An Explicit Formula of the Solution of Constant Coefficients Partial Differential Equation with the Meromorphic Cauchy Data

by AKIRA ASADA

Department of Mathematics, Faculty of Science, Shinshu university
(Received Nov. 29, 1974)

The analytic Cauchy problem with the meromorphic data has been studied by Hamade ([2] cf. [3]). In this note we give an explicit formula of the solution of constant coefficients equation with the meromorphic data by means of the extended Borel transformation ([1]).

In [1], we give an explicit formula of the solution of constant coefficients partial differential equation $P \left(\frac{\partial}{\partial \zeta} \right) u = 0$ with the Cauchy data

$$\frac{\partial^k u}{\partial \zeta^k}(0, \zeta_2, \ldots, \zeta_n) = g_{k+1}(\zeta_2, \ldots, \zeta_n), \quad 0 \leq k \leq m - 1,$$

in the form

$$u(z) = \mathcal{B} \left[\langle 1 - z_1 \sigma(z_2^{-1}, \ldots, z_n^{-1}) \rangle^r, \theta_{\sigma(z_1^{-1}, \ldots, z_n^{-1})}^{-1}, \mathcal{B}^{-1}[g] \rangle \right](z),$$

where $P(z) = \prod_{i=1}^s (z_1 - \sigma_i(z_2, \ldots, z_n)^r)$ and $(1 - z_1 \sigma(z_2^{-1}, \ldots, z_n^{-1}))^r$ and $\mathcal{B}^{-1}[g]$ are vectors such that

$$\langle 1 - z_1 \sigma(z_2^{-1}, \ldots, z_n^{-1}) \rangle^r = \langle (1 - z_1 \sigma(z_2^{-1}, \ldots, z_n^{-1}))^{-1}, (1 - z_1 \sigma(z_2^{-1}, \ldots, z_n^{-1}))^{-2}, \ldots, (1 - z_1 \sigma(z_2^{-1}, \ldots, z_n^{-1}))^{-s}, (1 - z_1 \sigma(z_2^{-1}, \ldots, z_n^{-1}))^{-s+1}, \ldots, (1 - z_1 \sigma(z_2^{-1}, \ldots, z_n^{-1}))^{-s+r} \rangle,$$

$$\mathcal{B}^{-1}[g] = \langle \mathcal{B}^{-1}[g_1], \ldots, \mathcal{B}^{-1}[g_m] \rangle,$$

and $\langle F, G \rangle = \sum F_i G_i$, $F = (F_1, \ldots, F_m)$, $G = (G_1, \ldots, G_m)$.

On the other hand, in [1], we also show that to define
\[B \log z \] is well defined and most of the properties of Borel transformation is preserved. Especially, by (2), we get

\[B \left[\log z \right] (\zeta) = \log \zeta + \gamma, \quad \gamma \text{ is Euler's constant}, \]

(2)\[B \left[\log z \right] (\zeta) = \log \zeta + \gamma, \quad \gamma \text{ is Euler's constant}, \]

By (4), we get

\[B \left[z^{-m-1} \log z \right] (\zeta) = (-1)^{n-1}(n-1)! \zeta^{-n}, \quad n \geq 1. \]

(4)\[B \left[z^{-m-1} \log z \right] (\zeta) = (-1)^{n-1}(n-1)! \zeta^{-n}, \quad n \geq 1. \]

Hence, since any element of \(\hat{\mathcal{N}} \) can be expressed as a Puiseaux series [cf. [1]],

\(B^{-1} \) is defined on \(\hat{\mathcal{N}} \). Therefore, (1) also expresses the solution of \(P \frac{\partial}{\partial z} u = 0 \) with the meromorphic Cauchy data.

Similarly, we obtain the solution of \(P \frac{\partial}{\partial z} u = f \) for \(f \in \hat{\mathcal{N}} \). For example, for \(f = 1 / \zeta_1 \cdots \zeta_n \), we get

\[u(\zeta) = \left[\zeta_1^{m_1} \cdots \zeta_n^{m_n} \right] \frac{1}{P(z_1^{-1}, \ldots, z_n^{-1})} \frac{\log z_1 \cdots \log z_n}{z_1 \cdots z_n} (\zeta). \]

(6)\[u(\zeta) = \left[\zeta_1^{m_1} \cdots \zeta_n^{m_n} \right] \frac{1}{P(z_1^{-1}, \ldots, z_n^{-1})} \frac{\log z_1 \cdots \log z_n}{z_1 \cdots z_n} (\zeta). \]

References

