance to 79% and produced a 

relative RMSE of 24.58% when using MLR. Moreover, the synergistic 

use of the 31 variables introduced by our study resulted in further 

improvement, ultimately explaining 89% of the variance with a 

relative RMSE of 17.08%. The results presented here demonstrate that 

combining independent observation data from the PALSAR and 

WorldView-2 sources may provide great improvements for biomass 

estimation in the study area. However, because most biomass models 

or regressions are developed for specific locations, the models 

generated by our study should be further tested by application to other 

forests during different seasons. In addition, for the purpose of 
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comparison with the multivariate stepwise regression, a neural 

network approach using the multilayer perception (MLP) algorithm 

was used to produce several estimated models of forest biomass. 

However, few improvements were obtained from the MLP approach 

in this study. Consequently, we recommend using the final MLR 

model to map the AGB of the study area. Finally, analyzing the effects 

of different forest types and vertical structures on the biomass 

estimation revealed that the RMSE decreased gradually from 

broad-leaved to coniferous to mixed forest. In terms of different 

vertical structures, VS3 had the highest errors because the forest lacks 

undergrowth trees, while the VS4 forest, in which the three DBH 

classes have approximately the same ratio of stems, had the lowest 

RMSE. 
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Chapter 5 Object-based Classification of Forest Types 

5.1 Data Analysis Method 

The Landsat-8 imagery was used to classify the forests of the study 

area into three stand types (broadleaved, coniferous, and mixed forest) 

by an object-based supervised classification approach using the 

Nearest Neighbor classifier built in the eCognition v8.8 software. The 

research flow chart in Figure 15 provides an overview of the methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Research flow chart. 
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5.2 Results and discussions 

5.2.1 Subset of the Study Area 

Because the cover area of the Landsat-8 image is far more than the 

study area, for the purpose of decreasing processing time, a subset 

area that completely contained Purple Mountain was extracted from 

the Landsat-8 image using the Subset function built in ERDAS 

Imagine. The subset image is showed by R: G: B = NIR: Green: Blue 

in Figure 16. 

 

Figure 16. The subset area containing Purple Mountain displayed by R: G: B 

= 5(NIR): 3(Red): 2(Blue). 
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5.2.2 Segmentation 

The first step of an eCognition image analysis is to cut the image 

into pieces, which serve as building blocks for further analysis. This 

step is called segmentation and there is a choice of several algorithms 

to do this. Commonly, the term segmentation means subdividing 

entities, such as objects, into smaller partitions. In eCognition, 

however, it is differently used. Segmentation is any operation that 

creates new image objects or alters the morphology of existing image 

objects according to specific criteria. This means that a segmentation 

can be a subdividing operation, a merging operation, or a reshaping 

operation. 

There are two basic segmentation principles: top-down strategy and 

bottom-up strategy. Top-down segmentation means cutting objects 

into smaller objects. It can – but does not have to – originate from the 

entire image as one object. The eCognition v8.8 offers three top-down 

segmentation methods: chessboard segmentation, quadtree-based 

segmentation and multi-threshold segmentation. Bottom-up 

segmentation means assembling objects to create larger objects. It can 

– but does not have to – start with the pixels of the image. Examples 

of bottom-up strategy are multiresolution segmentation and 

classification-based segmentation. The multiresolution segmentation 
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is the most widely used approach. Because the shape of objects in the 

study area is not regular, the multiresolution segmentation was used to 

cut the image into pieces in this study. 

The multiresolution segmentation algorithm consecutively merges 

pixels or existing image objects [128]. Essentially, the procedure 

identifies single image objects of one pixel in size and merges them 

with their neighbors, based on relative homogeneity criteria. The 

homogeneity criterion of the multiresolution segmentation algorithm 

measures how homogeneous or heterogeneous an image object is 

within itself. It is calculated as a combination of the color and shape 

properties of the initial and resulting image objects of the intended 

merging. Color homogeneity is based on the standard deviation of the 

spectral colors. The shape homogeneity is based on the deviation of a 

compact (or smooth) shape. Homogeneity criteria can be customized 

by weighting shape and compactness criteria. The shape criterion can 

be given a value of up to 0.9. This ratio determines to what degree 

shape influences the segmentation compared to color. For example, a 

shape weighting of 0.6 results in a color weighting of 0.4. In the same 

way, the value assigned for compactness gives it a relative weighting 

against smoothness. Additionally, another variable called scale 

parameter can also affect the segmentation. Higher values for the scale 
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parameter result in larger image objects, smaller values in smaller 

ones. By testing several times, we found that the segmentation using 

shape weighting of 0.1, compactness weighting of 0.5, and scale 

parameter of 150 yielded good results. The segmented objects 

overlaying the subset image are displayed in Figure 17. 

 

Figure 17. The segmentation results using shape weighting of 0.1, 

compactness weighting of 0.5, and scale parameter of 150. The blue lines are 

boundaries of the segmented objects. 
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5.2.3 Land Cover Classification 

When the segmentation processing was completed, six classes: 

Building, Forest, Grass, Road, Soil, and Water, were created in the 

Class Hierarchy window of the eCognition v8.8 (Figure 18). 

 

Figure 18. The six classes of land cover. 

Next, several training samples were selected for each class. These 

samples are displayed in Figure 19 with the same color as the 

corresponding class. Then, a total of 13 feature spaces, including a 

customized feature (NDVI), ten spectral features (i.e., the average 

values of the 8 bands, brightness, and max difference), and two 

geometry features (length/width, shape index) (Figure 20), were 

created and/or selected as the rules of the object-based supervised 

classification. The NDVI feature was calculated using the equation 

(4). 
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Figure 19. Selected training samples for the six classes. The legends are the 

same as in Figure 18. 

 

Figure 20. The 13 selected features for the object-based classification. 
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Finally, classifying the segmented objects into six classes was 

completed using the Nearest Neighbor classifier. The results are 

displayed in Figure 21. The accuracy assessment indicates that all the 

training samples of the six classes were correctly classified with an 

overall accuracy of 1 (Figure 22). 

 

Figure 21. The results of object-based land cover classification using the 

Nearest Neighbor classifier. The legends are the same as in Figure 18. 
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Figure 22. The results of accuracy assessment for the land cover 

classification. 
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5.2.4 Forest Type Classification 

Based on the results of land cover classification, the forest class was 

classified into three stand types: broadleaved, coniferous, and mixed 

forest. First, three sub-classes were created for the forest class in the 

Class Hierarchy window of the eCognition v8.8 software (Figure 23). 

 

Figure 23. Overview of the final class hierarchy. 

Second, several training samples were added to the three 

sub-classes based on the field data. These samples are displayed in 

Figure 24 with the same color as the corresponding class. Because the 

forest objects have irregular shapes, the two geometry features 

(length/width and shape index) were not used for the forest type 

classification. Consequently, a total of 11 feature spaces, including a 
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customized feature (NDVI) and ten spectral features (i.e., the average 

values of the 8 bands, brightness, and max difference) (Figure 20), 

were used to classify the forest objects into three stand types. 

 

Figure 24. Added training samples to the three sub-classes. The legends are 

the same as in Figure 23. 

Next, classifying the forest objects into three sub-classes was 

completed using the Nearest Neighbor classifier. The classification 

results are showed in Figure 25. The accuracy assessment indicates 

that most training samples of the three sub-classes were correctly 

classified with an overall accuracy of 91.9% (Figure 26). 
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Figure 25. The results of forest type classification using the Nearest Neighbor 

classifier. The legends are the same as in Figure 23. 

 

Figure 26. The results of accuracy assessment for forest type classification. 
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Finally, the adjacent objects in the same class were merged into 

larger objects for each class using the Merge algorithm built in the 

eCognition v8.8 software. The merged results were then exported to 

the ESRI .shp files containing the object outlines. 

 

5.3 Conclusions 

A good segmentation of the study area was performed by the 

multiresolution approach in this study. The land cover of the study 

area was classified into six classes with an accuracy of 100% using the 

object-based classification. Additionally, the forest in the study area 

was classified into three stand types with an accuracy of 91.9% using 

the object-based classification. 
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Chapter 6 Management of Forests in the Study Area 

6.1 Database Establishment 

Using the results of Chapter 5, the object outlines of forest type 

classification were first segmented by the compartment boundaries 

using the Intersect function built in the ArcGIS v10 software. Second, 

the stem density and carbon density of these segmented sub-objects 

were calculated using the interpreted treetop results (Chapter 3) and 

the biomass map (Chapter 4). Finally, the stem density was divided 

into three levels: low (≤ 300 stem/ha), moderate (> 300 and ≤ 500 

stem/ha), and high (> 500 stem/ha), using the Natural Breaks (Jenks) 

algorithm, which is displayed in Figure 27. The carbon density was 

also divided into three levels: low (≤ 100 Mg/ha), moderate (> 100 

and ≤ 150 Mg/ha), and high (> 150 Mg/ha), using the Natural Breaks 

(Jenks) algorithm (Figure 28). 
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Figure 27. The stem density of the sub-objects segmented by the object 

outlines of forest type classification and the compartment boundaries. 
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Figure 28. The carbon density of the sub-objects segmented by the object 

outlines of forest type classification and the compartment boundaries. 
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6.2 Priority Level of Forest Management 

Currently, thinning and replanting are the two most common 

methods of forest management in China [78]. In our study, another 

method called promoting regeneration of young trees was 

recommended for managing the forests of the study area. Additionally, 

because the Purple Mountain is located in the center of Nanjing City, 

its leisure and ecological functions received increasing attention. 

Consequently, with the purpose of producing protection forests, the 

recommendations of management approaches and priority based on 

the stem density and carbon density are listed in Table 9. 

Table 9. The approaches and priority of forest management on the basis of 

stem density and carbon density. 

 Biomass density (Mg/ha) 
> 150 150 - 100 ≤ 100 

Stem density 
(stem/ha) 

> 500 TH (L2) TH (L3) TH (L4) 
300 - 500 PR (L2) NM (L1) NM (L1) 
≤ 300 PR (L4) PR (L3) RE (L4) 

TH: Thinning; PR: Promoting regeneration of young trees; RE: Replantation; NM: 

Non-management. 

Variable L in brackets represents the priority level of management (L4 > L3 > L2 > L1). 

Next, the priority level of forest management was calculated using 

these rules in Table 9. Finally, in addition to priority level, the 

recommended management approaches to the forests in the previously 

produced sub-object area are showed in Figures 29 to 31 by 

distinguishing stand types. 
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Figure 29. Broadleaved forest management. 
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Figure 30. Coniferous forest management. 
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Figure 31. Mixed forest management. 
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6.3 Conclusions 

First, our study has measured the forest resources at the individual 

tree level at Purple Mountain using the WorldView-2 data and the ITC 

approach by combining GPS, RS, and Geographic Information System 

(GIS) technologies. The results indicate that the forest of Purple 

Mountain is mainly dominated by Quercus acutissima, Liquidambar 

formosana and Pinus massoniana. Second, an improved approach to 

retrieving forest aboveground biomass has been developed by 

combining PALSAR/ALOS and WorldView-2 data. The results 

demonstrate that combining independent observation data from the 

PALSAR and WorldView-2 sources may provide great improvements 

for biomass estimation in the study area. Next, the forests at Purple 

Mountain were classified into three types: broadleaved, coniferous, 

and mixed forest by an object-based classification approach using the 

Landsat-8 image. Finally, we have developed some recommendations 

for the management of forests in the study area at the stand level 

based on the results of tree top interpretation, biomass estimation, and 

forest classification. The successful interpretation of forest resources 

at the individual tree level over large areas in this study provided the 

possibility of forest management at the individual tree level using the 

stand spatial structure theory that was completely introduced by our 
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previous study [129]. Consequently, the next issue is developing the 

professional system of semi-automatically calculating spatial structure 

indices and selecting the target trees for reserving or cutting using the 

ArcGIS Engine platform. 
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