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Abstract In this paper, we propose a novel method
to control a robot without robot manipulation. Users
do not need to precisely manipulate the robot and to
learn the manipulation method. The proposed method
can send commands to a robot by using a human ac-
tion sequence that achieves their own task. In order to
enable the robot to achieve tasks, we introduce a keep-
based interaction in which a human keeps an action
in the sequence for a certain period. The advantages
of our method are efficiency improved by not requir-
ing additional human actions, and functionality to en-
able a robot to perform further actions. We consider
that the efficiency is supported by users’ physical work-
loads and cognitive loads. Users’ physical workloads
would not be increased because the proposed method
does not require additional human actions. However,
the effect of the proposed method on users’ cognitive
loads is unknown. We applied the method to a desktop
sweeping task by a human and a small mobile robot,
and conducted an experiment with participants to mea-
sure users’ cognitive loads in a cooperative sweeping
task. As a result, we found that the proposed method
had a lower cognitive load than a typical conventional
method.
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1 Introduction

There has recently been an increase in research on robots
for home use [1]. For example, an autonomous lawn
mower called Robomow! and an autonomous sweeping
robot called Roomba? have been developed for practi-
cal use. Thus, robots have moved from doing activities
only in laboratories and industrial factories to home
environments. However, in a home environment, users
often face situations where they need to help the robots.
For example, users need to move obstacles before they
turn on the power of a sweeping robot to clean the entire
floor of a room. This intervention makes a safe and easy
environment for robots to work in. Although robots are
introduced to home environment, human work will be
always required. In addition, users need to learn the
manipulation method and precisely manipulate them.

From the point of view of always requiring human
work while using a robot, it will be appropriate to fo-
cus on human-robot cooperation. In the following stud-
ies about human-robot cooperation, human actions for
achieving their task are regard as commands for a robot.
In other words, users just do their job without robot
manipulation. Hayashibara et al. [2] and Arai et al. [3]
presented a robot that can cooperatively carry a long
object with a human. Nakai et al. [4] presented the con-
trol method for mobile robots that carried heavy ob-
jects. Yokoyama et al. [5, 6] studied a cooperative car-
rying task performed by a human and a humanoid. In
those studies, every robot senses the pushing or pulling
force of an object by the user. Thus, the users can intu-
itively control the robots by force. However, this force-
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based controlling method can only be applied to limited
tasks where a user and a robot carry an object together.

In this paper, we propose a novel method to control
a robot without robot manipulation like such object
carrying tasks. Users do not need to precisely manipu-
late the robot and to learn the manipulation method.
The proposed method can send commands to a robot
by using a human action sequence that achieves their
own task. In order to enable the robot to achieve tasks,
we introduce a keep-based interaction in which a human
keeps an action of the sequence for a certain period. In
contrast with the above force-based controlling method,
the proposed method is not limited to object carrying
task. We applied the method to a desktop sweeping
task. The advantages of our method are efficiency im-
proved by not requiring additional human actions, and
functionality to enable a robot to perform further ac-
tions.

We consider that such efficiency is supported by
users’ physical workloads and cognitive loads. Users’
physical workloads would not be increased because the
proposed method does not require additional human
actions. However, the effect of the proposed method on
users’ cognitive loads is unknown. Thus we conduct an
experiment with participants and measure users’ cog-
nitive loads in a cooperative sweeping task.

The rest of this paper is presented as follows. A
classification of interaction models between a human
and a robot is described in Section 2. The details for the
proposed method based on one of the classified models
are explained in Section 3. In Section 4, the proposed
method is applied to a cooperative sweeping between
a user and a small sweeping robot, and is compared
to two conventional methods in terms of the cognitive
loads of the users. We discuss the experimental results
in Section 5 and describe the studies related to our work
in Section 6. Finally, we conclude our study in Section

7.

2 Interaction Models

In this section, we classify some types of interactions be-
tween humans and robots into two groups, direct com-
manding methods (DCM) and commands embedded in
actions (CEA). Based on the classification, we propose
an extended model of CEA (ECEA).

2.1 Direct Commanding Method

Users sometimes directly control robots by using a re-
mote control, voice commands, gesture command, etc.
We call this type of method the Direct Commanding
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Fig. 1 DCM interaction model. A human directly sends com-
mands to robots in order to control them. It includes methods
using a remote control, voice commands, and gesture command.

Method (DCM), in which users directly send commands
to robots in order to control them. Plenty of stud-
ies have used DCM, such as gestures [7, 8, 9], speech
recognition [10, 11, 12], and control devices like joy-
sticks [13, 14, 15]. Figure 1 shows the DCM interaction
model. In this model, a human has two tasks: to con-
trol the robot by sending commands and to arrange the
environment. An example of an interaction between a
sweeping robot and a human is described below, where
H, R, and E represent the human, the robot, and the
environment, respectively. In this example, the robot
requires the user to arrange the environment in a way
that the robots do not obtain complete autonomy.

— H=R: The human controls the robot using a remote
control.

— R=-H: The robot returns a response to the human
about a command.

— H=FE: The human removes obstacles in the envi-
ronment.

— E=-H: The state of the environment is recognized
by the human.

— R=-FE: The robot sweeps the floor.

— E=-R: The state of the environment is recognized
by the robot.

We consider that there are actually many tasks that
require actions from a user to an environment such as
opening a door for a mobile robot, removing furniture
for a security robot to monitor a room, pasting markers
for a humanoid robot, and so on. Additionally, reading
a manipulation manual, connecting cables to a robot,



searching a remote control are also actions from a user
to an environment because they are not commands for
robots to perform a task.

2.2 Commands Embedded in Actions

The second category is named Commands Embedded in
Actions (CEA), in which commands for robots are em-
bedded in human actions. It has no direct command to
robots. Users do not need to manipulate them. The pur-
pose of human action by CEA is to play only a role to
achieve a task without robot manipulation. In contrast,
the purpose of human action by DCM is limited to send-
ing commands. CEA enables users to act for themselves
and robots to make a decision based on the user’s ac-
tion. Typical examples in the industrial field are au-
tomatic doors and faucets, e.g. a human approaches a
door in order to go through it, and puts her/his hands
under a faucet in order to wash the hands. In such sit-
uations, user’s actions to only achieve her/his own task
simultaneously become commands to a robot. Figure
2 shows a CEA interaction model. An example of an
interaction between a human and an automatic door is
described below.

— H=FE: The human approaches the door.

— E=-H: The state of the environment is recognized
by the human.

— R=F: The robot opens or closes the door.

— E=-R: The state of the environment is recognized
by the robot.

In this interaction, there are no direct commands
between the human and the robot, and the commands
(H=-R) and responses (R=-H) are not configured. The
human approaches the door because she/he wants to
go through the door. She/he does not want to operate
the robot.

It appears that CEA reduces the users’ physical
workloads because they do not need to perform addi-
tional actions and to learn particular methods to com-
municate with robots. In fact, we can easily find ap-
plications of CEA, such as for automatic doors and
faucets, and they are certainly convenient in our daily
lives although they do not have any complicated sen-
sors.

The advantage of CEA is not to require additional
human action, and the advantage of DCM is to enable
a robot to perform further actions. In this study we
propose a method that has the advantages of CEA and
DCM. By extending CEA, it will be possible for a robot
to cooperate with a user. Cooperation between a user
and a robot will easily perform a task and achieve a task
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Fig. 2 CEA interaction model. Commands for robots are em-
bedded in human actions. It has no direct command for robots.
Users do not need to manipulate them and enables users to act
for themselves and robots to make a decision based on the user’s
action.

that is difficult for a user to perform by herself/himself
because she/he can perform remaining tasks instead of
commanding a robot. Our proposed method is appro-
priate for cooperative tasks because it provides time for
a robot to work autonomously while a user performs a
task. In the next section, the details of our proposed
method are described.

3 Extension of Commands Embedded in
Actions

Robots can be conveniently controlled by CEA because
a user does not need to learn the control methods of
the robot. However, CEA is limited to enable a robot
to perform an action. We then extend CEA to enable
the robot to perform further actions without additional
human actions. We call the proposed method Extended
CEA (ECEA). The advantages of ECEA are efficiency
improved by not requiring additional human actions
like CEA, and functionality to enable a robot to per-
form further actions like DCM. ECEA requires less hu-
man actions than DCM, and enables a robot to per-
form more actions than CEA. ECEA is appropriate for
cooperative tasks because it provides time for a robot
to work autonomously while a user performs a task. In
our study, we apply ECEA to human-robot cooperative
tasks.



3.1 Description of human action

It is an important factor to how to divide and describe
human behavior when designing human-robot interac-
tion. There have been some studies on the description
methods of human behavior in the psychology and cog-
nitive science fields. The action coding system (ACS)
[16] was developed to analyze the everyday behavior of
brain-damaged patients. It segments human behavior
into a sequence of primitive actions using a criterion of
whether the action includes a change of an object’s po-
sition or state in an environment. This kind of approach
has been used in various studies analyzing human be-
havior. ACS is one of the most promising ways in our
study to segment a human action.

Another similar work was conducted by Newtson
et al. [17, 18, 19]. In their experiments, a movie of an
actor’s behavior was presented to the participants and
they were requested to push a button when the partici-
pants recognized the division of natural and meaningful
primitive actions. The results showed that they found
that each participant pointed out almost the same di-
vision of primitive actions. They called this division a
break point. Furthermore, they investigated how eas-
ily the participants understood the behaviors from sev-
eral snapshots taken from the movie. The participants
were requested to answer by showing the correct or-
der sequence of the snapshots. Half of the participants
were given several snapshots including break points,
and the other half were given ones not including break
points. The results showed that more participants given
the snapshots with the break points answered correctly
than the other half even though the same number of
snapshots was given to both groups.

We use the segmentation by ACS because it is ad-
equate to decide time points to insert a new action.
Newtson’s experiment showed that such segmentation
is understandable to observers. There is no guarantee
that such segmentation is also understandable to ac-
tors. However, we consider that it is helpful for users to
perform a new action. The details of ACS are described
below.

3.2 Action coding system

The action coding system deals with the two levels of
actions described below.

— A-1 unit: This unit is the smallest components of a
behavioral sequence that achieves a concrete, func-
tional result or transformation, describable as the
movement of an object from one place to another or
as a change in the state of an object.

(1) MOVE (x) TO (location) VIA (instrument) BY (man-
ner)

(2) ALTER (x) TO (location) VIA (instrument) BY (man-
ner)

(3) TAKE (x)
(4) GIVE (x)

(i.e. take possession of object x)
(i.e. relinquish possession of x)

Fig. 3 Four basic A-1 units of ACS description.

Opening sugar pack and pouring sugar:

TAKE sugar pack
ALTER sugar pack TO open BY tearing
MOVE sugar TO in coffee VIA pack BY pouring

Fig. 4 ACS description of opening sugar pack and pouring sugar.

— A-2 unit: This unit is a group of A-1 units that ac-
complishes one of the basic sub goals of a task. In
our study, we do not use A-2 units because we focus
on a primitive action that users can easily under-
stand and execute.

Schwartz et al. [16] coded the four A-1 units shown
in Fig. 3 by observing people who made breakfast. For
example, the action of opening sugar pack and pour-
ing sugar into coffee are described in Fig. 4. ACS has
simple and repeatable description policies and uses two
description guidelines: (1) describe general and recog-
nizable things (open/close, on/off) and (2) select sub-
jects that are most related to the task. ACS description
can divide user’s actions in parallel. For example, left
hand actions and right hand actions are described in
parallel. In our study, we assume the sequential ACS
description.

3.3 Introducing a human action KEEP

The advantage of using CEA is that users can perform
unconscious behaviors and have less of a physical work-
load. An introduced action should be easily executed
by a user. We introduce a KFFEP action as an A-1 unit
based on ACS. The KFEEP is defined as an A-1 unit
that keeps the last state of the previous unit.

For example, the action of opening sugar pack and
pouring sugar described in Fig. 4 are extended in Fig.
5 with KEEPs. In Fig. 5, two KEEPs are added, which
represent the keeping the last state of taking and keep-
ing the last state of altering, respectively. A user per-
forms the KEEPs by keeping the given body posture.
This duration of keeping depends on the tasks and the
user’s decision. The introduced action KEEP is easily
performed by users because they only have to maintain
their posture. There is no new action and no need to



Opening sugar pack and pouring sugar:

TAKE sugar pack

KEEP TAKE (keep last state of TAKE)
ALTER sugar pack TO open BY tearing

KEEP ALTER (keep last state of ALTER)

MOVE sugar TO in coffee VIA pack BY pouring

Fig. 5 ACS description opening sugar pack and pouring sugar
using KEEP action.

learn anything. A robot detects the posture as a com-
mand and performs actions according to the human.
The action KEEP should not be applied for the action
that continues to change the state of objects. For exam-
ple, it is not appropriate to apply KEEP to the pouring
action (MOVE sugar TO in coffee VIA pack BY pour-
ing) in Fig. 5 because the action continues to pour the
sugar too much.

4 Experiment

We design robot behavior to achieve a cooperative sweep-
ing between a human and a robot. In the sweeping,
the human helped the autonomous sweeping robot by
removing an obstacle. We actually verified the realiza-
tion of a cooperation using ECEA. Then, we conducted
an experiment to investigate the participants’ cognitive
load when they cooperate with a robot using ECEA in
comparison with typical DCM.

4.1 Design and execution of cooperative sweeping

We achieved a cooperative sweeping between a human
and a small mobile robot in a desktop-like environment.
The goal of the task was to sweep off the top of a
desk including the area under an object placed on the
desk. Details about environment, task, specifications of
the small mobile robot with behavioral rules, and the
method are described below.

4.1.1 Environment and cooperative task

We used the desktop-like environment shown in Fig. 6,
which had a flat surface to be swept (44 x 33 cm), a
wall (height: 1.5 cm) enclosing the sweeping area, and
a box (dimension: 7 x 7 x 7 cm) placed in the center
of it. The box simply simulated an object likely being
on a desk, such as a TV remote, a mobile phone, or a
pen holder.

In this environment, we defined the goal of the co-
operative task as to sweep off the desk including the
region under the object. A human and the robot work
together to achieve the goal.

Projected image
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Fig. 6 Sweeping area. It has a flat surface to be swept, a wall
enclosing the sweeping area, and a box placed in the center of
it. Based on the robot’s location, the projected image includes
small square cells and it is immediately colored when the robot
enters the cell. The colored cells represent the region swept by
the robot.

4.1.2 Mobile robot

We used a small mobile robot called Kheperall (Fig.
7). The robot had eight infrared proximity and ambient
light sensors with up to a 10 cm range (1-8 in Fig. 7), a
Motorola 68331 (25MHz) processor, 512 Kbytes RAM,
512 Kbytes Flash ROM, an two DC brushed servo mo-
tors with incremental encoders. A program written in
C-language was run on the RAM. In Fig. 7, the sensors
1-6 and 8 directed to side, and the sensor 7 is directed
upward. We rearranged the sensor 7 and added the sen-
sor 9 (SHARP GP2D12) with up to an 80 cm range for
sensing a lifted object.

The robot performed the reactive behavior using the
local information gather from the sensors equipped on
it. It had no model of the environment or learning mech-
anism. The reactive behavior can be simplified for the
implementation of the robot. We thought that the robot
had sufficient enough specifications for the task and its
low cost provides an advantage in a realistic situation.
In fact, the specifications were similar to those of com-
mercial sweeping robots such as Roomba.

4.1.3 Interaction design for cooperative work

The cooperative work scenario between a human and
a robot is described as follows. First, when a human
picks up the object and keeps it held over the desk, the
robot goes to the region under the object and sweeps it
out. Next, when the human puts the object down, the
robot goes other places and autonomously sweeps the
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Fig. 7 Kheperall robot. The robot has eight infrared proximity
and ambient light sensors with up to a 10 cm range (1-8). The
sensors 1-6 and 8 directed to side, and the sensor 7 is directed
upward. The sensor 7 is rearranged and the sensor 9 (SHARP
GP2D12) with up to an 80 c¢m range for sensing a lifted object
are added.

desk. This cooperative work achieves the defined goal.
We call this cooperative work “interactive sweeping”.

To perform interactive sweeping, we assign tasks to
the human and the robot. The robot’s task is to sweep
the desk and the human’s task is to move the object. The
human and robot tasks achieve sweeping off the desk
including the region under the object. It is important
that the task assigned to the human is achieved by per-
forming usual and unconscious actions that would be
a standard part of a sweeping task performed by two
humans. The human does not need to perform unusual
actions that she/he has never performed before, such as
the manipulation of a robot or using the remote control
for a machine.

The robot performs a random sweeping that is to
repeat turning to a random direction and then going
straight. Since the robot has no cleaning mechanism, we
assume that the region under the robot is cleaned. The
robot does not use effective region covering methods
for sweeping [20], because those would need the robot’s
exact location which would be difficult to obtain. For
example, a dead reckoning method is not very reliable
because of its accumulated errors.

4.1.4 Applying ECEA and CEA

By applying ECEA and CEA to the tasks of the human
and the robot, they are able to perform the interactive
sweeping described above. The robot quickly moves to
the area under the object when the human moves it.
First, we segment the human behavior into a sequence
of primitive actions. Figure 8 shows the four primitive
human actions of moving the object based on ACS. The
typical human behaviors where they grasp the object

(1) TAKE object
(2) MOVE object TO z
(3) MOVE object TO x
(4) GIVE object

(z: a vertical location)
(x: an initial object’s location)

Fig. 8 ACS description of typical human actions to move object.

(TAKE object), raise it (MOVE object TO z), lower it
(MOVE object TO x), and releases it (GIVE object).
Although there are different A-1 unit combinations to
achieve the human task, we use these four actions be-
cause they seem to be the simplest and most rational
movements in the sweeping task.

To achieve interactive sweeping, we synchronize the
robot’s actions with the human’s actions. Considering
the human actions shown in Fig. 8, we make the robot
perform the following three behaviors in sequence.

Approach the object. (B
Sweep the area under the object. (B2)
Go out of the area under the (B3)
object.

As shown in Fig. 9, ECEA is applied to B2, and
CEA is applied to B1 and B3. The robot approaches
the object (B1) when the human raise it (Fig. 9(2)),
and it goes out of the area when she/he lowers it (Fig.
9(3)). In order to achieve B2, we then add an A-1 unit
KEFEP, which keeps the last state of the previous action,
between the A-1 units (2) and (3) in Fig. 8. The KEEP
is where the human maintains the last state of move-
ment, raising the object. The robot sweeps the area un-
der the object while a KFEP is performed. The robot
continues to sweep the area under the object while it is
lifted. The human observes the sweeping progress made
by the robot, and moves it back into its original position
when she/he thinks that the area is clean.

4.1.5 Behavioral design of mobile robot

We design the robot to achieve random and interactive
sweeping. We additionally attach the two range finders
shown in Fig. 7 to sense the lifted object and to measure
the distance of the object placed over it. The sensor for
sensing the lifted object faces 45° upwards. The robot
spins periodically to find the lifted object in the random
sweeping mode.

We use the behavior-based approach and the sub-
sumption architecture [21] to implement the robot be-
havior. The actions in the layers of the subsumption
architecture are asynchronously performed. The higher
layers suppress the lower ones including the actions that
are more reactive then those in the upper layers. Each



(1) TAKE object

(2) MOVE object TO z
(2') KEEP MOVE
(3)
(4)

MOVE object TO x
GIVE object

CEA ECEA CEA

(1)TAKE ) ((2)MOVE

(keep last state of MOVE)
2)KEEP) ((3)MOVE] [ (4)GIVE
s S5 e ]
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Fig. 9 ACS description of moving object using KEEP action.
ECEA is used in (2’), and CEA is used in (2) and (3). The robot
approaches the object when a user raises it (2). It sweeps the area
under the object while the object is held above the area (2’) and

goes out of the area when the user lowers it (3).

Action

Q[L& Interactive Sweeping

Q[LZ: Random Sweeping

— Q[U : Obstacle Avoidance
Sensor Value

Fig. 10 Subsumption architecture. We designed three layers of
robot behavior; the obstacle avoidance layer, the random sweep-
ing layer, and interactive sweeping layer.

layer consists of multiple actions and selects an action
to perform according to the sensor value. When there
are multiple candidates from several layers, only one
action is selected as the output action. Figure 10 shows
the robot’s behavior in the three layers based on the
subsumption architecture. Each layer had its own in-
tervals to output an action. We set the intervals at five
msec for the obstacle avoidance layer, ten msec for the
random sweeping layer, and five msec for the interactive
sweeping layer.

The following lists are the behavior rules in each
layer. The rules are described in IF-THEN forms in
which the precondition part contains the robot’s state
based on the sensor responses and the action part con-
tains the motor command.

Layer 1: Obstacle avoidance

This layer deals with the most primitive behavior.
The robot mainly performs a ‘stop’ action. The rules
and actions in this layer are listed below. The robot
avoids a collision when it is moving forward (L1-01)

and backwards (L1-02). In the precondition parts, ‘in
the front’ represents a response from sensors 3 or 4
and ‘in the rear’ represents a response from sensor 8
in Fig. 7.

IF robot is moving forward A (L1-01)
object is in front THEN stop
IF robot is moving backward A (L1-02)

object is in rear THEN stop

Layer 2: Random sweeping

This layer makes the robot sweep the desk and search
for the lifted object. The main actions of the robot
are ‘move forward’ and ‘spin.” The rules and actions
in this layer are listed below. The robot rotates itself
to search for the lifted object (L2-01) and spins itself
around when it senses the ‘unlifted’ object or a wall at
its left (L2-02) or right front (L2-03). The robot per-
forms the 720 degrees spin because we empirically find
it is faster to detecting the lifted object than 360 de-
grees. In the preconditions, ‘in the left front’ rep-
resents a response from sensors 2 or 3 and ‘in the
right front’ represents a response from sensors 4 or
5.

IF no object is in the front THEN
move forward, rotate 720°, and

(L2-01)

move forward again

IF object is in the left front
THEN spin clockwise at random
from 90° to 180°

IF object is in the right front
THEN spin counter-clockwise at
random from 90° to 180°

(L2-02)

(L2-03)

Layer 3: Interactive sweeping

This layer achieves interactive sweeping. The robot ap-
proaches the lifted object (L3-01), sweeps the area un-
der the object according to the human action (L3-02),
and goes out of the area when the object comes close to
its top (L3-03). In the preconditions, ‘1ifted object
is sensed’ represents a response from sensor 9, ‘going
out of the area under object’ represents the sen-
sor 7 value being reduced, and ‘object is on its top
represents the sensor 7 value representing a distance of
less than 0.5 cm. The decrease in sensor value indicates
increase of distance. When several conditions are met,
only one action is randomly selected.

)



IF lifted object is sensed THEN (L3-01)
move forward

IF it is going out of the area (L3-02)
under object THEN go backward,

spin clockwise at random from 90°

to 180°

IF object is close to its top (L3-03)

THEN move forward

4.1.6 Ezxecution of cooperative sweeping

We confirmed that the robot achieved its goal of the
assigned task in which it swept out the desk. Figure 11
shows some photographs of the cooperative sweeping
by the robot and a human. These photographs were ex-
tracted from a movie every one second. In Fig. 11(1) to
(5), the robot autonomously sweeps the top of the desk
using a random spinning strategy and searches for the
lifted object. The robot finds the lifted object (6) and
approaches it (7). In photographs (8-10), it sweeps the
area under the object. By applying CEA and ECEA,
the robot and the human achieved the cooperative task.
Thus, we confirmed the achievement of a cooperative
sweeping by ECEA as one of the practical cooperative
tasks.

4.2 Experiment: Measuring cognitive load

We investigated the user cognitive load while they con-
trolled the robot. A comparison of the control methods
between ECEA and DCM was performed by uniforming
the robots’ specifications other than control methods.
We describe the ECEA characteristics using the results
from this experiment.

Figure 12 shows the human actions in the sweep-
ing tasks by ECEA and DCM. ECEA enables a user
and a robot to achieve the sweeping task cooperatively.
In contrast, DCM dose not promote cooperation be-
tween a user and a robot. Both these method have the
same purpose, to achieve the sweeping task. There is
less number of human actions in ECEA than in DCM
because a human with DCM has to move the object
to another place before sending commands. However,
cognitive load for a human while controlling a robot
is unknown. In this case, the targets for comparison
are the third ECEA action and the fourth DCM action
in Fig. 12. We investigated the cognitive load of users
while controlling the robot to sweep under the object.
The cognitive load for ECEA and DCM were compared.

Fig. 11 Execution of cooperative sweeping between a human
and a robot. The robot autonomously sweeps the top of the desk
using a random spinning strategy and searches for the lifted ob-
ject (1-5). It finds the lifted object (6) and approaches it (7), and
sweeps the area under the object (8-10).

4.2.1 Ezxperimental system

We develop an experimental system to make it easy
for a user to interact with a robot. Figure 13 shows
the experimental system displaying the area swept by
the robot. This system consists of the sweeping area
shown in Fig. 6 and the devices under the sweeping
area including a laptop computer, a projector, and a
USB camera with an infrared filter. The sweeping area
is the same as in section 4.1.1 except that the swept
area is colored. The devices under the sweeping area
create an image to indicate the swept area and project
it on the desktop. In the projection process, the robot’s



ECEA

TAKE object
MOVE object TO z
KEEP MOVE
MOVE object TO x
GIVE object

DCM (typical)

TAKE object

MOVE object TO y
GIVE object

SEND command
TAKE object

MOVE object TO x
GIVE object

(y: a object’s location)
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Fig. 12 Human actions in the sweeping tasks in ECEA and
DCM. There is less number of human actions in ECEA than
in DCM because a human with DCM has to move the object to
another place before sending commands.
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Fig. 13 Experimental system. The devices under the sweeping
area include a laptop computer, a projector, and a USB camera
with an infrared filter. The robot’s location is obtained from the
camera image that includes two infrared LED beams equipped
on the robot. Based on the robot’s location, it creates a projec-
tion image that includes small square cells and it is immediately
colored when the robot enters the cell.

location was calculated by processing the picture from
the camera. The robot’s location was obtained from the
camera image that includes two infrared LED beams
equipped on the robot. Based on the robot’s location,
a projection image is created. The projected image in-
cludes small square cells and it is immediately colored
when the robot enters the cell. The colored cells repre-
sent the region swept by the robot. The desktop was 44
cm wide and 33 cm long and was divided into 16 x 12
cells.
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Fig. 14 Three types of interactions in the experiment. In EC
condition, the robot is controlled by ECEA. The users pick up
the object and hold it above the area on which they requested
to be swept. In SC condition, the robot is controlled by DCM.
The users clap their hands to make a sound just before the robot
goes out of the area on which they requested to be swept. In HC
condition, the robot is also controlled by DCM. The users move
their hands in front of the robot just before it goes out of the
area on which they requested to be swept.

4.2.2 Mobile robots

We used three kinds of robots that were controlled in
different methods. One of the three robots was con-
trolled by ECEA and the other two were controlled by
DCM. The robot controlled by ECEA had the same be-
havioral rules as that in section 4.1.5. In order for users
to easily control the robot with DCM, we introduced a
controlling method by using a single command without
its own controllers. The two methods were chosen as
the typical DCMs needing no remote control devices.
These control methods are shown in Fig. 14, and the
details are described as follows:

EC (ECEA): The robot is controlled by ECEA; it spins
at random from 90° to 180° when it senses the edge
of the object placed over it. The users pick up the
object and hold it above the area on which they
requested to be swept.

SC (DCM): The robot is controlled by DCM; it spins
at random from 90° to 180° when it senses a sound.
The users clap their hands to make a sound just
before the robot goes out of the area on which they
requested to be swept.

HC (DCM): The robot is controlled by DCM; it spins
at random from 90° to 180° when it senses an ob-
stacle in front of it. The users move their hands in
front of the robot just before it goes out of the area
on which they requested to be swept.

In these DCMs, the commands for the robots are
not embedded in human actions. The robots receive
these commands by sensing using extra sensors, such
as microphones or a slight program modification of the
robot. We implemented SC and the HC by changing the
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precondition of L3-02 in the behavior rules from ‘it is
going out of the area under object’ described in
the section 4.1.5 to ‘sound is detected’ and ‘object
is in the front’, respectively.

4.2.8 Method

We measured the cognitive load of the participants in-

teracting with the three robots. The measurements started

when the robot entered the region they were required
to sweep, and it continued until all the cells of the re-
gion were swept. The object was placed in the center
of the sweeping area. Under the EC condition, the par-
ticipants kept picking up the object until the area un-
der it was completely swept. Under the SC and HC
conditions, the participants first replaced the object in
a corner of the sweeping area and then controlled the
robot by clapping and moving their hands to completely
sweep the region.

We used a dual task method to measure the par-
ticipants’ cognitive loads. The participants had to do
mental arithmetic as a secondary task [13, 22]. The
primary task was to control the robot. They vocally
counted backwards by three from a three-digit number
selected at random. We obtained the number of correct
answers per second and evaluated them as the partic-
ipants’ cognitive load for controlling the robots. Our
hypothesis of the experiment is that participants pro-
vide more correct answers in the EC condition than
that in other conditions.

4.2.4 Instructions and work flow

We showed the following text to the participants and
read it out as instructions.

Introduction: The purpose of this experiment is to in-
vestigate the usefulness of robots. We take video pic-
tures of your trials and analyze it after this experiment.
We do not use the video data and personal information
except for the investigate purpose. If the video is used
for a conference presentation, we will contact you again.
Thank you for your cooperation.

Abstract: You work together with a robot to clean the
top of the table. The cleaned area glows instead of vacu-
uming off because the robot does not have the function
of vacuuming off. There is a box on the table. Your
task is to control the robot properly and make it to
clean the area under the box. The area under the box
glows red. When the robot goes through the area, the
color is changed from red to green. Please change the
all of red area to green by controlling the robot.

In addition, you perform another task with control-
ling the robot at the same time. The task is to vocally
count backward by three from a three-digit number.
For example, when the number 231 is provided, you
vocally count it backward like 231, 228, and 225 while
controlling the robot.

Precautions:
— When you count the number, please speak loudly

and clearly.
— Do not pick up the robot and push it strongly.

Procedure:
— Three conditions are provided; condition A, condi-

tion B, and condition C.

— Each condition provides a different control method
of the robot.

— For example, control the robot by making sound
and moving your hand in front of it to change its
direction.

— In a condition, you perform a practice and a mea-
surement. We do not take video pictures while in
the practice.

— The purpose of the practice is to sufficiently get used
to the control method.

— The procedure in each condition is the same.

— A condition is provided by the experimenter.

1. Experimental system:

— You control the robot on the translucence table.

— There is a grid on the table. The squares the
robot goes through are colored.

— The red colored squares are the area needed to
be cleaned. They are changed to green when the
robot goes through there. You need to control
the robot and change all of their color green.

— The red circle at the right corner on the table is
the start point of the robot.

— There is a box and you need to manipulate it as
the experimenter explained later.

2. Preparation:

— When the experimenter provides a start signal,
numbers are displayed at the right corner on
the table like 3, 2, 1, START. After display-
ing “START”, a three-digit number is displayed.
This is the first number you need to count back-
ward.

— When the three-digit number is displayed, please
say it.

— After that, say the subtracted number by 3 con-
tinuously. When you count the number, please
speak loudly and clearly as possible as you can.

— If you notice a mistake in calculation, continu-
ously use the mistaken number.
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— Please prioritize the control of the robot over the
calculation.

3. Practice: (Until controlling the robot without mis-
takes. For five minutes.)

— The experiment begins in the condition X. Please
refer the condition X in the next section of “Con-
trol manual of the robot”. (Actually a condition
code is written in X.)

— After displaying “START” on the table and you
count the number three times, the experimenter
begins to move the robot. When the robot begins
to move, you interact them according to it.

— Manipulate the box properly as described in the
control manual.

— Watch the experimenter’s demonstration.

— Practice the robot control several times.

— When you get used to control the robot, gradu-
ally speed up your number counting.

— Also, you practice the number counting few times
without controlling the robot until you smoothly
perform it.

4. Measure:
(1) Execution of mental arithmetic for 30 seconds
without controlling the robot.
(2) Execution of three trials with video recording.
5. go to 3 and begin practice in another condition.

Control manual of the robot

— Condition A

— In the condition A, you can change the robot’s
direction by using the box.

— At the beginning of the starting signal, you pick
up the box.

— When the robot enters the area under the box, it
sweeps out there by repeating direction change.

— It spins at random from 90° to 180° when it
senses the edge of the object placed over it.

— Practice fixing the box above the area to be
swept. It will be better to keep as still as possi-
ble.

— It is failure that the robot goes out of the area
under the box and does not come back soon.

— Condition B

— In the condition B, you can change the robot’s
direction by sound.

— At the beginning of the starting signal, you re-
place the box in a corner of the sweeping area.

— Clap your hands to control the robot. It will be
better to clap your hands a little harder.

— It spins at random from 90° to 180° when it
senses a sound.

Table 1 Participants work flow of the experiment.

No. | Event
1 A condition is provided

2 Practice for 5 minutes

3 Mental arithmetic without the robot
4 Trial 1
5

6

7

Trial 2
Trial 3
Another condition is provided
8 Practice for 5 minutes
10 Mental arithmetic without the robot
11 Trial 1
12 Trial 2
13 Trial 3
14 The last condition is provided
15 Practice for 5 minutes
16 Mental arithmetic without the robot
17 Trial 1
18 Trial 2
19 Trial 3

— It is failure that the robot does not spin when
you clap your hands or it goes out of the area to
be swept far away.

— Condition C

— In the condition C, you can change the robot’s
direction by using your hands.

— At the beginning of the starting signal, you re-
place the box in a corner of the sweeping area.

— The robot finds your hands in front of it, it
changes its direction. It will be better to make a
fence by your hands around the area to be swept.

— It spins at random from 90° to 180° when it
senses your hands in front of it.

— It is no problem to slightly touch the robot.

— It is failure that the robot goes out of the area
to be swept far away.

Table 1 shows the participants work flow of the ex-
periment and photographs of the experiment are shown
in Fig. 15.

4.2.5 Results

Eight men and four women between the ages of 22 and
32 participated in this experiment. Figure 16 shows the
participants’ averaged scores and standard deviations.
The scores were normalized by each participant’s cal-
culation ability. A score of 1.0 represents their calcu-
lation ability without controlling the robot. The Dun-
nett’s multiple comparison test was used to statistically
identify the significant differences in the scores from
the control group (EC). The difference between EC-
HC was significant (¢ = 3.938,p < 0.01) and EC-SC
was also significant (¢t = 2.414,p < 0.05).
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Fig. 15 Photographs of the experiment. The top image sequence is the EC condition. The user picks up the object and holds it above
the area on which they requested to be swept. The middle image sequence is the SC condition. The user claps their hands to make a
sound just before the robot goes out of the area on which they requested to be swept. The bottom image sequence is the HC condition.
The user moves their hands in front of the robot just before it goes out of the area on which they requested to be swept.

The average sweeping times of EC, SC, and HC were
20.89, 21.46, and 18.25 seconds, respectively. The Dun-
nett’s test was also used to statistically identify the
significant differences in sweeping times from the con-
trol group (EC). There was no significant difference
between EC-SC (¢ = 0.260,p = 0.952) and EC-HC
(t = 1.203,p = 0.380). The result of the experiment
suggested that ECEA requires a lower cognitive load
than DCM. In addition, it would appear that sweeping
time of EC is not largely different from that of SC and
HC.

5 Discussion
5.1 Cognitive load of ECEA

Even though there was the possibility to increase cog-
nitive loads of users by using ECEA, the experimental
results suggest that ECEA does not require a lot of cog-
nitive load for the users. The KFEP action was easily
performed by users. We believe that ECEA provides
a practical method for achieving cooperative work be-
tween a human and a robot because tasks that the robot
cannot perform on their own are achieved with a little
help from the users.

In the experiment, since the robot performs ran-
dom rotating actions, users cannot predict the direc-
tion of the robot. This unpredictability might lead the
increase of users’ cognitive load. However, we consider
that it is more appropriate to use random rotating ac-
tion than to use a joystick to control the robot. Using
a joystick requires a selection of viewpoints such as a
first-person viewpoint and a third-person viewpoint. In
a first-person viewpoint, a user controls a robot in a
relative coordinate to the robot as she/he rides on it.
In a third-person viewpoint, a user controls a robot
in an absolute coordinate. We considered that there
are large differences in preference for viewpoints among
users with using a joystick, and it is difficult to prepare
an adequate viewpoint to each user in advance. Thus,
we used DCM methods with less uncertainty than using
a joystick. In addition, constant angle rotation could be
available too. In this case, the user will eager to con-
trol the robot to go to the area not swept. It is also
difficult to control the robot to certain direction. In the
meantime, we removed the factors that increase users’
cognitive load in our experiment. Actually, the partic-
ipants of our experiment practiced the robot control
before the measurement and there was no problem.
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Fig. 16 Results of scores and differences. The scores are nor-
malized by each participant’s calculation ability. A score of 1.0
represents their calculation ability without controlling the robot.
The Dunnett’s multiple comparison test was used to statistically
identify the significant differences in the scores from the control
group (EC).

5.2 Coverage of ECEA

In this section, we introduce three representative sce-
narios: control of the light by actions, a garbage collec-
tion with a robot, and a cooperative cooking. These ex-
amples imply generality of our proposed ECEA method.
If the action KEEP is not applied for the action that
continues to change the state of objects, our proposed
method will be applicable to some cooperative tasks.
The proposed method has a possibility of applying it
not only to robots but also to ordinary machines such as
home electric appliances. Let’s imagine a system that
controls the lighting in a room. Users send the com-
mand to dim the lights by screening their eyes from it
with the hand. This type of action unconsciously occurs
when users think that the light is strong. They just hold
this posture and then the system dims the light. When
users want to brighten the light, they keep gazing at it
until the light becomes a preferable strength. The user
does not always need to keep gazing at the light be-
cause it is dazzling. Actually, the function of increasing
the light intensity is achieved by turning the user’s face
toward the light. This type of system might be useful
for them because they can determine whether they are
satisfied or not with this action and reaction after they
have performed it. The ACS description with ECEA of
room light dimming is shown in Fig. 17. The KEEP unit
that keeps the last state of MOVE (holding the hand
in front of the face) is added. It will be developed by

(1) MOVE hand TO in front of the face
(2) KEEP MOVE (keep last state of MOVE)
(3) MOVE hand TO down

(1) MO& (2) KEEP (3) MOVE
TN TN

J ),

A

Fig. 17 ACS description with ECEA of room light dimming.
ECEA is used in (2). Users send the command to dim the lights
by screening their eyes from it with the hand.

simple image processing with an infrared sensor. CEA
is not able to achieve this kind of tasks because it is
suitable to achieve tasks with only on/off control. In
contrast, DCM can achieve this kind of tasks. However,
in this case, a user needs to repeat a command such as
saying “Darker” or to look for the remote control.

In addition, the proposed method is applicable to
a garbage collection task. Robots are generally difficult
to distinguish whether an object is garbage or not. So,
it will convenient for a user that a robot comes close
to her/him and takes the garbage. The user does not
need to go to a trash can placed far away and just
does pretend to throw the garbage to a trash can. The
ACS description with KEEP of garbage throwing to the
trash can is shown in Fig.18. The KFEP unit that keeps
the last state of searching for the trash can (facing the
trash can) is added into the original behavior. When
the robot detects the action by using its infrared sen-
sors or image processing, such as calculating the optical
flows, it approaches the user. Thus, with the applica-
tion of the ECEA, the robot might easily distinguish
whether the user has garbage or not, because the op-
eration KEEP in ECEA gives a good guidance for the
robot to approach the user by showing stop motion and
the garbage. CEA is not able to achieve this kind of
tasks. The robot will reacts every user’s action includ-
ing throwing the garbage by using CEA. In contrast
with DCM, ECEA does not need to look for a remote
control or to send a command by saying “Come here”
in a loud voice in a noisy environment.

There is another example in domestic tasks. ECEA
is applicable to a cooking task. Although it is techni-
cally difficult for a robot to cook a meal from beginning
to end by itself, it can help a user who cooks a meal.
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(1) TAKE object

(2) MOVE object TO trash can

(3) KEEP MOVE (keep last state of MOVE)
(4) MOVE object TO robot

(1) TAKE (2) MOVE (3) KEEP | | (4) MOVE

Fig. 18 ACS description with ECEA of garbage throwing.
ECEA is used in (3). When the user pretends to throw the
garbage to the trash can in (3), the robot approaches the user
and take the garbage.

The ACS description with KEEP of a cooking task is
shown in Fig. 19. A KFFEP unit that keeps the last
state of moving to reach the hand out for a spices bot-
tle is added into the original behavior. When a robot
detects such an action, it picks up the spice bottle and
approaches to the user to pass it to her/him. Another
KEFEP unit keeps the last state of moving a frying pan
to place food in a serving dish. When the robot de-
tects such an action, it gives a dish to a user. Although
the robot actually needs to manage contexts of cook-
ing, it would play as a cooking helper. CEA is not able
to achieve this kind of tasks because it makes a robot
frequently react to every user’s action. In contrast with
DCM, ECEA does not need to push a button on a robot
or a remote control, and to send a command by saying
“Bring the spice bottle here.”

5.3 Limitations

Although the experimental results show the availability
of ECEA, it has some limitations. In the cooperative
sweeping, proposed method is useful to clean the area
under a lightweight and small object. It is not realistic
to lift a large and heavy object such as a sofa.

If a robot can detect a region to sweep out on its
own, the user could give a single command. It will be
possible to apply the laser pointer interface to pick up
an object on the floor [29]. However, it is technically
difficult to develop such a robot as seeing from the pre-
vious work [29]. In our experiment, the robot randomly
changed its direction for every experimental condition.
It appears to be technically reasonable to achieve a
sweeping task. ECEA does not always provide the best

(1) MOVE hand TO spices

(2) KEEP MOVE

(3) MOVE frying pan TO dish
(4) KEEP MOVE

(2) KEEP

(keep last state of MOVE)

(keep last state of MOVE)

(1) MOVE

Fig. 19 ACS description with ECEA of a cooking task. ECEA is
used in (2) and (4). When a user holds the hand during reaching
the hand out for a spice bottle, a robot picks up the spice bottle
and approaches to the user to pass it to her/him as shown in
(2). When a user holds a frying pan during placing the food in a
serving dish, the robot gives a dish to her/him as shown in (4).

solution, but it may be able to reduce the technical dif-
ficulties to achieve a task.

In the experiment with participants, it required deli-
cate instructions for participants. Therefore, it will need
to adopt several evaluation methods to investigate the
effect of the proposed method.

6 Related Work

Our approach is similar to studies in controlling robots
by using gestures. Marrone et al. [9, 23] developed a
domestic cleaning robot that is controlled by human
gestures. For example, the robot cleans the area that
the user designates. With this kind of approach, the
user has to learn the gesture commands to precisely
control the robot. In contrast, our approach does not
require users to learn gesture commands for the robot.
The robot using our method automatically cooperates
with the users when they perform natural actions, such
as moving obstacles.

In terms of natural actions, studies in controlling
robots by force are similar to our concept. Hayashibara
et al. [2] and Arai et al. [3] presented a robot that car-
ried a long object cooperatively with a human. Nakai
et al. [4] presented a control method for mobile robots
that carried heavy objects. Yokoyama et al. [5, 6] stud-
ied a cooperative carrying task performed by a human
and a humanoid. In those studies, the robots sensed the
force of a user’s push or pull on the object. It appears
that force is interchangeable between robots and users
through an object. In those interactions, commands to
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control the robots are embedded in the human actions.
However, this method can be applied to limited tasks in
which a user and a robot carry an object together. Our
concept for a controlling method can be used for not
only object carrying tasks but also other human-robot
cooperative tasks, such as the sweeping task.

There have been studies on using human intentions
for controlling robots. Terada et al. [24] developed an
autonomous chair robot that behaves according to the
human intentions based on computer vision technolo-
gies. Sato et al. [25] introduced an interface that as-
sisted with human drawing tasks based on the user’s
intentional manipulation of the system. In general, in-
tention inferring needs a lot of knowledge about the
tasks and human models, but at a high processing cost.
Although our approach appears to infer human inten-
tion, we are not attempting it. As our goal is to mediate
human-robot cooperative tasks by using natural human
actions, it does not always have to infer human inten-
tions.

Our study is related to the studies in nonverbal com-
munication between users and robots since our method
uses commands embedded in a nonverbal human ac-
tion. Kuniyoshi et al. [26] and Nicolescu [27] introduced
robots that learn their behaviors by watching users’ ac-
tions. The purpose of these studies is to make robots
perform actions that humans previously performed. In
our method, the robot does not learn new behaviors
but is able to cooperate with the users.

Zhao et al. [28] proposed an implicit interaction be-
tween a user and robots. By their method, the user put
cards to the object to be manipulated before the robot
begins to perform. Their method is classified DCM be-
cause the user’s action putting the cards to send com-
mands to the robot is regarded as additional actions.

7 Conclusion

In this paper, we classified the conventional human-
robot interaction into two groups: direct commanding
method (DCM) and commands embedded in actions
(CEA). We proposed Extended CEA (ECEA) based on
CEA and its advantages are efficiency improved by not
requiring additional human actions like CEA, and func-
tionality to enable a robot to perform further actions
like DCM. Users do not need to precisely manipulate
the robot and to learn the manipulation method by us-
ing ECEA. Commands are sent to a robot according to
a human action sequence that achieves their own task.
In order to enable the robot to achieve tasks, we intro-
duced a keep-based interaction in which a human keeps
an action in the sequence for a certain period.

We applied ECEA to the cooperative sweeping task
between a human and a robot. The robot was able to
autonomously sweep the top of the desk using a random
spinning strategy. When the robot found the lifted ob-
ject by a user, it swept the area under the object. Users’
physical workloads would not be increased because the
proposed method does not require additional human
actions. However, the effect of the proposed method on
users’ cognitive loads is unknown. An experiment to
confirm the reduction of users’ cognitive loads by us-
ing ECEA was conducted in a sweeping task. We mea-
sured human cognitive loads and compared ECEA with
DCM. The experimental results showed that ECEA has
a lower cognitive load than DCM. This suggests that
ECEA was more suitable for achieving such a task than
DCM.

In section 5.2, we showed three examples of ECEA
applications. Based on the applications, we are cur-
rently planning to apply ECEA to other tasks in the do-
main of daily living situations. We believe that ECEA
will assist users in noticing unknown robot function,
because they only have to perform actions that occur
unconsciously to them according to the given situation.
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