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ABSTRACT 

The mechanical stability of graphene nanoribbons (GNRs) is an important mechanical 

property to study, when GNRs are used as components in sensors or other nanodevices. In 

this paper, nonlocal effects are considered in a continuum model based theoretical analysis of 

the critical buckling stress of cantilevered double-layer GNRs (DLGNRs) that are subjected 

to an axial compressive load. The results show that the nonlocal effect has an inverse 

relationship with the buckling stress, and the nonlocal effect decreases with increasing aspect 

ratio of DLGNRs. Moreover, to the best of our knowledge this is the first report that, for 

DLGNRs in anti-phase modes, lower buckling mode can endure higher buckling stress 

because of van der Waals (vdW) interaction. 
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1. Introduction 

Graphene sheet (GS), which is a single layer of carbon packed in a hexagonal 

(honeycomb) lattice, is the first truly two-dimensional crystalline material and was first 

produced in 2004 [1]. Graphene has sparked much interest among research groups recently 

[2-6]. Theoretically, it has a large specific surface area, high intrinsic mobility, high Young’s 

modulus and thermal conductivity [7]. Furthermore, GS has been used as a theoretical 

building block of the graphite crystal and to study the formation of carbon nanotubes [8]. 

This two-dimensional material, which is the parent of all graphitic carbon forms, only forms 

single-layer atomic structures, but there is considerable interest in stacked two-layer and 

few-layer GSs as well [9]. 

Graphene nanoribbons (GNRs), are the finite-width counterparts of crystalline GSs, are 

interesting, because their edge shape and size control their electronic structure [5]. GNRs 

have been produced via chemical vapor deposition (CVD) and chemical synthesis [8, 10]. It 

has also been reported that GNRs can be fabricated by unzipping carbon nanotubes (CNTs) 

[11, 12]. Their outstanding mechanical, electronic transport and spin transport properties 

make them attractive materials for a wide range of device applications [10], such as sensors 

[13, 14]. Therefore, the mechanical properties of GNRs are being actively researched. 

Scholars have investigated the mechanical properties of GNRs using many methods. Frank 

et al. [4] showed compression behavior in monolayer GNRs through Raman spectroscopy 
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using the polymer cantilever beam technique. They showed that GNRs embedded in plastic 

beams exhibit remarkable compression buckling strains. Xu et al. [5] presented a 

conformational phase diagram for rectangular GSs, defined by their geometry, boundary 

conditions and environmental conditions. They discovered the occurrence of three major 

structural arrangements and scroll phases as the aspect ratio of the GNRs increases. Lu et al. 

[16] showed that the excess edge energy in freestanding GNRs can be partially relaxed by 

both in-plane and out-of-plane deformation using a reactive empirical bond-order potential 

and atomistic simulations. Neek-Amal et al. [17, 18] studied the buckling behavior of 

monolayer GNRs subjected to axial stress both for free-boundary and supported boundary 

conditions using classical atomistic molecular dynamics (MD) simulations. The above 

mentioned references have indicated the excellent mechanical properties and pointed out the 

potential application of GNRs, especially in buckling behavior of GNRs, but all of them are 

about monolayer GNRs. However, Rao et al. [9] indicated that the properties of double-layer 

GSs have considerable potential for research. Thus, for layer by layer structures, such as 

double-layer GNRs (DLGNRs), special mechanical performance is expected because of the 

van der Waals (vdW) interaction between the double layers.  

At a given point, the stress tensor depends linearly on the strain tensor in classical elasticity 

theory, which can not predict the nonlocal effects. Whereas the nonlocal elasticity theory, 

which assumes the stress at a reference point is considered as a function of the strain at every 
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point in the body and can present the more reliable analysis. Therefore, the nonlocal effects 

associated nanotechnology may call the applicability of classical continuum elasticity theory 

into question. In especial, nonlocal effects often become prominent at nanometer scales and is 

deserved to study in detail. Based on the above, in the present work, we study the buckling 

behavior of DLGNRs that are subject to an axial compressive load by considering nonlocal 

effects, buckling modes and aspect ratios. Furthermore, because precisely engineered 

buckling geometries can be created in nanoribbons [19, 20], we intend to divide the buckling 

mode into in-phase and anti-phase buckling modes, which have not clearly been done and 

will be more important for guiding the application of DLGNRs. 

 

2. Theoretical approach 

GSs can be described using the discrete model [16], which is suitable for classical 

atomistic MD simulations. Fig. 1 (a) shows a discrete model of DLGNR with length L and 

width b. Moreover, GSs can also be studied as continuum models, such as beam model [17, 

18] or shell model [21-23], which are primarily used in theoretical approach. Fig. 1 (b) shows 

a longitudinal cross-section of the continuum DLGNR model, where h is defined as the 

thickness of each layer of the DLGNR, which is equal to the diameter of a carbon atom, 0.34 

nm. The upper and lower layers of the DLGNRs are coupled to each other via vdW 

interaction. 
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2.1 Governing equations 

The nonlocal elasticity theory, which could potentially play a useful role in analysis related 

to nanotechnology applications, has been used in the mechanical analysis of graphene sheets 

[22, 23], carbon nanotubes [24, 25] and other nano-sized materials [26]. Using this theory, 

Hooke’s law for a one-dimensional stress state can be determined using the nonlinear 

relationship: 

ߪ െ ሺ݁଴ܽሻଶ
݀ଶߪ
ଶݔ݀ ൌ  ሺ1ሻ                                                             ߝܧ

where σ is the axial stress and ε is the axial strain. e0a is the nonlocal parameter 

corresponding to each material, and a is the internal characteristic length of the C-C bond 

which was found to be 0.142 nm. E is the elastic modulus of GNRs. 

Using the definitions of the resultant bending moment and the kinematics relationship in a 

continuum beam model, Eq. (1) can be rewritten as: 

ܯ െ ሺ݁଴ܽሻଶ
݀ଶܯ
ଶݔ݀ ൌ െܫܧ

݀ଶݓ
ଶݔ݀                                                    

ሺ2ሻ 

where M is the resultant bending moment. I is the moment of inertia of the GNR. x is the 

longitudinal coordinate in Fig. 1 (b) and w(x) is the flexural deflection of the GNR. 

Based on the Euler–Bernoulli beam model, which assumes that the cross-section of a 

DLGNR remains planar during flexion and is perpendicular to the neutral axis, we get the 

following relationships: 
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ܸ݀
ݔ݀ ൌ െ݌, ܸ ൌ

ܯ݀
ݔ݀ െ ܰ

ݓ݀
ݔ݀                                                  

ሺ3ሻ 

ܰ ൌ  ሺ4ሻ                                                                          ݄ܾߪ2

where V and N are the resultant shear force and axial loading, respectively. p is the distributed 

transverse pressure acting on the GNRs per unit axial length and b is the width of the GNRs.  

From Eqs. (2)–(4), the governing equation of motion for a continuum beam subjected to an 

axial load is: 

ܫܧ
݀ସݓ
ସݔ݀ ൅ ܰ

݀ଶݓ
ଶݔ݀ ൅

ሺ݁଴ܽሻଶ ቆ
݀ଶ݌
ଶݔ݀ െ ܰ

݀ସݓ
ସቇݔ݀ െ ݌ ൌ 0                        ሺ5ሻ 

For the upper and lower layers of DLGNRs, Eq. (5) can be rewritten as: 

ܫܧ
݀ସݓଵ
ସݔ݀ ൅

ܰ
2
݀ଶݓଵ
ଶݔ݀ ൅ ሺ݁଴ܽሻଶ ቈܾܿ

݀ଶሺݓଶ െ ଵሻݓ
ଶݔ݀ െ

ܰ
2
݀ସݓଵ
ସݔ݀ ቉ െ ܾܿሺݓଵ െ ଶሻݓ ൌ 0           ሺ6ሻ 

ܫܧ
݀ସݓଶ
ସݔ݀ ൅

ܰ
2
݀ଶݓଶ
ଶݔ݀ ൅ ሺ݁଴ܽሻଶ ቈܾܿ

݀ଶሺݓଵ െ ଶሻݓ
ଶݔ݀ െ

ܰ
2
݀ସݓଶ
ସݔ݀ ቉ െ ܾܿሺݓଶ െ ଵሻݓ ൌ 0           ሺ7ሻ 

where the subscripts 1 and 2 denote the quantities associated with the upper and lower layers 

of the DLGNR, respectively. c is the vdW interaction coefficient between the upper and lower 

layers, which can be obtained using the Lennard–Jones pair potential [27, 28], given by: 

ܿ ൌ െቆ
4√3
9ܽ ቇ

ଶ
ߞ24
ଶߪ ൬

ߜ
ܽ൰

଼

൥
ߨ3003
256 ෍

ሺെ1ሻ௞

2݇ ൅ 1

ହ

௞ୀ଴

ቀ5݇ቁ ൬
ߜ
ܽ൰

଺ 1
ሺݖଵഥ െ ଶഥݖ ሻଵଶ

െ
ߨ35
8 ෍

ሺെ1ሻ௞

2݇ ൅ 1

ଶ

௞ୀ଴

1
ሺݖଵഥ െ ଶഥݖ ሻ଺

൩ ሺ8ሻ 

where ζ = 2.968 meV and δ = 3.407 Å are parameters chosen to fit the physical properties of 

the material. ݖపഥ ൌ  ௜/ܽ (i = 1, 2), where zi is the coordinate of the ith layer in the thicknessݖ

direction with the origin at the mid-plane of the GNR. 

To derive the in-phase and anti-phase buckling stress, we assume: 

ߦ ൌ ଵݓ ൅  ଶ                                                   ሺ9ሻݓ



7 
 

ߟ ൌ ଵݓ െ  ଶ                                                    ሺ10ሻݓ

Then, from Eqs. (6) and (7), the governing equations of the in-phase and anti-phase modes 

are derived as: 

൤ܫܧ െ ሺ݁଴ܽሻଶ
ܰ
2൨
݀ସߦ
ସݔ݀ ൅

ܰ
2
݀ଶߦ
ଶݔ݀ ൌ 0                                      ሺ11ሻ 

൤ܫܧ െ ሺ݁଴ܽሻଶ
ܰ
2൨
݀ସߟ
ସݔ݀ ൅ ൤

ܰ
2 ൅ 2ሺ݁଴ܽሻଶܾܿ൨

݀ଶߟ
ଶݔ݀ െ ߟ2ܾܿ ൌ 0        ሺ12ሻ 

 

2.2 Solution of governing equations 

By solving the fourth-order polynomial functional (Eqs. (11) and (12)), the solutions for 

the governing equations can be obtained: 

ሻݔሺߦ ൌ ଵܥ ൅ ݔଶܥ ൅ ଷܥ cosሺߣଵݔሻ ൅ ሻݔଵߣସsinሺܥ            ሺ13ሻ 

or                       ߦሺݔሻ ൌ ଵܥ ൅ ݔଶܥ ൅ ଷ݁ఒమ௫ܥ ൅  ସ݁ିఒమ௫            ሺ14ሻܥ

and          ߟሺݔሻ ൌ ହܥ cosሺߣଷݔሻ൅ܥ଺sinሺߣଷݔሻ ൅ ଻ܥ cosሺߣସݔሻ൅଼ܥsinሺߣସݔሻ         ሺ15ሻ 

or    ߟሺݔሻ ൌ ݁ఒఱ௫ሾܥହ cosሺߣ଺ݔሻ൅ܥ଺sinሺߣ଺ݔሻሿ ൅ ݁ିఒఱ௫ሾܥ଻ cosሺߣ଺ݔሻ൅଼ܥsinሺߣ଺ݔሻሿ       ሺ16ሻ 

or                  ߟሺݔሻ ൌ ହ݁ఒళ௫ܥ ൅ ଺݁ିఒళ௫ܥ ൅ ଻݁ఒఴ௫ܥ ൅  ఒఴ௫              ሺ17ሻି଼݁ܥ

or              ߟሺݔሻ ൌ ହܥ cosሺߣଷݔሻ൅ܥ଺sinሺߣଷݔሻ ൅ ଻݁ఒఴ௫ܥ ൅  ఒఴ௫                 ሺ18ሻି଼݁ܥ

where Cj (j = 1, 2,…,8) are coefficients that need to be determined via boundary conditions, 

and 

ଵߣ ൌ ඨ
ܰ

ܫܧ2 െ ሺ݁଴ܽሻଶܰ
                                                                          ሺ19ሻ 
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ଶߣ ൌ ඨ
ܰ

ሺ݁଴ܽሻଶܰ െ ܫܧ2                                                                           
ሺ20ሻ 

ଷߣ ൌ
ඩ
ܰ
2 ൅ 2ሺ݁଴ܽሻଶܾܿ െ ටቂܰ2 െ 2ሺ݁଴ܽሻଶܾܿቃ

ଶ
൅ ܾܿܫܧ8

ܫܧ2 െ ሺ݁଴ܽሻଶܰ
              ሺ21ሻ 

ସߣ ൌ
ඩ
ܰ
2 ൅ 2ሺ݁଴ܽሻଶܾܿ ൅ ටቂܰ2 െ 2ሺ݁଴ܽሻଶܾܿቃ

ଶ
൅ ܾܿܫܧ8

ܫܧ2 െ ሺ݁଴ܽሻଶܰ
              ሺ22ሻ 

ହߣ ൌ
1
2
ඨെܰ െ 4ሺ݁଴ܽሻଶܾܿ ൅ 4ඥܰሺ݁଴ܽሻଶܾܿ െ ܾܿܫܧ2

ܫܧ2 െ ሺ݁଴ܽሻଶܰ
                  ሺ23ሻ 

଺ߣ ൌ
1
2
ඨܰ ൅ 4ሺ݁଴ܽሻଶܾܿ ൅ 4ඥܰሺ݁଴ܽሻଶܾܿ െ ܾܿܫܧ2

ܫܧ2 െ ሺ݁଴ܽሻଶܰ
                      ሺ24ሻ 

଻ߣ ൌ
ඩെ

ܰ
2 െ 2ሺ݁଴ܽሻଶܾܿ ൅ ටቂܰ2 െ 2ሺ݁଴ܽሻଶܾܿቃ

ଶ
൅ ܾܿܫܧ8

ܫܧ2 െ ሺ݁଴ܽሻଶܰ
          ሺ25ሻ 

଼ߣ ൌ
ඩെ

ܰ
2 െ 2ሺ݁଴ܽሻଶܾܿ െ ටቂܰ2 െ 2ሺ݁଴ܽሻଶܾܿቃ

ଶ
൅ ܾܿܫܧ8

ܫܧ2 െ ሺ݁଴ܽሻଶܰ
          ሺ26ሻ 

 

2.3 Boundary conditions 

When DLGNRs are applied in nanotechnology, two boundary conditions are in common 

use, which are simple supported and cantilever boundary conditions. In this study, we 

consider a cantilevered DLGNR subjected to an axial load N with length L, and the 

corresponding boundary conditions are given as follows: 

(1) for a DLGNR with fixed ends (x = 0) 
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ଵሺ0ሻݓ ൌ
ଵሺ0ሻݓ݀
ݔ݀ ൌ ଶሺ0ሻݓ ൌ

ଶሺ0ሻݓ݀
ݔ݀ ൌ 0                   ሺ27ሻ 

so we get: 

ሺ0ሻߦ ൌ
ሺ0ሻߦ݀
ݔ݀ ൌ ሺ0ሻߟ ൌ

ሺ0ሻߟ݀
ݔ݀ ൌ 0                    ሺ28ሻ 

(2) for a DLGNR with free ends (x = L) 

݀ଶݓଵሺܮሻ
ଶݔ݀ ൌ

݀ଶݓଶሺܮሻ
ଶݔ݀ ൌ 0                                             ሺ29ሻ 

ܫܧ
݀ଷݓଵሺܮሻ
ଷݔ݀ ൅

ܰ
2
ሻܮଵሺݓ݀
ݔ݀ ൌ 0                                            ሺ30ሻ 

ܫܧ
݀ଷݓଶሺܮሻ
ଷݔ݀ ൅

ܰ
2
ሻܮଶሺݓ݀
ݔ݀ ൌ 0                                            ሺ31ሻ 

that is: 

݀ଶߦሺܮሻ
ଶݔ݀ ൌ

݀ଶߟሺܮሻ
ଶݔ݀ ൌ 0                                             ሺ32ሻ 

ܫܧ
݀ଷߦሺܮሻ
ଷݔ݀ ൅

ܰ
2
ሻܮሺߦ݀
ݔ݀ ൌ 0                                             ሺ33ሻ 

ܫܧ
݀ଷߟሺܮሻ
ଷݔ݀ ൅

ܰ
2
ሻܮሺߟ݀
ݔ݀ ൌ 0                                         ሺ34ሻ 

Substituting the deflection functions of the DLGNR (ξ and η) into boundary conditions, the 

simultaneous equations are: 

Ωሾܰ, ሿସൈସܮ ൦

ଵܥ
ଶܥ
ଷܥ
ସܥ

൪ ൌ 0                                                        ሺ35ሻ 

and 

Ψሾܰ, ሿସൈସܮ ൦

ହܥ
଺ܥ
଻ܥ
଼ܥ

൪ ൌ 0                                                        ሺ36ሻ 

where Ωሾܰ, ,ሿସൈସ and Ψሾܰܮ  ሿସൈସ are 4×4 matrices for an axial compressive loading of Nܮ



10 
 

and a DLGNR length of L. The buckling load, Nc, of the DLGNR can be obtained from the 

eigenvalue |ܰ, ସൈସ|ܮ ൌ 0, which is the condition for a nontrivial solution of Cj (j = 1, 2,…,8) 

in Eqs. (35) and (36). 

 

3. Results and Discussion 

To calculate the buckling stress of a DLGNR subjected to an axial compressive load, each 

layer is modeled as an individual classical thin beam of the same length, width and thickness. 

Assume that aspect ratio L/b of each layer of a DLGNR is larger than 5, because the 

Euler–Bernoulli beam theory produces a large error for short beam structures. The Young’s 

modulus E of the DLGNR, the same as that of the GSs, is 1.02 TPa [27]. 

 

3.1 In-phase and anti-phase buckling modes 

Based on this theoretical approach, buckling instability of DLGNRs with cantilevered 

boundary conditions can occur in both in-phase modes and anti-phase modes, which is shown 

in Fig. 2. This buckling instability has not been widely studied. In-phase modes 1–4 

correspond to the first four buckling modes of the cantilevered DLGNRs, in which both the 

upper and the lower layers have the same deflection direction. Anti-phase modes 1–4 are the 

first four anti-phase buckling modes, in which the deflections of the upper and lower layers 

occur in opposite directions. 
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Relationship between buckling stress and buckling modes for DLGNR of different aspect 

ratios with e0a = 0.5 nm is shown in Fig. 3, in which figures (a) and (b) show buckling stress 

for in-phase modes 1–4 and anti-phase modes 1–4, respectively. Fig. 3 (a) shows that the 

buckling stresses of the cantilevered DLGNRs with different aspect ratios all increase when 

the in-phase modes increase in the low buckling modes, which is the same as those in 

single-walled CNTs when the vdW interactions are ignored [29]. By contrast, the buckling 

stresses all decrease as the anti-phase buckling modes increase (see Fig. 3 (b)). Moreover, the 

buckling stress in anti-phase mode 1 has the highest value of the eight modes for the different 

lengths. We believe to this to be the first report of such behavior. This behavior arises from 

the vdW interaction forces between the upper and lower layers of the DLGNRs in our 

consideration. In addition, this behavior should be the same with simple-supported boundary 

condition, in which the buckling stress of DLGNRs in anti-phase mode without considering 

nonlocal effects can be derived as 

ܰ ൌ
ଶ݉ܫܧଶߨ2

ଶܮ ൅  
െ4ܿܮଶ

ଶ݉ଶߨ                                                      ሺ37ሻ 

where m is anti-phase buckling mode.  

From Eq. (37), we can clearly see that the buckling stress in anti-phase mode does not only 

increase with the increasing buckling mode in our common opinion, but also affected by the 

vdW interaction forces between the upper and lower layers of the DLGNRs. To confirm and 

explain this behavior in detail, we assume the vdW interaction coefficient to be c, 10-1c, 10-2c 
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and 10-3c. Based on the theoretical approach in section 2, relationship between the buckling 

stress and anti-phase buckling modes for DLGNRs of varying vdW coefficient with L/b = 10 

and e0a = 0.5 nm is shown in Fig. 4. We can clearly see that when vdW coefficient is assumed 

as 10-3c or 10-2c, the buckling stress increases with the increasing anti-phase mode. But when 

the vdW coefficient is up to 10-1c or c, the buckling stress decreases as the anti-phase mode 

increases, which means the relationship between the buckling stress and anti-phase buckling 

modes for DLGNRs makes a conversion when vdW coefficient is between 10-1c and 10-2c, 

and can explain the larger buckling stress of the lower anti-phase modes in Fig. 3 (b) well. In 

reality, we need to point out that the buckling stress cannot reach such high values (see Fig. 3 

(b), such as the buckling stress in anti-phase mode 1 when L/b = 20), because the DLGNR 

subject to this axial compressive load will be damaged prior to reaching this instability. 

Despite this, DLGNRs can endure a much higher buckling stress in lower anti-phase modes, 

which is important for guiding the application of DLGNRs. 

 

3.2 Nonlocal effects on the buckling stress of DLGNRs 

The nonlocal effects on the buckling stress of DLGNRs in in-phase modes 1–4 and 

anti-phase modes 1–4 are shown in Fig. 5 (a) and (b), respectively. We choose L/b = 10 as a 

representative example for the local (e0a = 0 nm) and nonlocal (e0a = 0.5 nm, 1.0 nm and 2.0 

nm) effects on buckling stress of DLGNRs under an axial compressive load. In both in-phase 
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modes and anti-phase modes, the buckling stresses decrease when e0a spans from 0 to 2.0 nm. 

Therefore, the nonlocal effect has an inverse relationship with the buckling stress, which is in 

agreement with reference [24]. This effect is most prominent in higher in-phase modes and 

lower anti-phase modes. In particular, for in-phase mode 1, the buckling stresses of the 

DLGNRs under local and nonlocal effects are nearly the same. Furthermore, when e0a = 2.0 

nm, only in-phase modes 1 and 2 exist with L/b = 10, because the aspect ratio is not large 

enough to produce the higher-order modes. This phenomena also occurs when e0a = 2.0 nm 

(see Fig. 5 (a)). In this case, the DLGNRs do not have an in-phase mode for L/b = 5. 

The nonlocal effects on the buckling stress versus aspect ratio are also discussed in this 

study. The relationship between buckling stress and the aspect ratio of the DLGNR for 

in-phase mode 2 is shown in Fig. 6. Similar to the case in Fig. 5, the nonlocal effect has an 

inverse relationship with the buckling stress. With increasing DLGNR aspect ratio, the 

nonlocal effect decreases, which is in agreement with reference [30]. For example, when the 

aspect ratio of a DLGNR is 20, for e0a values from 0 – 2 nm, the critical buckling stresses 

change within 0.13 GPa, which illustrate that the four different buckling stresses are similar 

to each other in high aspect ratio. 

 

4. Conclusions 

An analytical procedure based on the Euler–Bernoulli beam model was used to investigate 
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the buckling instability due to nonlocal effects on DLGNRs subjected to an axial compressive 

load. The buckling modes of DLGNRs were divided into in-phase and anti-phase modes, in 

which the deflections of the upper and lower layers occur in the same direction and the 

opposite directions, respectively. Moreover, to the best of our knowledge, this is the first 

report that the buckling stresses decrease as the anti-phase buckling modes increase, which 

means buckling stress for DLGNRs in lower anti-phase mode owns higher buckling stress. 

The influence of the nonlocal effects on the buckling stress were also discussed in detail. The 

results show that the nonlocal effect has an inverse relationship with the buckling stress, and 

the nonlocal effect decreases with increasing DLGNR aspect ratio. This investigation will be 

helpful for DLGNR applications such as buckling mechanical analysis, mechanical sensors 

and graphene-based electrochemical sensors. 
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Figure captions 

Fig. 1 Analytical model for cantilevered DLGNRs, (a) Discrete model and (b) Longitudinal 

cross-section of the continuum model. 

Fig. 2 Buckling modes of cantilevered DLGNRs. 

Fig. 3 Relationship between the buckling stress and buckling modes for DLGNRs of varying 

aspect ratio with e0a = 0.5 nm, (a) In-phase modes and (b) Anti-phase modes. 

Fig. 4 Relationship between the buckling stress and anti-phase buckling modes for DLGNRs 

of varying vdW coefficient with L/b = 10 and e0a = 0.5 nm. 

Fig. 5 Relationship between the nonlocal effect and buckling stress of DLGNRs for L/b = 10 

in different buckling modes. (a) In-phase modes and (b) Anti-phase modes. 

Fig. 6 Relationship between the nonlocal effect and buckling stress for DLGNRs of varying 

aspect ratio for in-phase mode 2. 

 


