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A lattice Boltzmann method (LBM) for an isothermal binary miscible

fluid mixture is proposed. The binary miscible fluid mixture is assumed to

be composed of A- and B-species where the fraction of B-species is much

smaller than that of A-species. The asymptotic theory proposed by Sone

[in Rarefied Gas Dynamics, edited by D. Dini (Editrice Tecnico Scientifica,

Pisa, 1971), Vol. 2, p. 737] is applied to the present LBM model and

the convection–diffusion equation for component B is obtained. A diffu-

sion problem is calculated and the validity of the proposed model is shown.

Also, the present method can be applied to thermal fluid systems, in which

the concentration field of component B is regarded as the temperature field

of component A and a buoyancy force proportional to the temperature dif-

ference is included. Rayleigh–Bénard convection is numerically simulated.

The results indicate that the present LBM is useful for the simulation of

fluid flows with heat transfer as well as mass transfer.
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1. INTRODUCTION

Recently, the lattice Boltzmann method (LBM) [1–4] has been used for many

kinds of simulations of incompressible viscous flows. In particular, LBM has been

successfully applied to problems of multiphase and multicomponent fluid flows [5–

10]. Gunstensen et al. [5] developed a multicomponent LBM based on the two-

component lattice gas model proposed by Rothman and Keller [6]. Holme and Roth-

man [7] extended the method to reduce the diffusivity in a miscible two-component

system. Flekkøy [8] introduced another two-component LBM model composed of

two miscible fluids. Shan and Doolen [9, 10] proposed a multicomponent LBM

model including interparticle interaction and external forces.

On the other hand, LBM has also been applied to problems of fluid flows including

thermal effects. In general, however, the simulation of thermal fluid systems by

LBM has not achieved the same success as that of isothermal flows. For example,

McNamara et al. [11] developed a three-dimensional multispeed thermal LBM.

While their method gives accurate results, they pointed out that the numerical

stability should be improved. Most previous thermal LBM models [11–14] are based

on such a multispeed approach in which additional particle speeds are needed to

obtain the energy equation at the macroscopic level.

As an alternative approach, Shan [15] carried out numerical simulations of Rayleigh–

Bénard convection by using the previously developed two-component LBM. In his

method, the density field of the second component is used to simulate the tem-

perature field by taking advantage of the formal analogy between heat and mass

transfer. He et al. [16] also developed a novel thermal LBM model based on a

similar approach, in which an independent distribution function for internal energy

is introduced to simulate the temperature field. These models are numerically more

stable than that of the multispeed thermal LBMs. In both models, however, the

equilibrium distribution function for the temperature contains the terms of second
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order in flow velocity. Since the convection–diffusion equation for the temperature

has no terms of second order in flow velocity, it is sufficient to take account of the

terms up to first order in flow velocity [17]. Thus there is a possibility of simplifying

their models.

In the present paper, we first propose an LBM for an isothermal binary miscible

fluid mixture. Next we apply the asymptotic theory proposed by Sone [18–21] to the

present LBM model and obtain the convection–diffusion equation for the diffusing

component. Then we calculate a diffusion problem to demonstrate the validity of

the proposed method. Finally we apply the present LBM to thermal fluid systems

and carry out numerical simulations of Rayleigh–Bénard convection.

2. LATTICE BOLTZMANN METHOD FOR BINARY MISCIBLE

FLUID MIXTURE

2.1. Basic Equation

Hereafter, non-dimensional variables defined in Appendix A are used, but the

circumflex representing ’non-dimensional’ is omitted for simplicity. We employ the

fifteen-velocity model [4] to explain the present method. The fifteen-velocity model

has the following velocity vectors:

[ c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15 ]

=




0 1 0 0 −1 0 0 1 −1 1 1 −1 1 −1 −1

0 0 1 0 0 −1 0 1 1 −1 1 −1 −1 1 −1

0 0 0 1 0 0 −1 1 1 1 −1 −1 −1 −1 1



. (1)

Here, we assume a binary miscible fluid mixture of A- and B-species under the

condition that the fraction of B-species is much smaller than that of A-species.

Under this condition, the effect of A–B collisions can be neglected compared to

A–A collisions. Also, the effect of B–B collisions can be neglected in comparison
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with B–A collisions. Therefore, the evolution of the particle distribution function

fσi(x, t) of σ-species (σ = A,B) with velocity ci at the point x and at time t is

computed by the following equation:

fσi(x + ci∆x, t+ ∆t) − fσi(x, t) = − 1
τσ

[fσi(x, t)− feq
σAi(x, t)]

for i = 1, 2, 3, · · · , 15, σ = A,B, (2)

where feq
σAi is an equilibrium distribution function for σ-species, τσ is a dimension-

less single relaxation time and is of O(1), ∆x is a spacing of the cubic lattice, and

∆t is a time step during which the particles travel the lattice spacing. It is noted

that ∆t = Sh∆x where Sh(= U/c) is the Strouhal number.

The density ρA of component A, the concentration ρB of component B, and the

flow velocity uA of component A are defined in terms of the particle distribution

function as follows:

ρσ =
15∑

i=1

fσi for σ = A,B, (3)

uA =
1
ρA

15∑
i=1

fAici. (4)

As for the equilibrium distribution function for component A, it is noted that

Eq. (2) for σ = A has the same form as single-component isothermal LBM. Thus,

the equilibrium distribution function feq
AAi is given by [4]

feq
AAi = EiρA

[
1 + 3ci · uA +

9
2
(ci · uA)2 − 3

2
uA · uA

]

for i = 1, 2, 3, · · · , 15, (5)

where E1 = 2/9, Ei = 1/9 for i = 2, 3, · · · , 7, and Ei = 1/72 for i = 8, 9, · · · , 15.

Moreover, in this model the pressure pA of component A is related to the density

ρA by [22]

pA =
1
3
ρA. (6)
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As for the equilibrium distribution function for component B, on the other hand,

we use the following equilibrium distribution function which contains the terms up

to first order in flow velocity:

feq
BAi = EiρB (1 + 3ci · uA) for i = 1, 2, 3, · · · , 15. (7)

The above distribution function is simpler than that of [15, 16]. A similar equi-

librium distribution function has been proposed in [17] with the hexagonal seven-

velocity model, but the accuracy of the method is not presented in detail. The

appropriateness and the accuracy of the above equilibrium distribution function

are verified theoretically and numerically in the following sections.

2.2. Asymptotic Analysis

Here, we are interested in the case of small Knudsen number with finite Reynolds

number. Since Mach number Ma = U/c, Reynolds number Re = UL/ν (ν is the

kinematic viscosity of fluid), and Knudsen number Kn are related as Ma ∼ KnRe,

it follows that Ma is of the same order of smallness as Kn in the case of finite

Reynolds number. In addition, since Sh = U/c = Ma, the Strouhal number Sh is

also of the order of Kn. It is also noted that ∆x is assumed to be of the same order

as Kn. Considering this ordering, we carry out the asymptotic analysis for small

Knudsen numbers according to [18–21]. As in [22], it is found that using Eqs. (2)–

(6) for σ = A we can obtain the macroscopic flow velocities and pressure gradient

of component A for incompressible fluid with relative errors of O(ε2) where ε is a

modified Knudsen number which is of the same order as ∆x.

Hereafter, we focus on the derivation of the governing equation for component

B. First, performing a Taylor expansion of Eq. (2) for σ = B up to O[(∆x)4] and

dividing it by ∆x, we have

(Sh
∂

∂t
+ ci · ∇)fBi +

1
2
∆x(Sh

∂

∂t
+ ci · ∇)2fBi +

1
6
(∆x)2(ci · ∇)3fBi +O[(∆x)3 ]
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= − 1
τB∆x

(fBi − feq
BAi) . (8)

Next, we assume that the deviation of the distribution function from its equilib-

rium state at rest with the local concentration is of the same order as ∆x and put

fBi in the form of series expansion of ε.

fBi = Ei(ρ
(0)
B + εf

(1)
Bi + ε2f

(2)
Bi + ε3f

(3)
Bi + · · ·) for i = 1, 2, 3, · · · , 15. (9)

Corresponding to Eq. (9), the macroscopic variables are also expanded as follows:

ρB = ρ
(0)
B + ερ

(1)
B + ε2ρ

(2)
B + ε3ρ

(3)
B + · · · , (10a)

uA = εu
(1)
A + ε2u

(2)
A + ε3u

(3)
A + · · · , (10b)

where

ρ
(m)
B =

15∑
i=1

Eif
(m)
Bi for m = 1, 2, 3, · · · . (11)

It should be noted that the expansion of the flow velocity begins with the term of

the order of ε, since Ma is of the order of Kn. Also, the equilibrium distribution

function is expanded as follows:

feq
BAi = Ei(f

eq(0)
BAi + εf

eq(1)
BAi + ε2f

eq(2)
BAi + ε3f

eq(3)
BAi + · · ·)

for i = 1, 2, 3, · · · , 15, (12)

where

f
eq(0)
BAi = ρ

(0)
B , (13a)

f
eq(1)
BAi = ρ

(1)
B + 3ρ(0)

B ci · u(1)
A , (13b)

f
eq(2)
BAi = ρ

(2)
B + 3ρ(1)

B ci · u(1)
A + 3ρ(0)

B ci ·u(2)
A , (13c)

f
eq(3)
BAi = ρ

(3)
B + 3ρ(2)

B ci · u(1)
A + 3ρ(1)

B ci ·u(2)
A + 3ρ(0)

B ci · u(3)
A . (13d)

D R A F T February 15, 2002, 1:27pm D R A F T



We consider a moderately varying solution [∂f(m)
Bi /∂t = O(f(m)

Bi ) and ∂f
(m)
Bi /∂xγ =

O(f(m)
Bi ) with m = 1, 2, 3, · · · and γ = x, y, z (Subscript γ represents Cartesian coor-

dinates and the summation convention is used.)] of Eq. (2). Substituting Eqs. (9)

and (12) into Eq. (8), we obtain the following simultaneous equations governing

the component functions f(m)
Bi (m = 1, 2, 3, · · ·) of the velocity distribution functions

fBi:

f
(1)
Bi = f

eq(1)
BAi − τB∆x

ε
ci · ∇ρ

(0)
B , (14)

f
(2)
Bi = f

eq(2)
BAi − τB∆x

ε
ci · ∇f

(1)
Bi

− τB∆x

ε

[
Sh
ε

∂

∂t
+

1
2
∆x

ε
(ci · ∇)2

]
ρ
(0)
B , (15)

f
(3)
Bi = f

eq(3)
BAi − τB∆x

ε
ci · ∇f

(2)
Bi

− τB∆x

ε

[
Sh
ε

∂

∂t
+

1
2
∆x

ε
(ci · ∇)2

]
f

(1)
Bi

− τB

(
∆x

ε

)2

(ci · ∇)
[
Sh
ε

∂

∂t
+

1
6
∆x

ε
(ci · ∇)2

]
ρ
(0)
B , (16)

.

.

.

which can also be written in the form of linear algebraic equations as follows:

f
(m)
Bi −

15∑
j=1

Ejf
(m)
Bj = Ih

(m)
i for m = 1, 2, 3, · · · , (17)

where Ih
(m)
i represents the inhomogeneous terms given by

Ih
(1)
i = 3ρ(0)

B ci · u(1)
A − τB∆x

ε
ci · ∇ρ

(0)
B , (18a)

Ih
(2)
i = 3ρ(1)

B ci · u(1)
A + 3ρ(0)

B ci · u(2)
A

− τB∆x

ε
ci · ∇f

(1)
Bi − τB∆x

ε

[
Sh
ε

∂

∂t
+

1
2
∆x

ε
(ci · ∇)2

]
ρ
(0)
B , (18b)

Ih
(3)
i = 3ρ(2)

B ci · u(1)
A + 3ρ(1)

B ci · u(2)
A + 3ρ(0)

B ci · u(3)
A
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− τB∆x

ε
ci · ∇f

(2)
Bi − τB∆x

ε

[
Sh
ε

∂

∂t
+

1
2
∆x

ε
(ci · ∇)2

]
f

(1)
Bi

− τB

(
∆x

ε

)2

(ci · ∇)
[
Sh
ε

∂

∂t
+

1
6
∆x

ε
(ci · ∇)2

]
ρ
(0)
B , (18c)

.

.

.

Equation (17) are inhomogeneous linear algebraic equations and have the same

coefficient matrix in spite of m. As shown in Appendix B, the solvability conditions

for Eq. (17) are given as follows:

15∑
i=1

EiIh
(m)
i = 0 for m = 1, 2, 3, · · · . (19)

The solvability condition for m = 1 is trivially satisfied. From the solvability

condition (19) for m = 2 we get

Sh
ε

∂ρ
(0)
B

∂t
+ u

(1)
Aγ

∂ρ
(0)
B

∂xγ
=

1
3

(
τB − 1

2

)
∆x

ε

∂2ρ
(0)
B

∂x2
γ

. (20)

From the solvability condition (19) for m = 3 we get

Sh
ε

∂ρ
(1)
B

∂t
+ u

(1)
Aγ

∂ρ
(1)
B

∂xγ
+ u

(2)
Aγ

∂ρ
(0)
B

∂xγ
=

1
3

(
τB − 1

2

)
∆x

ε

∂2ρ
(1)
B

∂x2
γ

. (21)

Multiplying Eq. (20) by ε and Eq. (21) by ε2 and taking the summation of the two

equations, we obtain

Sh
∂

∂t
(ρ(0)

B + ερ
(1)
B ) + εu

(1)
Aγ

∂

∂xγ
(ρ(0)

B + ερ
(1)
B ) + ε2u

(2)
Aγ

∂ρ
(0)
B

∂xγ

=
1
3

(
τB − 1

2

)
∆x

∂2

∂x2
γ

(ρ(0)
B + ερ

(1)
B ). (22)

Equation (22) corresponds to the convection–diffusion equation for component B

in a binary miscible fluid mixture. Therefore, it is found that using Eqs. (2)–(4)

and (7) for σ = B we can obtain the concentration of component B in a binary

miscible fluid mixture with relative errors of O(ε2).
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The dimensionless kinematic viscosity ν of the fluid and the dimensionless mass

diffusivity DBA in the binary miscible fluid mixture are given by [22]

ν =
1
3

(
τA − 1

2

)
∆x, (23)

DBA =
1
3

(
τB − 1

2

)
∆x. (24)

Then the Schmidt number Sc becomes

Sc =
ν

DBA
=

2τA − 1
2τB − 1

. (25)

2.3. Numerical Results

To demonstrate the validity of the proposed method, we calculate a steady dif-

fusion problem between two parallel walls. Here we use the two-dimensional nine-

velocity model [4, 23] for simplicity. The nine-velocity model has the following

velocity vectors: c1 = 0, ci = [cos (π(i− 2)/2), sin (π(i− 2)/2)] for i = 2, 3, 4, 5,

and ci = [cos (π(i− 11
2 )/2), sin (π(i − 11

2 )/2)] for i = 6, 7, 8, 9. The basic theory and

equations for the nine-velocity model are the same as those for the fifteen-velocity

model except that the coefficients Ei are E1 = 4/9, Ei = 1/9 for i = 2, 3, 4, 5, and

Ei = 1/36 for i = 6, 7, 8, 9.

A square domain with the sides of length L is divided into square lattices with

the spacing of ∆x. The lower and upper walls are located at y = 0 and y = 1,

respectively. The two walls are assumed to be porous ones and a constant normal

flow vA0 of component A is injected through the lower wall and is removed from

the upper wall. The concentration of component B at the lower and upper walls

is maintained with ρBL and ρBU, respectively. In this problem, ρBU is assumed

higher than ρBL; it follows that B-species diffuses counter to the flow of A-species.

The governing equation for this problem becomes

vA0
dΠB

dy
= DBA

d2ΠB

dy2
, (26)
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where ΠB is a normalized concentration defined as follows:

ΠB =
ρB − ρBL

ρBU − ρBL
. (27)

The analytical solution Π∗
B is given by

Π∗
B =

exp (vA0y/DBA) − 1
exp (vA0/DBA) − 1

. (28)

In the following calculations, we keep the condition of vA0/DBA = 4. The periodic

boundary condition is imposed in the x-direction. On the lower and upper walls

the boundary condition with constant concentration of component B is used (see

Appendix C). We carried out calculations with ∆x = 1/20, 1/40, and 1/80 and with

τB = 1.1, 1.4, and 1.7. Figure 1 shows the calculated concentration profile with

∆x = 0.05 and τB = 1.1. The solid line and the closed circles indicate the analytical

solution and the calculated results, respectively. It is seen that the results agree

well with the analytical solution. Next, the errors of the calculated results from the

analytical solution with various ∆x and τB are examined. As stated in [22], the

errors in this problem are proportional to (∆x)2 alone as long as vA0/DBA is kept at

a constant value. Table 1 presents the error norms Er1 =
∑

y |ΠB −Π∗
B |/∑

y |Π∗
B|

and Er2 =
√∑

y (ΠB − Π∗
B)2/

√∑
y (Π∗

B)2 where the sums are taken over the same

21 nodes between the walls for all cases. It is clearly found that the errors decrease

in proportion to (∆x)2 regardless of τB and the present LBM is a second-order

scheme.

3. APPLICATION TO THERMAL FLUID SYSTEMS

3.1. Basic Equation

The present LBM for the binary miscible fluid mixture can also be applied to

thermal fluid systems by taking advantage of the formal analogy between heat and

mass transfer. In the following, the concentration field of component B is regarded
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as the temperature field of component A and the subscript B of the variables

for component B is replaced by T denoting temperature. As for the motion of

component A, the Boussinesq approximation is used for the gravitational term and

a buoyancy force proportional to the temperature difference is included. Here the

buoyancy force is assumed to be acting in the y-direction alone. Then the evolution

of particle distribution functions for fluid A and temperature T is written as follows

[24]:

fσi(x + ci∆x, t+ ∆t) − fσi(x, t) = − 1
τσ

[fσi(x, t) − feq
σAi(x, t)]

+3Eigβ(T − T ∗)ciy∆xδσA

for i = 1, 2, 3, · · · , 15, σ = A,T, (29)

where g is the gravitational acceleration, β is the volumetric expansion coefficient,

T ∗ is a reference temperature, and δσA is the Kronecker delta. Note that gβ is of

O(ε2). The equilibrium distribution functions feq
AA and feq

TA are given by Eqs. (5)

and (7), respectively. Also, the density ρ, the temperature T (corresponding to

ρB), the flow velocity u, and the pressure p of the fluid are defined as Eqs. (3), (4),

and (6).

3.2. Governing Equation

Here, the governing equations for the thermal fluid systems are derived. As in

the case of the LBM for the binary miscible fluid mixture, the asymptotic analysis

is applied to Eq. (29). It is shown from the results that u = εu(1) + ε2u(2) +O(ε3),

p = ε2p(2) + ε3p(3) +O(ε4), and T = T (0) + εT (1) +O(ε2) satisfy

∂uγ

∂xγ
= 0, (30)

Sh
∂uγ

∂t
+ uδ

∂uγ

∂xδ
= − ∂p

∂xγ
+

1
3

(
τA − 1

2

)
∆x

∂2uγ

∂x2
δ

+ gβ(T − T ∗)δγy , (31)

D R A F T February 15, 2002, 1:27pm D R A F T



Sh
∂T

∂t
+ uγ

∂T

∂xγ
=

1
3

(
τT − 1

2

)
∆x

∂2T

∂x2
γ

, (32)

where δγy is the Kronecker delta. It is noted that the summation convention is

used for the subscript γ and δ (γ, δ = x, y, z) in Eqs. (30)–(32). Equations (30),

(31), and (32) correspond to the continuity equation, the Navier–Stokes equations,

and the convection–diffusion equation for the temperature for incompressible fluid,

respectively.

The dimensionless kinematic viscosity ν and the dimensionless thermal diffusivity

α (corresponding to DBA) of the fluid are given by Eqs. (23) and (24), respectively.

Then the Prandtl number Pr and the Rayleigh number Ra are determined as follows:

Pr =
ν

α
=

2τA − 1
2τT − 1

, (33)

Ra =
36gβ∆T

(2τA − 1)(2τT − 1)(∆x)2
, (34)

where ∆T is a characteristic temperature difference.

3.3. Numerical Results

As a typical example of thermal fluid systems, Rayleigh–Bénard convection is

calculated by the present LBM. Here is also used the nine-velocity model for sim-

plicity. A rectangular domain with height L and width 2L is divided into square

lattices with the spacing of ∆x. The temperature TL on the lower wall at y = 0 is

kept higher than the temperature TU on the upper wall at y = 1. T ∗ is given by

[15, 16]

T ∗ = TL − y∆T, (35)

where ∆T = TL − TU. Note that Eq. (35) leads to cancel the effect of hydrostatic

pressure due to the buoyancy force. Hence, in the conductive state the buoyancy

force vanishes and the pressure field is homogeneous [15, 16]. The periodic boundary

condition is used in the x-direction. The no-slip boundary condition with constant
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temperature is used on the lower and upper walls. (See Appendix C with vA0 = 0.)

Computational conditions are ∆x = 1/50 and Pr = 0.71, and the other parameters

are changed so that the Rayleigh number Ra ranges from 1,650 to 100,000.

We first evaluate the critical Rayleigh number Rac. The calculations are started

from the static conductive state at several different Rayleigh numbers close to

Rac. An initial small perturbation in a sine wave is applied to the temperature

field. The amplitude of the sine wave is set to be 5 × 10−3 for all cases. Figure

2 shows the time histories of the maximum velocities in the y-direction at Ra =

1, 650, 1, 680, 1, 700, 1, 720, 1, 750, and 1, 800. The initial disturbance is found to

either grow or decay exponentially according to the Rayleigh numbers. Then the

growth rate, which is defined as the rate of increase in the maximum velocity in

the y-direction during one time step, is calculated and interpolated to obtain the

Rayleigh number corresponding to zero growth rate. Figure 3 shows the calculated

growth rates plotted against the Rayleigh numbers. It should be noted that negative

value of the growth rate indicates the rate of decrease in the maximum vertical

velocity. In Fig. 3, the solid straight line is drawn through the data points using

the least-squares fitting and the intersection with the horizontal axis gives the

critical Rayleigh number. The calculated critical Rayleigh number is 1708.48 and

agrees well with the theoretical value of 1707.76 obtained by linear stability theory

[25] within 0.042 %.

We next present the calculated results at higher Rayleigh numbers. Figure

4 shows typical velocity vectors and temperature fields in final steady-states at

Ra = 5, 000, 20, 000, and 50, 000. In Fig. 4, the length of each velocity vector is

normalized by the maximum velocity in the y-direction at Ra = 50, 000. It is seen

that as the Rayleigh number increases, the mixing of the hot and cold fluids is

enhanced and the temperature gradients near the lower and upper walls become

steeper. It is found that our results are qualitatively reasonable compared to the

results by Shan [15] and by He et al. [16]. The Nusselt number can be calculated
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by the following equation [16]:

Nu = 1 +
〈uyT 〉
α∆T

, (36)

where uy is the flow velocity in the y-direction and 〈 · 〉 denotes the average over

the whole flow domain. Figure 5 shows the calculated relationship between the

Nusselt number and the Rayleigh number. In Fig. 5, the results by Clever and

Busse [26] and the empirical formula Nu = 1.56(Ra/Rac)0.296 [16] are also shown

for comparison. It is seen that our results agree fairly well with those by Clever

and Busse at various Rayleigh numbers up to 100,000. Shan [15] and He et al. [16]

calculate the same problem, but their calculations slightly underestimate the heat

transfer at Rayleigh numbers higher than 20,000. Therefore, it is found that the

present LBM is more accurate than their thermal LBMs at high Rayleigh numbers.

4. CONCLUDING REMARKS

We have proposed an LBM for an isothermal binary miscible fluid mixture. Ap-

plying the asymptotic theory proposed by Sone [18–21] to the present LBM, we

found that the concentration of the diffusing component in the mixture can be ob-

tained with relative errors of O(ε2) where ε is a modified Knudsen number which

is of the same order as the lattice spacing. The proposed LBM can be applied

to thermal fluid systems. In two problems, diffusion between two parallel walls

and Rayleigh–Bénard convection, we found that the present LBM is useful for the

simulation of fluid flows with heat and mass transfer.

APPENDIX A

Definition of Non-Dimensional Variables

As in [22], we use the following non-dimensional variables defined by a character-

istic length L, a characteristic particle speed c, a characteristic time scale t0 = L/U
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where U is a characteristic flow speed, a reference density ρA0, a reference concen-

tration ρB0, and a reference temperature T0:

ĉi = ci/c, x̂ = x/L, t̂ = t/t0,

f̂Ai = fAi/ρA0, f̂Bi = fBi/ρB0,

ρ̂A = ρA/ρA0, ρ̂B = ρB/ρB0,

ûA = uA/c, p̂A = pA/(ρA0c
2),

ĝ = gL/c2, β̂ = βT0, T̂ = T/T0,

ν̂ = ν/(cL), D̂BA = DBA/(cL), α̂ = α/(cL),




(A.1)

where the subscript A and B represent the variables for A- and B-species, re-

spectively. The dimensional variables in Eq. (A.1) are as follows: ci is the particle

velocity, x is the coordinates, t is the time, fAi and fBi are the particle distribution

functions, ρA is the density, ρB is the concentration, uA is the flow velocity, pA

is the pressure, g is the gravitational acceleration, β is the volumetric expansion

coefficient, T is the temperature, ν is the kinematic viscosity, DBA is the mass

diffusivity, and α is the thermal diffusivity.

APPENDIX B

Solvability Conditions of Eq. (17)

The linear algebraic Eq. (17) can be written as

Ay = b, (B.1)
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with

A =
1
72




56 −8 −8 −8 −8 −8 −8 −1 −1 −1 −1 −1 −1 −1 −1

−16 64 −8 −8 −8 −8 −8 −1 1 −1 −1 −1 −1 −1 −1

−16 −8 64 −8 −8 −8 −8 −1 −1 −1 −1 −1 −1 −1 −1

−16 −8 −8 64 −8 −8 −8 −1 −1 −1 −1 −1 −1 −1 −1

−16 −8 −8 −8 64 −8 −8 −1 −1 −1 −1 −1 −1 −1 −1

−16 −8 −8 −8 −8 64 −8 −1 −1 −1 −1 −1 −1 −1 −1

−16 −8 −8 −8 −8 −8 64 −1 −1 −1 −1 −1 −1 −1 −1

−16 −8 −8 −8 −8 −8 −8 71 −1 −1 −1 −1 −1 −1 −1

−16 −8 −8 −8 −8 −8 −8 −1 71 −1 −1 −1 −1 −1 −1

−16 −8 −8 −8 −8 −8 −8 −1 −1 71 −1 −1 −1 −1 −1

−16 −8 −8 −8 −8 −8 −8 −1 −1 −1 71 −1 −1 −1 −1

−16 −8 −8 −8 −8 −8 −8 −1 −1 −1 −1 71 −1 −1 −1

−16 −8 −8 −8 −8 −8 −8 −1 −1 −1 −1 −1 71 −1 −1

−16 −8 −8 −8 −8 −8 −8 −1 −1 −1 −1 −1 −1 71 −1

−16 −8 −8 −8 −8 −8 −8 −1 −1 −1 −1 −1 −1 −1 71




,

(B.2)

where

y = [f(m)
1 , f

(m)
2 , f

(m)
3 , f

(m)
4 , f

(m)
5 , f

(m)
6 , f

(m)
7 , f

(m)
8 ,

f
(m)
9 , f

(m)
10 , f

(m)
11 , f

(m)
12 , f

(m)
13 , f

(m)
14 , f

(m)
15 ]T

with m ≥ 1, (B.3)

and

b = [Ih(m)
1 , Ih

(m)
2 , Ih

(m)
3 , Ih

(m)
4 , Ih

(m)
5 , Ih

(m)
6 , Ih

(m)
7 , Ih

(m)
8 ,

Ih
(m)
9 , Ih

(m)
10 , Ih

(m)
11 , Ih

(m)
12 , Ih

(m)
13 , Ih

(m)
14 , Ih

(m)
15 ]T

with m ≥ 1. (B.4)
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It is easily verified that rank(AT) = 14 and the equation ATy′ = 0 has one

nontrivial solution y′ = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T. Also,

multiplying each row vector of the matrix A by Ei, we get a symmetric matrix.

Thus, from the fundamental theorem of linear algebra [27] we obtain the solvability

conditions Eq. (19) for Eq. (17).

APPENDIX C

Boundary Condition

We present boundary condition for component B with constant concentration at

a wall. On the lower wall at y = 0, for example, fB3, fB6, and fB7 are unknown.

As in [28], the unknown distribution functions are assumed to be the equilibrium

distribution functions given by Eq. (7) with a parameter ρ′B as follows:

fBi = Eiρ
′
B (1 + 3vA0) for i = 3, 6, 7, (C.1)

where vA0 is the flow velocity of component A in the y-direction. The unknown

parameter ρ′B is determined so that the concentration of component B at the wall

is equal to a given value of ρBL. Substituting Eq. (C.1) and the known distribution

functions into Eq. (3) for σ = B, the unknown parameter ρ′B is specified as follows:

ρ′B =
12

2 + 3vA0
(ρBL − fB1 − fB2 − fB4 − fB5 − fB8 − fB9) . (C.2)

The same method is used on the upper wall at y = 1.
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TABLE 1. Error norms of diffusion problem between two parallel walls.

∆x τB Er1 Er2

0.05 1.1, 1.4, and 1.7 2.254× 10−3 1.790× 10−3

0.025 1.1, 1.4, and 1.7 5.617× 10−4 4.459× 10−4

0.0125 1.1, 1.4, and 1.7 1.403× 10−4 1.114× 10−4
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FIGURES

FIG. 1. Calculated concentration profile ΠB of a binary fluid diffusion problem

between parallel walls with ∆x = 0.05 and τB = 1.1.

FIG. 2. Time histories of the maximum vertical velocity at different Rayleigh numbers

close to critical value of Rac.

FIG. 3. Growth rates of the instability against the Rayleigh numbers. The closed

circles indicate the results obtained from the time histories of the maximum vertical ve-

locity, and the solid straight line is drawn through the data points using the least-squares

fitting.

FIG. 4. Calculated velocity vectors (left) and normalized temperature (T −TU)/(TL−

TU) where TL and TU are the temperatures on the lower and upper walls, respectively

(right), in final steady-states at different Rayleigh numbers. (a) Ra=5,000, (b) Ra=20,000,

and (c) Ra=50,000. uy,max is the maximum velocity in the y-direction at Ra=50,000 and

temperature contour interval is 0.05.

FIG. 5. Calculated relationship between the Nusselt number and the Rayleigh number.

The results by Clever and Busse [26] and the empirical formula Nu = 1.56(Ra/Rac)
0.296

[16] where Rac is the critical Rayleigh number are also shown for comparison.
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FIG. 1. Calculated concentration profile ΠB of a binary fluid diffusion problem between

parallel walls with ∆x = 0.05 and τB = 1.1.
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FIG. 2. Time histories of the maximum vertical velocity at different Rayleigh numbers

close to critical value of Rac.
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FIG. 3. Growth rates of the instability against the Rayleigh numbers. The closed circles

indicate the results obtained from the time histories of the maximum vertical velocity, and the

solid straight line is drawn through the data points using the least-squares fitting.
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FIG. 4. Calculated velocity vectors (left) and normalized temperature (T −TU)/(TL −TU)

where TL and TU are the temperatures on the lower and upper walls, respectively (right), in final

steady-states at different Rayleigh numbers. (a) Ra=5,000, (b) Ra=20,000, and (c) Ra=50,000.

uy,max is the maximum velocity in the y-direction at Ra=50,000 and temperature contour interval

is 0.05.
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FIG. 5. Calculated relationship between the Nusselt number and the Rayleigh number.

The results by Clever and Busse [26] and the empirical formula Nu = 1.56(Ra/Rac)0.296 [16]

where Rac is the critical Rayleigh number are also shown for comparison.
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