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Abstra
t

By applying fra
tional 
al
ulus to the equation proposed by M. Plan
k in 1900, we obtain a new bla
kbody

radiation law des
ribed by a Mittag�Le�er (ML) fun
tion. We have analyzed NASA COBE data by means of a

non-extensive formula with a parameter (q � 1), a formula proposed by Ertik et al. with a fra
tional parameter

(� � 1), and our new formula in
luding a parameter (p � 1), as well as the Bose�Einstein distribution with a

dimensionless 
hemi
al potential �. It 
an be said that one role of the fra
tional parameter (p � 1) is almost the

same as that of 
hemi
al potential (�) as well as that of the parameter (q � 1) in the non-extensive approa
h.
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1. Introdu
tion

The NASA COBE Collaboration has reported that the universe is full of photons at a temperature of 2.725 K

[1, 2, 3, 4℄. Their distribution is des
ribed by the Plan
k bla
kbody radiation law as follows:
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, and T are the Plan
k's 
onstant, the Boltzmann's 
onstant, and temper-

ature, respe
tively. 
 is the speed of the light.

Moreover, the following residual spe
trum has been reported:

[residual spe
trum℄ = [COBE data℄ � [Eq: (1) with T

CMB

K℄:

It is worthwhile to noti
e that there are two kinds of residual spe
tra (1994) and (1996). To explain the resid-

ual spe
trum mentioned above [1, 2, 3℄, the following Bose�Einstein distribution with a dimensionless 
hemi
al

potential � is utilized by the NASA COBE Collaboration [5℄:
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To investigate the residual spe
trum (1994) [1, 2℄, Tsallis et al. [6℄ 
omputed the following formula based on a

non-extensive approa
h:
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where (q � 1) is known as the non-extensive parameter [6, 7, 8℄. The 
orre
tion term to the Plan
k distribution in

Eq. (3) is 
arefully 
al
ulated in [7℄. The residual spe
trum (1996) is investigated in [8℄.
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Se
ond, it is also known that Tirnakli et al. [9℄ have 
al
ulated the following formula based on the non-extensive

approa
h, i.e., q algebra (see Ref. [10, 11, 12, 13℄):
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Third, using a generalized partition fun
tion derived from [14, 15, 16℄, Ertik et al. have proposed the following

formula based on fra
tional 
al
ulus with the Mittag�Le�er (ML) fun
tion [17℄:
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where the Mittag�Le�er (ML) fun
tion is de�ned as follows:
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:

The fun
tion f (x) is expressed as follows:

f (x) =

1

X

k=0

kx

k

 (1 + k)

�(1 + k)

;

where  (z) = d(ln�(z))=dz is the digamma fun
tion, and (� � 1) is known as the fra
tional parameter. Those

distributions are summarized in Table 1.

Table 1: Typi
al modi�ed Plan
k distributions

Bose�Einstein distributions

1

e

x+�

� 1

� : dimensionless 
hemi
al potential

Non-extensive approa
h II

1

e
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q : non-extensive parameter

e
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� [1 + (1 � q)x℄

1=(1�q)

Fra
tional 
al
ulus I

1

E

�

(x) � 1

E

�

(x) : Mittag�Le�er fun
tion

� : fra
tional parameter

In this study, we investigate the third approa
h, the fra
tional 
al
ulus, in more detail, be
ause we are interested

in the approa
h in [17℄. Con
erning the above-mentioned problem, we would like to adopt a di�erent viewpoint

from that of Ertik et al. [17℄. It is well known that in the derivation of the bla
kbody radiation law in 1900, Plan
k

adopted the following thermodynami
al equation [18, 19, 20℄ (See also [10℄):
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; (6)

where U is the energy density. � = 1=k

B

T is the inverse temperature, and a and b are parameters. Using the

ordinary 
al
ulus, we obtain the following expression:
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0

): (7)

If we introdu
e a fra
tional derivative instead of the partial derivative for � in Eq. (6), we 
annot derive

an analyti
al solution, be
ause the equation is nonlinear for the fun
tion U. Therefore, we put U = 1=R and

x = a(� � �

0

). Then, we obtain the following equation for R from Eq. (6):
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Equation (8) is linear for R. Therefore, when the Riemann�Liouville fra
tional derivative is introdu
ed in Eq. (8)

instead of the partial derivative of x, the Mittag�Le�er fun
tion appears in the solution [21, 22, 23, 24, 25℄.

In this study, we aim to apply fra
tional 
al
ulus to Eq. (8) in x2. In x3, various properties of the new formula

in addition to Eqs. (2), (4), and (5) are investigated. In x4, analysis of the NASA COBE data in terms of the new

formula, as well as Eqs. (1), (2), (4), and (5) are presented. In x5, the 
on
luding remarks and dis
ussions are

presented.

In Appendix A, we explain an introdu
tion of the fra
tional 
al
ulus in Eq. (8). In Appendix B, Caputo

derivative is mentioned. In Appendix C, an interrelation between 
hemi
al potential � and fra
tional parameter

(p � 1) is investigated. The same investigations in 
ases of NEXT II and FC I are brie�y mentioned.

2. Appli
ation of Fra
tional Cal
ulus to Eq. (8)

The Riemann�Liouville fra
tional derivative [22, 23℄ of fun
tion R(x) for m =1, 2, ... is de�ned as follows:
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From Eq. (10), we have
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R(x), if p = m � 1. The Riemann�Liouville fra
tional integral is de�ned

as follows:
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To obtain a fra
tional bla
kbody radiation formula or Bose�Einstein distribution, the partial derivative for x in

Eq. (8) is repla
ed by the Riemann�Liouville fra
tional derivative (10). Then, the following equation is obtained:

0
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R(x) = R(x) + b=a; x = a(� � �

0

) > 0: (12)

If p = 1, Eq. (12) is redu
ed to a �rst order partial di�erential equation, Eq. (8). Therefore, we seek the

solution for 0 < p < 2.

The Lapla
e transform

�

R(s) of fun
tion R(x) is de�ned as follows:
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where 


k

=

0

D

p�k�1

x

R(x)j

x=0
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To obtain the solution R(x) from Eq. (14), we use the following formulas [22℄ of the Lapla
e transform:
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where E

�;�

(x) denotes the generalized Mittag�Le�er (GML) fun
tion [22, 23℄ de�ned by

E
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Then the solution R(x) for m � 1 � p < m (m =1, 2, ...) is written as follows:
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It should be noti
ed that at x = 0 the se
ond term of the RHS in Eq. (17) diverges, unless 


0

= 0 for 0 < p < 1,

and 


1

= 0 for 0 < p < 2. If p = 1, it is reasonable that Eq. (17) redu
es to Eq. (8). Therefore, we assume that
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= 0, and we have
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Therefore, Eq. (18) 
oin
ides with Eq. (9) for p = 1. As for the 
onstant 


k

, using the following equation:
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whi
h denotes the fra
tional derivative of R(x) for q > 0 and the fra
tional integral of R(x) for q < 0, we have
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Therefore, our assumptions that 


0

= 0 for 0 < p < 1 and 


0

= 


1

= 0 for 1 � p < 2 are satis�ed.

Then the solution R(x) of Eq. (18) and a new form of Plan
k's bla
k body radiation law are given respe
tively

as follows:
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Another possible approa
h to obtain the fra
tional bla
kbody radiation formula is brie�y dis
ussed in Appendix

B. Using Eq. (19), we 
an analyze NASA COBE data [4℄.

3. Various properties of Eqs. (2), (4), (5), and (19)

We now investigate various properties of Eqs. (2), (4), (5), and (19). Con
erning Eq. (19), we have following

approximate expression with C

B

, �
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= 0 and x = h�=k

B

T , and named as (FC II).
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Eq. (20) is 
ompared with Eq. (5). The di�eren
e is seen in the se
ond terms of the RHS's. The behaviors of the

se
ond terms (named as U

(2nd)

) of the RHS's in Eqs. (2), (4), (5), and (20) without the 
oeÆ
ients, ��, (q � 1),

(� � 1), and (p � 1) are presented in Fig. 1. This �gure suggests that the Eq. (19) is almost the same as the

Bose�Einstein distribution.

Various analyti
 
orre
tions for the Stefan�Boltzmann (SB) law without C

B

whi
h is expressed as U

(2nd)

x

3
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al
ulated as follows:

Bose�Einstein distribution:
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where �(3) is the Riemann's � fun
tion.
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Figure 1: Behavior of the se
ond terms (named as U

(2nd)

) of the RHS's in Eqs. (2), (4), (5), and (19) without the 
oeÆ
ients fa
tors ��, (q�1),

(� � 1), and (p � 1). (a) Eq. (2) (BE), (b) Eq. (4) (NETD II), (
) Eq. (5) (FC I), and (d) Eq. (19) (FC II) with �

0

= 0.
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Ref. [26℄ is utilized in the 
al
ulations above. Numeri
ally estimated values of the 
orre
tions to the modi�ed

SB law (U

(2nd)

=C

B

) are presented in Fig. 2 and Table 2. It is seen that the roles of � in Eq. (2) and (p � 1) in Eq.

(20) are almost the same.

Table 2: Numeri
al 
oeÆ
ient fa
tors of �, (� � 1), (q � 1) and (p � 1) in Eqs. (21)�(24).

Bose�Einstein distribution �� � 6�(3) = �� � 7:2123414

Non-extensive formula II (q � 1) � 62:22

Fra
tional 
al
ulus I (� � 1) � 44:41

(Ertik et al.)

Fra
tional 
al
ulus II (p � 1) � 6:9432884

4. Analysis of NASA COBE data by Eqs. (1), (2), (4), (5), and (20)

We are interested in COBE data and now analyze those data in terms of Eqs. (21)�(23). It is known that

the COBE data 
omprise distortion des
ribed by a very small dimensionless 
hemi
al potential (�) and/or the

Sunyaev�Zel'dovi
h (SZ) e�e
t [8℄, and/or a possible e�e
t 
alled the distortion of the spa
e-dimension [27℄ (see

the explanation in x1, Introdu
tion.) The �rst terms of these distributions are the Plan
k distribution. The se
ond

terms are di�erent with respe
t to ea
h other. They 
orrespond to the 
hemi
al potential (�) introdu
ed by the

NASA COBE Collaboration [1, 2, 3℄.

In parti
ular, our analysis is presented in Fig. 3 and Table 3. Combining the results in Tables 2 and 3, we obtain

the 
orre
tion fa
tors for the modi�ed SB law U=C

B

for the COBE data. The ratios of the 
orre
tion fa
tors to

those of the BE distribution are also shown in the parentheses of Table 4.
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Figure 2: Behavior of the integrands of Eqs. (21)�(24) without the 
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Figure 3: Analysis of the NASA COBEmonopole data in terms of Eq. (20) (FC II): T = 2:7250 K and p�1 = 1:1�10

�5

(�

2

=NDF = 45:0=41).

Error bars are 400�. Data are taken from [4℄.

Table 3: Analysis of NASA COBE monopole data in terms of Eqs. (1), (2), (4), (5), and (20).

Eqs. T (K) �, (q � 1), (� � 1) or (p � 1) �

2

/NDF

Plan
k dis. 2:72502� 0:00001 � 45:1=42

BE: (2) 2:72501� 0:00002 (�1:1 � 3:2) � 10

�5

45:0=41

NETD II: (4) 2:72502� 0:00003 (�0:53 � 4:98) � 10

�6

45:1=41

FC I: (5) 2:72503� 0:00006 (�0:22 � 1:38) � 10

�5

45:1=41

FC II: (20) 2:72501� 0:00003 (1:1 � 3:5) � 10

�5

45:0=41
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Table 4: Corre
tions to the modi�ed SB law based on analysis of monopole COBE data in terms of Eqs. (1), (2), (4), (5), and (20). Numeri
al

fa
tors in parentheses represent the ratios of the limits to that of the 
orre
tion for the modi�ed SB law.

Bose�Einstein dis. �� � 7:2123 = (7:87 � 23:43)� 10

�5

j � �j � 7:2123 < 5:47 � 10

�4

(1.00)

Non-extensive formula II (q � 1) � 62:22 = (�3:29 � 31:01) � 10

�5

jq � 1j � 62:22 < 6:53 � 10

�4

(1.19)

Fra
tional 
al
ulus I (� � 1) � 44:41 = (�9:51 � 61:01) � 10

�5

(Formula proposed by Ertik et al.) j� � 1j � 44:41 < 1:32 � 10

�3

(2.41)

Fra
tional 
al
ulus II (p � 1) � 6:9432 = (7:39 � 24:42)� 10

�5

jp � 1j � 6:9432 < 5:62 � 10

�4

(1.03)

5. Con
luding remarks and dis
ussions

C1) By applying fra
tional 
al
ulus to the 
elebrated equation by M. Plan
k, i.e., Eq. (6), we obtain a formula

des
ribed by the ML fun
tion (Eq. (20)) whi
h is di�erent from Eq. (5) proposed by Erti
 et al. [17℄. See

Appendix A and Appendix B.

C2) The behavior of Eq. (20) is very similar to that of the Bose�Einstein distribution (see Fig. 1 and Table 1).

In parti
ular, from analysis of the COBE monopole data in terms of Eqs. (2) and (20), we obtain the following

limits (see Table 3):

j�j < 7:6 � 10

�5

(95 %CL);

jp � 1j < 8:1 � 10

�5

(95 %CL):

As is seen in Fig. 4 (residual spe
trum (1996)) and Table 4, it is diÆ
ult to distinguish among the Bose�

Einstein distribution (U

(BE)

), Eq. (4) (U

(NEXTII)

) based on q-algebra, and Eq. (20) (U

(FCII)

) based on fra
tional


al
ulus. These are able to des
ribe the distortion of the COBE data.

The fra
tional 
al
ulus probably re�e
ts the spe
tral distortion of CMB (Cosmi
 Mi
rowave Ba
kground) of

the ensemble (the universe) and 
ontains the memory e�e
t at the age of the universe, see also Appendix B and

Appendix C.

D1)When we analyze the NASA COBE monopole data by means of Eq. (20) (FC II) in
luding a�

0

= ��, we have

the following values: T = 2:72502� 4� 10

�5

K, � = (�3:3� 5:8)� 10

�4

, and (p� 1) = (�3:5� 6:3)� 10

�4

. These

�gures depend on the initial values in the CERN MINUIT program. Estimated � and (p � 1) are larger than those

in Table 3. This fa
t suggests that we have to 
hoose one freedom between a�

0

= �� and (p � 1): In the present

study a�

0

= 0 is 
hosen. The reason of one freedom in FC II is presented in Appendix C: Analyzing NASA COBE

data by Eq. (20) in
luding 
hemi
al potential �, we �nd the strong 
orrelation between � and fra
tional parameter

(p � 1). This fa
t implies that we should 
hoose one freedom between them.

D2) Analyzing the same data by formula of NEXT II, Eq. (4) with 
hemi
al potential �, we �nd the week 
orrela-

tion between them, see Appendix C. The magnitude of jp� 1j < 2:3� 10

�5

in Table C.5 seems to 
orrespond to the

SZ e�e
t (y) reported by NASA COBE [32℄. (See Ref. [8℄.) As seen in Fig. C.6 b), the situation in FC I, i.e., the

interrelation between the 
hemi
al potential � and fra
tional parameter (� � 1) is intermediate among three 
ases.
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Figure 4: Analysis of the residual monopole spe
trum. (a) Eq. (2) (BE) with � = �1:1 � 10

�5

(�

2

=NDF = 45:9=43), (b) Eq. (4) (NETD II)

with q � 1 = �0:53 � 10

�6

(�

2

=NDF = 45:2=43), (
) Eq. (5) (FC I) with � � 1 = �0:22 � 10

�5

(�

2

=NDF = 46:9=43), and (d) Eq. (20) (FC II)

with p � 1 = 1:1 � 10

�5

(�

2

=NDF = 45:9=43).

Appendix A. Why do we adopt the fra
tional derivative in Eq. (8)?

To des
ribe an expansion of the universe at �-era after the Big Bang, Kompaneets [28℄ and Weymann [29℄

propose the following equation for the photon distribution f ,

� f

�t

=

�T

e

m

e




2

n

e

�

e




x

�2

e

�

�x

e

x

4

e

 

� f

�x

e

+ f + f

2

!

(A.1)

where T

e

and T are the ele
tron and radiation temperatures, n

e

is the ele
tron density, �

e

is the Thomson 
ross-

se
tion and x

e

= h�=k

B

T

e

. The stationary solution of Eq. (A.1) is known as the Bose�Einstein distribution:

f (x

e

; �) =

1


e

x

e

� 1

=

1

e

x

e

+�

� 1

; (A.2)

where the 
hemi
al potential is introdu
ed, re�e
ting that the number of photons are 
onserved due to the Compton

s
attering 
 + e

�

$ 
 + e

�

.

At 380k years after the Big Bang, the CMB (
osmi
 mi
rowave ba
kground) photons are released. The CMB

photons are des
ribed by the Plan
k distribution, be
ause the number of photons are not 
onserved. A
tually, the

following pro
esses o

ur in the universe: The double Compton and Bremsstrahlung s
attering 
 + e

�

! e

�

+ 2
,

e

�

+ X ! e

�

+ X + 
, where X denotes an atomi
 nu
leus, usually a proton or Helium-4 nu
leus.

To understand the meaning of the 
hemi
al potential � in Eq. (A.1) before the age of re
ombination in a

di�erent point of view, we have to take into a

ount the memory e�e
t in Eq. (8): Noti
e that the variable 
hanges

to x

e

! x = h�=k

B

T , be
ause the universe has 
ooled [24℄.

One of possible methods for taking into a

ount the memory e�e
t of the �-era is an introdu
tion of fra
tional


al
ulus. Following investigations in papers (or books) on geophysi
s by Caputo and/or Mainardi [30, 31℄, we 
an

repla
e the ordinary derivative by the fra
tional derivative in Eq. (6), i.e., the 
elebrated equation by M. Plan
k in

1900.

Appendix B. Comparison of the Riemann�Liouville fra
tional derivative and the Caputo fra
tional deriva-

tive

In the present study, we use the Riemann�Liouville fra
tional derivative to extend Eq. (8) to fra
tional order,

and obtain the fra
tional bla
kbody radiation formula, Eq. (19). However, the possible initial 
ondition to Eq. (12)

is restri
ted : As is seen from Eq. (17), if the initial 
ondition R(0) is not equal to zero, Eq. (12) has no solution.

8



If the Caputo fra
tional derivative [30, 22℄ is introdu
ed into Eq. (12) instead of the Riemann�Liouville fra
-

tional derivative, we 
an also obtain Eq. (19) as a solution. Moreover, we 
an take the initial 
ondition �exibly as

in the ordinary di�erential equation. The Caputo fra
tional derivative of fun
tion R(x) for m = 1, 2, ... is de�ned

as

C

0

D

p

x

R(x) =

1

�(m � p)

Z

x

0

(x � �)

m�p�1

R

(m)

(�)d�; m � 1 < p < m; (B.1)

where R

(m)

(�) =

�

d

d�

�

m

R(�). From Eq. (B.1), We obtain lim

p!m

C

0

D

p

x

R(x) = R

(m)

(x). The Caputo fra
tional derivative

is expressed by the use of the Riemann�Liouville fra
tional derivative and integral as

C

0

D

p

x

R(x) =

0

D

��

x

(

0

D

m

x

R(x)); � = m � p � 0: (B.2)

The di�eren
e between the Riemann�Liouville fra
tional derivative and the Caputo derivative appears distin
tly

in the di�erentiation of power fun
tion x

�

. If R(x) = x

�

with � = 0, 1, ..., m � 1, we obtain that

C

0

D

p

x

x

�

= 0 in the

Caputo fra
tional derivative. However,

0

D

p

x

x

�

= f�(� + 1)=�(�p + � + 1)gx

�p+�

, 0, in the Riemann�Liouville

fra
tional derivative.

In the de�nition of the Riemann�Liouville fra
tional derivative, Eq. (10), or the Caputo fra
tional derivative,

Eq. (B.1), integral from x = 0 to x is in
luded. Therefore, the memory e�e
t [30, 31℄ from the initial stage is taken

into a

ount in either of fra
tional derivatives .

Appendix C. Interrelation between 
hemi
al potential � and fra
tional parameter (p � 1), and the same

studies for 
ases of NEXT II and FC I

To elu
idate roles of 
hemi
al potential � and fra
tional parameter (p � 1), we adopt Eq. (19) with a�

0

= �,

U(x) =

1

E

p

(�(x � �)

p

) � 1

: (C.1)

Applying Eq. (C.1) to the COBE data, we obtain results in Table C.5. To look for an interrelation between �

and (p � 1), we use a method of Monte Carlo 
al
ulus in analyses of COBE data: To understand 
ontents of �

2

-

minimum by the CERN MINUIT in Table C.5, we adopt an allowed 
onstraint, �

2

� �

2

min

(Table C.5) + 1.0 [27℄.

Moreover, the following set of variables are prepared and 500k generations are performed:

8

>

>

>

<

>

>

>

:

T = hT i + ÆT � Random number in the [�1; 1℄

� = h�i + Æ� � Random number in the [�1; 1℄

(p � 1) = hp � 1i + Æ(p � 1) � Random number in the [�1; 1℄

(C.2)

A number of satisfa
tory sets (�

2

� �

2

min

+ 1:0) is 3021/500k with T = 2:72502 � 0:00004 K. This ensemble is

shown in Fg. C.5. To investigate an interrelation between (p � 1) and �, we use the method of linear regression.

Table C.5: Analysis of COBE data by Eqs. (19), (4) and (5) in
luding �

0

.

Eq. T (K) � (p � 1), (q � 1) or (� � 1) �

2

/NDF

FC II: (19) 2:72502� 0:00004 (�3:3 � 5:7) � 10

�4

(�3:5 � 6:1) � 10

�4

44:7=40

j�j < 1:5 � 10

�3

(95% CL) jp � 1j < 1:6 � 10

�3

(95% CL)

NETD II: (4) 2:72497� 0:00010 (�3:0 � 6:3) � 10

�5

(3:5 � 9:7) � 10

�6

44:9=40

j�j < 1:6 � 10

�4

(95% CL) jq � 1j < 2:3 � 10

�5

(95% CL)

FC I: (5) 2:72492� 0:00022 (�4:4 � 8:7) � 10

�5

(1:5 � 3:7) � 10

�5

44:8=40

j�j < 2:2 � 10

�4

(95% CL) j� � 1j < 8:9 � 10

�5

(95% CL)

The following equation is obtained:

(p � 1) = 1:08 � + 1:04 � 10

�5

(C.3)

where the 
orrelation 
oeÆ
ient 
 = 0:998. From Eq. (C.3), it 
an be said that (p � 1) and � are strongly


orrelated. In other words, (p � 1) and � are not independent ea
h other: The role of the 
hemi
al potential � is

probably repla
ed by the fra
tional parameter (p�1). Indeed this fa
t is seen in Table 4 (in the 
ase of a�

0

= � = 0)

jp � 1j � 8:1 � 10

�5

(95% CL)
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2
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tory data
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-0.8

-0.4

0

0.4

0.8

1.2

-10 -8 -6 -4 -2 0 2 4

q−
1 

(×
10

5 )

µ (×105)

a)  NETD II

(γ=−0.859)
(q−1)=−0.132µ−5.32×10−7

-3

-2

-1

0

1

2

3

4

5

6

-14 -12 -10 -8 -6 -4 -2 0 2 4 6

α−
1 

(×
10

5 )

µ (×105)

b)  FC I

(γ=−0.926)
(α−1)=−0.389µ−1.72×10−6

Figure C.6: a) Ensemble of parameters sets (� and (q � 1)) with 
onstraint �

2

< �

2

min

(44.86) +1:0. Number of satisfa
tory data 4269/ that of

event generation is 200 k. b) Ensemble of parameters sets (� and (� � 1)) with 
onstraint �

2

< �

2

min

(44.81) +1:0. Number of satisfa
tory data

3173/ that of event generation is 500 k.

10



whi
h 
an be 
ompared with jp � 1j < 1:6 � 10

�3

(95% CL) and j�j < 1:5 � 10

�3

(95% CL) in Table C.5. In

other words, those magnitudes are larger than jp � 1j < 8:1 � 10

�5

. Thus sin
e we 
annot determine � and (p � 1)

simultaneously in Eq. (C.1), we 
hoose the fra
tional parameter (p � 1) between them.

By making use of the same method for the NEXT II and the FC I, we obtain results in Fig. C.6 and the

following equations:

(q � 1) = �0:132 � � 5:32 � 10

�7

(
 = �0:859); (C.4)

(� � 1) = �0:389 � � 1:72 � 10

�6

(
 = �0:926): (C.5)

In the 
ase of NEXT II, the 
orrelation between (q � 1) and � seems to be week. They are probably independent

quantities, on the 
ontrary to the 
ase of FC II. As seen in Table C.5 and Fig. C.6 b), in the 
ase of FC I, the

situation of (� and (� � 1)) is similar to the 
ase of the NEXT II.

In 
on
lusion, it should be stressed that those fa
ts above mentioned are based on analyses of COBE data.
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