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A mouse model that recapitulates the human Ewing’s sarcoma-specific chromosomal translocation was
generated utilizing the Cre/loxP-mediated recombination technique. A cross between Ewsr1-loxP and Fli1-
loxP mice and expression of ubiquitous Cre recombinase induced a specific translocation between Ewsr1
and Fli1 loci in systemic organs of both adult mice and embryos. As a result Ewsr1-Fli1 fusion transcripts
were expressed, suggesting a functional Ews-Fli1 protein might be synthesized in vivo. However, by two
years of age, none of the Ewsr1-loxP/Fli1-loxP/CAG-Cre (EFCC) mice developed any malignancies,
including Ewing-like small round cell sarcoma. Unexpectedly, all the EFCC mice suffered from dilated
cardiomyopathy and died of chronic cardiac failure. Genetic recombination between Ewsr1 and Fli1 was
confirmed in the myocardial tissue and apoptotic cell death of cardiac myocytes was observed at significantly
higher frequency in EFCC mice. Moreover, expression of Ews-Fli1 in the cultured cardiac myocytes induced
apoptosis. Collectively, these results indicated that ectopic expression of the Ews-Fli1 oncogene stimulated
apoptotic signals, and suggested an important relationship between oncogenic signals and cellular context in
the cell-of-origin of Ewing’s sarcoma.

C
hromosomal translocation is a common feature of malignant neoplasms1. There is growing evidence that
tumor-specific translocations and inversions commonly occur among hematopoietic, mesenchymal and
epithelial tumors. An increasing number of gene fusions resulting from translocation have been observed as

novel technological tools have been applied. Tumor-associated chromosomal translocations include two major
molecular mechanisms. One is an oncogene juxtaposition to the enhancing elements of immunoglobulin or T-cell
receptor associated with lymphoid neoplasms. As a result of the juxtaposition, constitutive expression of onco-
genes such as c-MYC, BCL2 or CCND1 induces abnormal cellular functions, including cell cycle progression and
apoptosis suppression1. Another important outcome of translocation in cancer is gene fusion or formation of
chimeric genes. Two major functional aberrations of fusion gene products are constitutive activation of signal
transduction and dysregulation of transcription. Most oncogenic gene fusions in human bone and soft tissue
sarcomas belong to the latter group, and there is a specific relationship between tumor types and each gene fusion2.

To clarify the functional roles of sarcoma-specific chromosomal translocations and gene fusions, it would be
ideal to induce chromosomal translocation in animal models in vivo. In contrast to transgenic expression of
fusion genes, translocation-mediated gene fusion recapitulates gene expression levels equivalent to, and splice
variants similar to those in human tumors. Inducible, site-specific chromosomal translocation has been achieved
using Cre-loxP-mediated recombination in murine ES cells. Using this strategy, translocations between c-myc
and immunoglobulin heavy chain loci, and between Dek and Can loci were successfully induced, though the
efficiencies were not very high3,4. Indeed, a mouse model of Cre-loxP-mediated in vivo gene fusion between Mll
and Af9 developed acute myeloid leukemia5. However, it is not known whether solid tumor-related translocation
in vivo can induce malignancies of the anticipated phenotypes.

OPEN

SUBJECT AREAS:

GENE REGULATION

CARDIOMYOPATHIES

DNA RECOMBINATION

CYTOGENETICS

Received
28 August 2014

Accepted
12 December 2014

Published
16 January 2015

Correspondence and
requests for materials

should be addressed to
T.N. (takuro-ind@

umin.net)

SCIENTIFIC REPORTS | 5 : 7826 | DOI: 10.1038/srep07826 1

mailto:takuro-ind@umin.net
mailto:takuro-ind@umin.net


The ETS family of transcription factors includes FLI1 and ERG.
They are major fusion partners for the EWSR1 gene in human
Ewing’s sarcoma6,7. EWS-FLI1 and EWS-ERG function as oncogenic
transcription factors that dysregulate their downstream targets such
as NKX2-2, NR0B1 and EZH28. It is, however, difficult to generate a
good animal model by introduction of EWS-FLI1 or EWS-ERG into
ES cells or mouse eggs8. Moreover, conditional EWS-FLI1 expression
in hematopoietic cells induced myeloid and erythroid leukemia in
mice9. Thus, it might be necessary to activate multiple target genes
without activating pro-apoptosis signals for tumorigenic activity of
EWS-ETS. We therefore hypothesized that EWS-ETS translocation
is achieved by chance in human somatic cells of appropriate lineages
and differentiation status, and such in vivo translocation could prop-
erly induce Ewing’s sarcoma.

In an effort to induce Ewing’s sarcoma in a mouse model, we have
succeeded in promoting in vivo Cre-loxP-mediated translocation

between Ewsr1 and Fli1 loci on chromosomes 11 and 9, respectively.
Although the Ewsr1-Fli1 fusion was confirmed at both DNA and
RNA levels, no neoplastic lesion was induced in the model.
Unexpectedly, the mice with systemic translocation developed
dilated cardiomyopathy due to degeneration and apoptotic cell death
of cardiac myocytes. The result indicates that ectopic chromosomal
translocation and gene fusion activates apoptotic signals, resulting in
degenerative cardiac disease.

Results
Generation of a mouse model for somatic chromosomal trans-
location between Ewsr1 and Fli1. To induce locus-specific chro-
mosomal translocation, loxP sequences were introduced into Ewsr1
intron 7 on mouse chromosome 11 and Fli1 intron 5 on chromosome
9 (Fig. 1A), since chromosomal breakpoints in human Ewing’s
sarcoma are most frequently observed in these loci10. Successful

Figure 1 | Gene targeting for the Ewsr1-Fli1 translocation model. (A) Physical maps of targeting alleles for Ewsr1 (top) and Fli1 (bottom) loci.

Closed triangles indicate the loxP sequence. K: KpnI, X: XbaI, S: SacI, H: HindIII. (B) Southern blot analysis of ES cells. A 5.2 kb Neo-positive band and a

4.0 kb Neo-deleted band indicate homologous recombination of the Ewsr1 locus as shown by XbaI digestion (top). A 6.5 kb Neo-positive band and a

5.2 kb Neo-deleted bands for the Fli1 locus are shown by SacI digestion (bottom). Rearranged bands are indicated by arrows.
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knock-in of loxP sequences mediated by homologous recombination
was confirmed for both loci in independent ES cells by Southern
blotting (Fig. 1B). Both Ewsr1fl/1 and Fli1fl/1 mice appeared normal
and healthy at birth. Germline transmission of the targeted alleles
was confirmed. Ewsr1fl/1 and Fli1fl/1 mice were crossed to obtain mice
having both mutations.

Genomic chromosomal translocation between chromosomes 9
and 11 in the Ewsr1fl/1:Fli1fl/1:CAG-Cre (EFCC) mice. The
Ewsr1fl/1 and Fli1fl/1 mice were further crossed with CAG-Cre,
Mx1-Cre or Rosa26-CreER mice to induce somatic chromosomal
translocation between chromosomes 9 and 11 (Fig. 2A). Dual color
fluorescence in situ hybridization (FISH) analysis of embryonic
fibroblasts derived from the EFCC mice showed juxtaposition of
the signal on der9 of BAC clone RPCI-23 64E17 from chromo-
some 11 and that of 218O31 from chromosome 9 (Fig. 2B). Reci-
procal genomic translocations in systemic organs were examined by

genomic PCR using Ewsr1- and Fli1-specific primers, and both
Ewsr1-Fli1 and Fli1-Ewsr1 translocations were detected in tail skin
of all the mice examined (n 5 30). The translocations in systemic
organs were examined in three mice, and both Ewsr1-Fli1 and Fli1-
Ewsr1 translocations were detected in all the organs examined
(Fig. 2C). The results indicated that loxP-mediated recombination
was effective at inducing somatic translocation by ubiquitous Cre
recombinase expression. The frequencies of the chromosomal
translocations were 1.5 3 1025 at the highest in heart and 1 3

1026 in bone marrow as estimated by quantitative genomic PCR
comparing Ewsr1-Fli1 and Trib1 signals (Fig. 2D). The estimated
translocation frequencies in the model are higher than those
observed in ES cells described in the previous report3. When Cre
recombinase was inducibly expressed by tamoxifen or polyIpolyC
administration in a Rosa26-CreER or Mx1-Cre background,
respectively, both Ewsr1-Fli1 and Fli1-Ewsr1 translocations were
observed (four mice each) (Fig. 2e). However, the translocations

Figure 2 | Somatic chromosomal translocation between mouse chromosomes 9 and 11. (A) A schematic diagram of the Cre-mediated translocation

model. EF;wt, Ewsr1fl/1:Fli1fl/1:wild-type. Cre-Tg, Cre transgenic. EF;Cre, Ewsr1fl/1:Fli1fl/1: Cre transgenic. Illustration of mice was drawn using Microsoft

PowerPoint 2011 and then converted to tif format using Adobe Photoshop CS5. (B) Metaphase FISH shows t(9;11) translocation at Ewsr1 and Fli1 loci.

The green fluorescence of 64E17 shows Ewsr1 on chromosome 11 and the red fluorescence of 218O21 shows Fli1 on chromosome 9. The yellow signal

indicates translocation between two loci on der9. (C) The reciprocal t(9;11) translocation was shown in systemic organs of the EFCC mouse detected as

Ewsr1-Fli1 and Fli1-Ewsr1 PCR products. Ewsr1 amplification is shown as a loading control. (D) Estimated frequencies of translocation in bone marrow

(BM), heart and brain calculated from the result of quantitative genomic PCR data in three independent mouse samples. (E) The reciprocal t(9;11)

translocation in the organs of Rosa26-CreER and Mx1-Cre background detected by nested genomic PCR. Gel image shown is cropped and representative

of gels run under the same experimental conditions.
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were detected only by nested PCR in limited organs, indicating that
recombination was less frequent in these Cre transgenes. In addition,
inducible expression of Cre upon in the Mx1-Cre background
resulted in translocations being limited to hematopoietic tissues.

Detection of chimeric Ewsr1-Fli1 fusion transcripts in EFCC mice.
To confirm that gene fusion between Ewsr1 and Fli1 was accom-
panied by the anticipated transcription, RT-PCR was performed
using RNA samples obtained from systemic organs of both adult
and embryonic mice (three mice each) (Fig. 3A, 3B). The Ewsr1-
Fli1 fusion was detected in all the embryonic organs examined,
and the expression of the fusion gene was decreased in bone and
liver of the adult mice. Diminished Ewsr1-Fli1 expression in adult
bone and liver might be related to decreased proliferative activity of
osteochondrogenic tissues and disappearance of embryonic hemato-
poietic cells, respectively. No reciprocal Fli1-Ewsr1 fusion transcript
was detected in any of the organs examined (data not shown). The
cDNA sequence of the Ewsr1-Fli1 fusion transcript was analyzed by
sequencing, and in-frame fusion between Ewsr1 exon 7 and Fli1 exon
6 was confirmed (Fig. 3C). It is expected that the fusion product
included both the EWS Q-rich repeats and the FLI1 ETS DNA
binding domain11. Thus, the data strongly suggested that a func-
tional EWS-FLI1 protein was produced by somatic chromosomal
translocation in the model.

EFCC mice died of chronic cardiac failure due to dilated
cardiomyopathy. No malignant neoplasms, including Ewing’s
sarcoma-like lesions, were observed in EFCC mice (n 5 30) for a
two year period after birth. Neither sarcomas nor benign neoplasms
were detect by careful examination of mice irrespective of age.
Instead, most of the EFCC mice showed growth retardation and
decreased motility. All the EFCC mice died by 100 weeks of age
with a mean survival time of only 40 weeks (Fig. 4A). The diseased
mice were carefully examined at autopsy and they showed extensive
dilatation of heart (Fig. 4B). The heart weight/body weight ratio as
well as heart weight itself of EFCC mice was significantly greater than
that of control mice from 31 to 42 weeks (Fig 4C, Table 1). Mice of the
age were selected since the severity of cardiac lesions was significantly
varied in younger EFCC mice. The pathological examination further

revealed the cardiac lesions and subsequent systemic congestive
changes. The hearts of EFCC mice showed extensive dilatation of
both the ventricles and thin ventricular wall without any signs of
cardiac hypertrophy (Fig 4D). The earlier the mice became sick,
the more severe the cardiac lesions were. High power views of
cardiac sections indicated a disorganized arrangement of myocar-
dial fibers with increased collagen fibers between the muscle bundles.
The subendocardial area was severely affected and leukocytic infil-
tration was sometimes present. There was severe chronic congestion
in systemic organs such as lung, liver or spleen accompanied by
ischemic necrosis around the central vein of the liver (Fig. 4E).

Consistent with the pathological findings, echocardiographic ana-
lysis revealed reduced wall thickness, significant fractional shorten-
ing and decreased ejection fraction in EFCC mice (Fig. 5, Table 2). In
contrast, there was no significant difference in blood pressure, heart
rate or diastolic dimension between EFCC and wild-type mice
(Table 2). Collectively, these findings are consistent with those of
dilated cardiomyopathy.

Ewsr1-Fli1 translocation and Ewsr1-Fli1 expression induced
myocardial damage. To obtain insights into the mechanisms of
dilated cardiomyopathy in EFCC mice, the cardiac lesion was fur-
ther investigated. Laser microdissection followed by genomic PCR to
detect the Ewsr1-Fli1 translocation was carried out (Fig. 6A). Ewsr1-
Fli1 was abundantly observed in the outer area of the ventricular wall,
however, no signal was detected in the subendocardial area where the
myocardial damage was more severe (Fig. 6A, 1 and 3). Severer
damages in the subendocardial area were observed in most of
mice, though the reason for such uneven distribution of cardiac
lesions was unclear. The results suggested degeneration of cardiac
myocytes with translocation and perhaps gradual loss due to the
pathologic effects of Ewsr1-Fli1 expression. Indeed, a TUNEL assay
using the cardiac sections showed significantly increased apoptosis in
EFCC mice compared to wild-type (Fig. 6B).

The toxic effect of Ewsr1-Fli1 was directly evaluated by its exogen-
ous expression in cultured cardiac myocytes. The murine neonatal
cardiac myocytes were infected with Ewsr1-Fli1-lentivirus and the
frequencies of apoptosis were evaluated (Fig. 6C). The TUNEL assay

Figure 3 | Ewsr1 is fused in-frame to Fli1. (A, B) RT-PCR to detect Ews-Fli1 fusion transcripts in adult (A) and embryonic tissues (B). Data are

representatives of three independent experiments with similar results. (C) Sequence analysis of the RT-PCR product using heart cDNA shows the in-

frame fusion between Ewsr1 exon 7 and Fli1 exon 6. Deduced amino acid sequences are indicated on the nucleotide sequences.
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showed that apoptosis of cardiac myocytes was significantly
increased when Ewsr1-Fli1 was expressed in the cardiac myocytes.
The Annexin V/PI flow cytometry analysis showed increases of both
early and late apoptosis as well as necrosis in cardiac myocytes by
Ewsr1-Fli1 expression (Fig. 6C). These results indicated that Ewsr1-
Fli1 induced cellular apoptosis in the cardiac tissue, resulting in
cellular damage and eventual dilated cardiomyopathy. In addition,
Ewsr1-Fli1 expression in human cardiac fibroblasts induced
increased expression of COL1A1 (Fig. 6D), suggesting that Ewsr1-
Fli1 may also play some role in cardiac fibrosis.

A previous study indicated that the high level of expression of Cre
recombinase itself showed cardiac toxicity12. The expression level of
the Cre protein in the hearts of the EFCC mouse was therefore
compared with high-expressing Cre transgenic mice (Fig. 6E). Cre
expression of EFCC mice was comparable to the low Cre transgenic
mice that did not show cardiac lesions. The results indicated that the
cardiac lesion was caused not by Cre expression but by Ewsr1-Fli1.

Discussion
Cre/loxP-mediated chromosomal translocations in mouse models
have been reported5,13,14. In those studies loxP sites were inserted into

the introns of Mll or Af9 genes, and the mice carrying the mutations
were crossed to place loxP sites in both genes. Both ubiquitous and
hematopoietic-specific expression of Cre recombinase induced in
vivo chromosomal translocation and the fusion of Mll and Af9,
resulting in leukemia development. In contrast, leukemia was not
observed in the mice bearing chromosomal translocation between
AML1 and ETO in vivo using a similar protocol15.

In the present study, Ewsr1-Fli1 fusion was successfully induced
in various organs. Ewing’s sarcoma, however, did not develop in
the mice, suggesting that the cell-of-origin of Ewing’s sarcoma
might constitute a rare cellular population unlike hematopoietic
neoplasms. Supporting this idea, we have recently succeeded in
developing Ewing’s sarcoma-like small round cell tumors by intro-
ducing Ews-Fli1 or Ews-Erg into eSZ cells that are enriched in
embryonic chondrogenic progenitors16. Therefore, when chromo-
somal translocation between Ewsr1 and Fli1 is efficiently induced
in eSZ cells, Ewing’s sarcoma can develop in a certain cohort using
the current translocation model. It is likely that ubiquitous Cre
expression affects most cell lineages both in developing and adult
mouse tissues including the true cell-of-origin of Ewing’s sarcoma.
However, the low frequency of chromosomal recombination could

Figure 4 | EFCC mice died of chronic cardiac failure. (A) Kaplan-Meier survival curve. Statistical significance was evaluated by the log-rank test.

(B) Cardiac enlargement in the EFCC mouse (right) compared to EF;wild-type (left). (C) Box plot of the heart weight/body weight ratios for EF;wild-type

(n 5 6) and EFCC mice (n 5 6). (D) Extensive ventricular dilatation of the heart in the EFCC mouse without myocardial hypertrophy (top). High power

view of myocardium with H&E (middle) and Masson’s trichrome staining (bottom). Extensive fibrosis is indicated as blue staining in the EFCC heart.

(E) Chronic congestion of systemic organs in EFCC mice including lung, liver and spleen. Note necrotic changes around the central vein of liver.
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not induce detectable translocations in such a rare cell type.
Perhaps eSZ cell-specific Cre expression may enable the induction
of Ewing’s sarcoma by somatic Ewsr1 and Fli1 translocation, and
efficient Cre expression in the specific spatiotemporal manner in
the eSZ cell may be achieved using the promoter/enhancer ele-
ments of Gdf5 or Erg genes17,18.

Expression of Ews-Fli1 in the majority of primary cells induced
cellular apoptosis or senescence19–21. Activation of the Casp3 pro-
moter by EWS-FLI1 was reported, and the activation of caspase 3-
dependent signals may be responsible for apoptotic processes in
mouse embryonic fibroblasts (MEFs) with ectopic Ews-Fli1
expression21. Indeed, Ews-Fli1 expression in cardiac myocytes
induced apoptotic cell death, though activation of caspase 3 was
not detected in cardiac myocytes unlike in MEFs (data not

shown). Thus, the low capacity for cardiac myocyte regeneration
after birth could not support cardiac homeostasis. This limitation,
therefore, could result in gradual but irreversible cardiac damage.
In support of this idea, the Ews-Fli1 fusion was not detected in the
severely degenerated area but remained in relatively normal parts
of the heart in EFCC mice. Moreover, introduction of Ews-Fli1
cDNA significantly induced apoptosis in primary cardiac myo-
cytes, indicating the cardiac toxicity of the fusion gene. The cell
type-specific epigenetic status may modulate growth inhibitory
and tumorigenic activities of EWS-FLI1. Indeed, different chro-
matin modification was observed between Ewing’s sarcoma-sens-
itive eSZ and –resistant eGP cells16. It is noted that wild-type FLI1
protein represses Col1a1 expression, inhibiting cardiac fibrosis22.
Interestingly, EWS-FLI1 enhanced COL1A1 expression in human
cardiac fibroblasts, suggesting that it might accelerate fibrotic pro-
cesses in cardiomyopathy.

A number of transcription factors are associated with the
development and maintenance of cardiac myocytes, and muta-
tions in these factors affect cardiac homeostasis, structure and
functions23. Over-expression of E2F6 activates gene expression
in myocardium and induces dilated cardiomyopathy in mice24.
Moreover, mutations in NKX2-5 and PDRM16 were found assoc-
iated with human congenital dilated cardiomyopathy25,26. It has
been proposed that these proteins regulate genes involved in the
ubiquitin proteasome system or proliferation of cardiomyocytes,
suggesting different aspects of myocardial damage from the pre-
sent model. Nevertheless, similar phenotypes shown in these mod-
els indicate the importance of cardiac-specific transcriptional
regulation by transcription factors, given the low regenerative
activity of adult cardiomyocytes.

Methods
Mice and gene targeting. The Ewsr1 and Fli1 targeting vectors were assembled in a
pBSKSTKLoxPNeoGFP plasmid containing appropriate loxP sites, a loxP-flanked
thymidine kinase (Tk) promoter-driven neo gene and a Tk promoter-driven
diphtheria toxin gene. A Gfp gene was inserted immediately downstream of the 39

loxP site for the Ewsr1 vector. The homologous regions of the Ewsr1 vector consisted
of an 8.4 kb genomic fragment containing Ewsr1 exons 5 to 7 and a 1.3 kb flanking
exon 8 (Fig. 1a). Similarly, the Fli1 vector included a 5.4 kb genomic fragment of Fli1
intron 5 and a 2.0 kb fragment flanking exon 6. A CMV promoter sequence was also
inserted immediately upstream of the 59 loxP site of the Fli1 vector. To establish mice
carrying a single loxP allele of Ewsr1 or Fli1 genes, the linearized targeting vectors
were electroporated into E14 ES cells, and drug-resistant colonies were screened for
homologous recombination. To remove the loxP-flanked neomycin-resistant gene
cassette, the pMCCreGKPuro vector was electroporated into the ES cells, and
puromycin-resistant colonies were selected. Targeted clones were injected into
C57BL/6 blastocysts and the resultant chimeric mice were bred to produce progeny
having germ line transmission of the mutated allele. Mice harboring a targeted Ewsr1
allele (Ewsr1fl/1) and a targeted Fli1 allele (Fli1fl/1) were crossed to establish the mice
that possessed loxP sites both in Ewsr1 intron 7 and in Fli1 intron 5. The resultant

Table 1 | Heart and body weight of EF;wt and EFCC mice

EF;wt

Weeks HW (mg) BW (g) HW (mg)/BW (g)

31 180 25.25 7.13
36 140 27.50 5.09
36 140 25.38 5.52
38 210 34.58 6.07
38 180 26.15 6.88
40 150 25.66 5.85

EFCC

Weeks HW (mg) BW (g) HW (mg)/BW (g)

30 360 19.63 18.34
35 640 25.47 25.12
36 320 25.66 12.47
36 260 22.49 11.56
40 410 23.66 17.33
42 120 16.22 7.40

Figure 5 | Echocardiographic analysis of 37-week-old EFCC and EF;wild-
type mice. Analysis of cardiovascular function (top). DD, diastolic

diameter of left ventricle; FS, fractional shortening; EF, ejection fraction.

Representative echocardiogram for wild-type and EFCC mice (bottom).

EDD, end-diastolic diameter; ESD, end-systolic diameter, IVS,

interventricular septum; LV, left ventricle; PW, posterior wall.

Table 2 | Echocardiographic and hemodynamic analysis

E/F; wt (n53) EFCC (n54)

Echocardiographic data

LVDd (mm) 3.01 6 0.06 3.45 6 0.13
LVDs (mm) 1.43 6 0.07 2.43 6 0.14
IVST (mm) 1.07 6 0.03 0.78 6 0.08
LVPWT (MM) ** 1.06 6 0.01 0.76 6 0.04
FS (%)* 52.67 6 2.67 29.25 6 2.43
EF (%)* 89.67 6 1.67 64.75 6 3.75

Hemodynamic data

HR (bpm) 580.7 6 36.7 631.5 6 11.9
sBP (mm Hg) 104.3 6 3.8 105.5 6 1.4
dBP (mm Hg) 57.7 6 7.4 50.8 6 4.5

Values are means 6 SEM. LVDd, left ventricular end-diastolic dimension; LVDs, LV end-systolic
dimension; IVST, interventricular septum thickness; LVPWT, left ventricular posterior wall thickness;
FS, fractional shorting; EF, ejection fraction; HR, heart rate; sBP, systolic blood pressure; dBP,
diastolic blood pressure; *, p , 0.01; **, p , 0.05.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7826 | DOI: 10.1038/srep07826 6



Ewsr1fl/1 and Fli1fl/1 mice were further crossed with CAG-Cre, Mx1-Cre or Rosa26-
CreER mice27–29. Genotyping of the mice was performed using primers described
below. Animals were handled in accordance with the guidelines of the animal care
committee at the Japanese Foundation for Cancer Research, which gave ethical
approval for these studies.

Southern blotting. Southern blotting was carried out using standard procedures30.
Genomic DNA samples were digested with XbaI or SacI and probed with genomic
DNA fragments derived from Ewsr1 or Fli1 loci (Fig. 1a).

Fluorescence in situ hybridization (FISH). The BAC clones, RPCI-23 64E17
downstream from Ewsr1 on mouse chromosome 11 and RPCI-23 218O31 upstream
from Fli1 on chromosome 9 were purchased from Invitrogen (Carlsbad, CA) for FISH
analysis. The FISH analysis using metaphase spreads obtained from embryonic
fibroblasts of the Ewsr1fl/1:Fli1fl/1:CAG-Cre (EFCC) mouse was performed according
to the methods previously described31.

Genomic and reverse transcription-polymerase chain reaction (gPCR and RT-
PCR). Genomic DNA (100 ng) was subjected to 35 cycles of PCR amplification. The

Figure 6 | The cardiac lesion in the EFCC mouse and Ewsr1-Fli1 translocation. (A) Detection of Ewsr1-Fli1 translocation in the myocardium. The frozen

section of the cardiac tissue from the EFCC mouse was laser microdissected for the indicated areas (1-4) (left). Genomic PCR using DNA samples

obtained by laser microdissection (right). (B) A TUNEL assay showed a significantly greater increase of apoptotic cell death in the myocardium of the

EFCC mouse than in that of the wild-type mouse (left). High power view of the apoptotic cell is shown in the magnified inset. Frequencies of TUNEL-

positive cells per section are compared between wild type and EFCC mice (right). (C) Ewsr1-Fli1 cDNA expression induced apoptotic cell death of cardiac

myocytes in vitro. The apoptotic cells were measured by positive signals in a TUNEL assay (left). Ewsr1-Fli1-induced cell death was further analyzed by

Annexin V/PI staining and FACS analysis. The lower right quadrant (Annexin V1/PI-) represents early apoptosis, while the upper right quadrant

(Annexin V1/PI1) and the upper left quadrant (Annexin V-/PI1) represent late apoptosis and necrosis, respectively. Data are representatives of three

independent experiments with similar results (center). The expression of EWS-FLI1 protein in cardiac myocytes was detected by Western blotting using

anti-FLAG M2 antibody (right). (D) Quantitative real-time RT-PCR for COL1A1 in human cardiac fibroblasts with or without Ewsr1-Fli1 (left).

Expression of EWS-FLI1 protein was detected by Western blotting using anti-FLAG M2 antibody (right). (E) Expression of the Cre protein in the heart of

EFCC mice and other Cre transgenic lines of variable expression levels12.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7826 | DOI: 10.1038/srep07826 7



PCR primers to detect the Ewsr1-Fli1 fusions were as follows. For Ewsr1-Fli1, Ewsr1
forward primer 59-ccccagtgcttatccttacatttg-39 and Fli1 reverse primer 59-
cctgacccgtgtctttgtag-39, and for Fli1-Ewsr1, Fli1 forward primer 59-
agagaacccactgcttactgg-39 and Ewsr1 reverse primer 59-accacgccctccaggttcac-39 were
used. To detect the rare translocation in Rosa26-CreER and Mx1-Cre transgenic mice,
genomic DNA samples were pre-amplified using 35 cycles of PCR using the following
primers. For Ewsr1, the 59 primer was 59-ccaagtaggggctctgtcag-39 and for Fli1, the 39

primer was 59-ggagctgaagcagtaggaag-39. For Fli1, the 59 primer was 59-
gccccattgacgcaaatggg-39 and for Ewsr1, the 39 primer was 59-ggggtacttggtgaaggtgc-39.
Genomic PCR for the wild-type Ewsr1 transgene, Cre recombinase or Trib1 was
performed using the following primers: Ewsr1, forward, 59-cccagtgcttatccttacatttg-39

and GFP, reverse, 59-accacgccctccaggttcac-39, Cre, forward, 59-
catacctggaaaatgcttctgtcc-39 and Cre, reverse, 59-attgctgtcacttggtcgtggc-39, or Trib1,
forward, 59-cagtctctccttccaagtcatc-39 and Trib1, reverse, 59-gattgttgctgctgttgttc-39.
The PCR products were analyzed by 2% agarose gel electrophoresis.

RT-PCR was carried out using cDNA generated from total RNA of systemic organs
as previously described32. The Ewsr1-Fli1 fusion transcript was amplified using Ewsr1
exon 7 primer (59-tcctcttcacagccgac-39) and Fli1 exon 6 primer (59-ctgctcagtgttcttgcc-
39). The primers for Cre recombinase (forward, 59-cggtctggcagtaaaaactat-39; reverse,
59-cagggtgttataagcaatccc-39) and Hprt (forward, 59-gctggtgaaaaggacctct-39; reverse,
59-cacaggactagaacacctgc-39) were also used. The PCR products were purified, sub-
cloned into a plasmid and sequenced. Real-time quantitative RT-PCR was performed
by using a Fast Real-Time PCR System (Applied Biosystems, Foster City, CA). The
primers for human COL1A1 (forward, 59-catgaccgagacgtgtggaa-39; reverse, 59-
tttcttggtcggtgggtgac-39) and GAPDH (forward, 59-acctgacctgccgtctagaa-39; reverse,
59-aaagtggtcgttgagggcaa-39) were used.

Echocardiography. Transthoracic echocardiography was performed on conscious,
gently restrained mice using a 15-MHz linear probe (Power-Vision 8000, Toshiba,
Tokyo, Japan), as described previously33. Parasternal long-axis view and short axis
view of the left ventricle at the level of the papillary muscles were obtained. 2D-guided
M-mode recordings were obtained from short axis view at the level of the papillary
muscles. Measurements of interventricular septum thickness (IVST) and left
ventricular posterior wall thickness (LVPWT) were made from M-mode recordings
in diastole. Left ventricular internal diameter at end-diastole (LVDd) and end-systole
(LVDs) were measured from M-mode recordings. Fractional shortening (FS) was
calculated as 100 3 [(LVDd 2 LVDs)/LVDd] (%). Ejection fraction (EF) was
calculated using the Teichholtz method.

Cell culture and recombinant lentivirus infection. Primary neonatal ICR mouse
ventricular myocytes were purchased from Cosmo Bio (Tokyo, Japan), and cells were
cultured with D-MEM/F-12 medium supplemented 10% fetal bovine serum
(HyClone, South Logan, UT). Human cardiac fibroblasts were purchased from
PromoCell (Heidelberg, Germany), and cells were cultured with Fibroblast Medium
(ScienCell, Carlsbad, CA). The human EWSR1-FLI1 cDNA (a kind gift from Susanne
Baker) was FLAG-tagged and inserted into the pLVSIN-CMV-neo plasmid (Takara
Bio, Tokyo, Japan) and HEK 293 cells were transfected with the plasmid using
Lipofectamine 2000 (Invitrogen). Cells were harvested 48 h after lentiviral infection
and subjected to further analyses.

TUNEL assay and Annexin-V analysis. Formaldehyde-fixed and paraffin-
embedded cardiac tissue sections or methanol-fixed murine primary cardiac
myocytes were subjected to TUNEL assays using the DeadEnd Colorimetric TUNEL
System (Promega, Madison, WI) according to the manufacturer’s protocol. For the
Annexin V analysis cells were stained with Annexin V-FITC and propidium iodide
(PI) according to the manufacturer’s instruction (BD Bioscience Pharmingen, San
Diego, CA). The stained cells were immediately evaluated using a FACSCalibur flow
cytometer (BD Biosciences, Franklin Lakes, NJ).

Western blotting. Western blotting was performed as previously described32. A
monoclonal anti-FLAG M2 antibody was purchased from Sigma (St Louis, MO),
anti-Cre from Chemicon (Temecula, CA), anti-a-tubulin from Sigma and anti-
GAPDH from HyTest (Turku, Finland).

Statistical analysis. Results are shown as means 6 standard errors of the mean
(SEM). Continuous distributions were compared with two-tailed Student’s t-tests.
Survival analysis was performed using the Kaplan-Meier life table method, and the
survival between groups was compared with the log-rank test. All P values were two-
sided, and a P value of less than 0.05 was considered significant.
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