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Abstract

First of all, we give an alternative proof of a logarithmically improved Beale-
Kato-Majda type extension criterion for smooth solutions to the Navier-
Stokes equations in the whole space, which was shown by Fan, Jiang, Naka-
mura and Zhou (J. Math. Fluid Mech. 13:557-571, 2011). By our method,
we can also establish a similar criterion to the above in case of the half space,
bounded domains and exterior domains.

Next, we show Serrin type extension criteria for smooth solutions to the
3D Navier-Stokes equations. To this end, we use Brezis-Gallouet-Wainger
type inequalities.

Finally, we construct time-periodic solutions to the Boussinesq equations
in a 3-dimensional exterior domain. To this end, we use Yamazaki’s method
(Math. Ann. 317:635-675, 2000). He showed existence and uniqueness of
time-periodic solutions to the Navier-Stokes equations in a 3-dimensional
exterior domain.
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Chapter 1

Introduction

1.1 Beale-Kato-Majda type extension crite-

ria for smooth solutions to the Navier-

Stokes equations

Let n ≥ 3 and Ω ⊂ R
n be a domain with smooth boundary ∂Ω. The

motion of a viscous incompressible fluid in Ω is governed by the Navier-
Stokes equations:

(N-S)

⎧⎪⎨
⎪⎩
∂tu−Δu+ u · ∇u+∇π = 0, x ∈ Ω, t ∈ (0, T ),

div u = 0, x ∈ Ω, t ∈ (0, T ),

u|∂Ω = 0, u|t=0 = u0,

where u = (u1(x, t), u2(x, t), · · · , un(x, t)) and π = π(x, t) denote the velocity
vector and the pressure, respectively, of the fluid at the point (x, t) ∈ Ω ×
(0, T ) and u0 is a given initial velocity.

In Chapter 3, we consider Beale-Kato-Majda type extension criteria for
smooth solutions to (N-S). Beale-Kato-Majda [1] and Kato-Ponce [24] showed
that the L∞-norm of the vorticity ω = curl u controls the breakdown of
smooth solutions to the Euler and Navier-Stokes equations. To be precise, if∫ T

0

‖ω(τ)‖L∞dτ < ∞,

then the smooth solution u in C([0, T );W s,p(Rn))(s > n/p + 1) can be con-
tinued beyond t = T . Chemin [9] and Kozono-Ogawa-Taniuchi [28] proved
similar extension criteria with ‖ω‖L∞ replaced by ‖u‖B1∞,∞ and ‖ω‖Ḃ0∞,∞

, re-

spectively. Note that Chemin dealt with solutions in Cα, α > 1. Chae [8]
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also proved the same criterion via ‖ω‖Ḃ0∞,∞
for solutions in Triebel-Lizorkin

spaces. In case of 3-dimensional bounded domains, for the Euler equations,
Ferrari [15] and Shirota-Yanagisawa [55] succeeded in proving the same re-
sult of the breakdown as Beale-Kato-Majda holds. See also Zajaczkowski
[68]. Ogawa-Taniuchi [48] proved a similar extension criterion with ‖ω‖L∞(Ω)

replaced by ‖ω‖bmo(Ω).
Fan-Jiang-Nakamura-Zhou [14] established a logarithmically improved

Beale-Kato-Majda type extension criterion for (N-S) in the whole space:∫ T

0

‖ω(τ)‖BMO

1 + log(1 + ‖ω(τ)‖BMO)
dτ < ∞. (1.1)

They showed the criterion (1.1) for Hs solutions to (N-S) by the energy
method. In Chapter 3, we will give an alternative proof of this criterion.
Moreover, we will show that this extension criterion holds for more general
solutions in Lp, n ≤ p < ∞. To this end, we will use the integral equation of
(N-S) and the smoothing effect of etΔ.

An advantage of our approach is that we can also establish a similar
type extension criterion to the above in case of the 3-dimensional half space,
3-dimensional bounded domains and 3-dimensional exterior domains with
smooth boundary for solutions with the no-slip boundary condition. Con-
cretely, on (1.1) in case of them, we need to replace the BMO-seminorm
with the L∞-norm. Chapter 3 is based on [42].

1.2 Serrin type extension criteria for smooth

solutions to the Navier-Stokes equations

In Chapter 4, we consider Serrin type extension criteria for smooth solutions
to (N-S) in 3-dimension. Serrin [52] and Giga [18] showed that if a Leray-Hopf
weak solution u satisfies

(Se) u ∈ Ls(0, T ;Lr(Ω)) for some 3 < r ≤ ∞, 2 ≤ s < ∞ with
3

r
+
2

s
≤ 1

then u is smooth. Many researchers showed this type regularity criterion,
see e.g. [13, 28, 29, 34, 57, 59, 60, 61]. The limiting case s = ∞, r = 3 was
proven in Escauriaza-Seregin-Šverák [12], see also Neustupa [45].

Giga [18] showed that the condition (Se) also guarantees the time-extension
of strong Lp solutions, 3 ≤ p < ∞. That is, if a strong Lp solution u satisfies
(Se), then u can be continued beyond T . In Chapter 4, we will slightly relax
condition (Se) in the case r = ∞;

u ∈ L2(0, T ;L∞(Ω))
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by replacing L∞(Ω) with some Banach spaces. Chapter 4 is based on [44].

1.3 Time-periodic solutions to the Boussinesq

equations in exterior domains

Let Ω ⊂ R
3 be an exterior domain with compact and smooth boundary ∂Ω,

and let (0, 0, 0) ∈ Ωc. Heat convection of a viscous incompressible fluid in Ω
is governed by the Boussinesq equations:

(B)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tu−Δu+ u · ∇u+∇π = gθ + f, x ∈ Ω, t ∈ (−∞,∞),

∂tθ −Δθ + u · ∇θ = S, x ∈ Ω, t ∈ (−∞,∞),

div u = 0, x ∈ Ω, t ∈ (−∞,∞),

u|∂Ω = 0, ∂θ
∂η
|∂Ω = 0,

where u = (u1(x, t), u2(x, t), u3(x, t)), θ = θ(x, t) and π = π(x, t) denote the
velocity vector, the temperature and the pressure, respectively, of the fluid
at the point (x, t) ∈ Ω × (−∞,∞). Here f = (f1(x, t), f2(x, t), f3(x, t)) and
S = S(x, t) are given external forces, and g = g(x) = −g̃ x

|x|3 is the given
vector that denotes the acceleration of gravity, where g̃ is a constant. On the
temperature, we impose the Neumann boundary condition.

In Chapter 5, we consider time-periodic solutions to (B). Kozono-Nakao
[27] showed existence and uniqueness of time-periodic solutions to the Navier-
Stokes equations in n-dimensional exterior domains, where n ≥ 4. However,
it was outstanding in case of 3-dimensional exterior domains. Here we recall
the Lp-Lq estimate for the gradient of the Stokes semigroup e−tA in exterior
domains:

‖∇e−tAf‖q ≤ Ct−
n
2 (

1
p
− 1

q )− 1
2‖f‖p for 1 < p ≤ q ≤ n,

which Iwashita [22] showed. The restriction q ≤ n caused the difficulty in 3-
dimensional case.

Yamazaki [66] solved this difficulty by using real interpolation, and he
showed existence and uniqueness of time-periodic solutions to the Navier-
Stokes equations in n-dimensional exterior domains, where n ≥ 3. In Chapter
5, we will construct time-periodic solutions to (B) by his method. Chapter
5 is based on [41].

In this paper, we denote by C various constants.
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Chapter 2

Preliminaries

In this chapter, we introduce some notations and function spaces.
Let C∞

0 (Ω) denote the set of all C∞ functions with compact support in
Ω and C∞

0,σ(Ω) = C∞
0,σ := {ϕ ∈ (C∞

0 (Ω))n; divϕ = 0}. Then Lr
σ, 1 < r <

∞, is the closure of C∞
0,σ with respect to the Lr-norm ‖ · ‖r. Concerning

Sobolev spaces we use the notationsW k,r(Ω) andW k,r
0 (Ω), k ∈ N, 1 ≤ r ≤ ∞.

Note that very often we will simply write Lr and W k,r instead of Lr(Ω) and
W k,r(Ω), respectively. The symbol (·, ·) denotes the L2-inner product and
the duality pairing between Lr and Lr′ , where 1

r
+ 1

r′ = 1.
For 0 < θ < 1 and 1 ≤ q ≤ ∞, let (·, ·)θ,q denote real interpolation. For

1 < r0 < r < r1 < ∞ and 1 ≤ q ≤ ∞, let Lr,q(Ω) := (Lr0(Ω), Lr1(Ω))θ,q
denote the Lorentz space, where θ satisfy 1−θ

r0
+ θ

r1
= 1

r
, see [2, 35, 36].

Let us recall the Helmholtz decomposition: Lr(Ω) = Lr
σ⊕Gr (1 < r < ∞),

where Gr := {∇π ∈ Lr; π ∈ Lr
loc(Ω)}, see Fujiwara-Morimoto [16], Miyakawa

[38], Simader-Sohr [56], and Borchers-Miyakawa [3]; Pr denotes the projection
operator from Lr onto Lr

σ along Gr. The Stokes operator Ar on Lr
σ is defined

by Ar = −PrΔ with domain D(Ar) = W 2,r ∩ W 1,r
0 ∩ Lr

σ. It is known that
(Lr

σ)
∗(the dual space of Lr

σ)= Lr′
σ and A∗

r(the adjoint operator of Ar)= Ar′ ,
where 1

r
+ 1

r′ = 1. It is shown by Giga [17], Borchers-Sohr [5], Borchers-
Miyakawa [3], and Iwashita [22] that −Ar generates a holomorphic semigroup
{e−tAr ; t ≥ 0} of class C0 in Lr

σ. Since Pru = Pqu for all u ∈ Lr ∩ Lq(1 <
r, q < ∞) and since Aru = Aqu for all u ∈ D(Ar) ∩ D(Aq), for simplicity,
we shall abbreviate Pru, Pqu as Pu for u ∈ Lr ∩ Lq and Aru,Aqu as Au for
u ∈ D(Ar) ∩D(Aq), respectively.

In case of Ω = R
n, P has the following formula:

P = I −
(
F−1 ξiξj

|ξ|2F
)

ij

(i, j = 1, · · · , n),

and −PΔ = −ΔP .
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Note that we can extend the Helmholtz projection Pr as a projection P
in
∑

1<r<∞ Lr. By the projection P , we have the Helmholtz decomposition
in the Lorentz space: Lr,q = Lr,q

σ ⊕ Gr,q(1 < r < ∞, 1 ≤ q ≤ ∞), where
Lr,q
σ := {u ∈ Lr,q; div u = 0 and u · ν|∂Ω = 0} and Gr,q := {∇π ∈ Lr,q; π ∈

Lr,q
loc(Ω)}, see Miyakawa-Yamada [39] and Borchers-Miyakawa [4].

For 1 ≤ q < ∞, C∞
0,σ is dense in Lr,q

σ , and (Lr,q
σ )∗ = L

r/(r−1),q/(q−1)
σ . On

the other hand, C∞
0,σ is not dense in Lr,∞, and

(
C∞

0,σ

‖·‖r,∞)∗
= L

r/(r−1),1
σ .

Let Br := −Δ with domain D(Br) =
{
θ ∈ W 2,r; ∂θ

∂ν
|∂Ω = 0

}
, 1 < r < ∞.

It is known that −Br generates a holomorphic semigroup
{
e−tBr; t ≥ 0

}
of

class C0 in Lr.
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Chapter 3

Beale-Kato-Majda type
extension criteria for smooth
solutions to the Navier-Stokes
equations

3.1 Main Results

In this chapter, we consider Beale-Kato-Majda type extension criteria for
smooth solutions to (N-S).

Now our main results read as follows.

Theorem 3.1 ([42]). Let Ω = R
n, n ≤ p < ∞, 0 < α < 1, 0 < T < ∞,

u0 ∈ Lp
σ and u be a solution to (N-S) on (0, T ) in the class

Sp(0, T ) := C([0, T );Lp
σ) ∩ C1((0, T );Lp

σ) ∩ C((0, T );W 2,p).

If ∫ T

s

‖ω(τ)‖BMO

log(e+ ‖u(τ)‖C1+α)
dτ < ∞ for some s ∈ (0, T ), (3.1)

then u can be continued to the solution in the class Sp(0, T
′) for some T ′ > T ,

where ω = curl u.

Even in the case where the domain Ω is not the whole space, we have a
similar result as below.

Theorem 3.2 ([42]). Let Ω be the 3-dimensional half space, a 3-dimensional
bounded domain or a 3-dimensional exterior domain with smooth boundary,
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and let 3 ≤ p < ∞, 0 < α < 1, 0 < T < ∞, u0 ∈ Lp
σ and u be a solution to

(N-S) in the class

Cp(0, T ) := C([0, T );Lp
σ) ∩ C1((0, T );Lp

σ) ∩ C((0, T );W 2,p ∩W 1,p
0 ).

If ∫ T

s

‖ω(τ)‖L∞(Ω)

log
(
e+ ‖u(τ)‖C1+α(Ω)

)dτ < ∞ for some s ∈ (0, T ),

then u can be continued to the solution in the class Cp(0, T
′) for some T ′ > T .

Remark 3.1. (i) Solutions in the class Sp(0, T ) or Cp(0, T ) are called strong
Lp solutions on (0, T ). For p ≥ n, the existence of strong Lp solutions to
(N-S) is proven in e.g. [18, 19, 22, 23, 65].
(ii) Note that strong Lp solutions u belong to C((0, T ) : Cm(Ω)) for allm ∈ N.
(iii) Since ‖ω‖BMO ≤ 2‖ω‖∞ ≤ 2‖u‖C1+α , (3.1) can be replaced by∫ T

s

‖ω(τ)‖BMO

log (e+ ‖ω(τ)‖BMO)
dτ < ∞ for some s ∈ (0, T ).

(iv) Since

‖f‖BMO
∼= ‖f‖Ḟ 0

∞,2
≤ C‖f‖Ḃ0

∞,2
≤ C

(
1 + ‖f‖Ḃ0∞,∞

log1/2
(
e+ ‖f‖Ċα + ‖f‖Ḃ−α∞,∞

))
for all f ∈ Ċα(Rn) ∩ Ḃ−α

∞,∞(Rn), see [26, p. 230] and [28, Theorem 2.1], the
condition (3.1) can be replaced by∫ T

s

‖ω(τ)‖Ḃ0∞,∞√
1 + log

(
e+ ‖ω(τ)‖Ḃ0∞,∞

)dτ < ∞ for some s ∈ (0, T ),

which was also given in [14].

3.2 Proof of Theorem 3.1

Proof of Theorem 3.1. For the sake of simplicity, we prove the theorem
only in the case where p satisfies

n

1− α
< p < ∞.

Since u ∈ C((0, T );W 2,p), without loss of generality, we may assume that
u0 ∈ W 2,p. Since the local existence time of strong Lp solutions T∗ can be
estimated from below as

T∗ > C(n, p)/‖u0‖2p/(p−n)
p ,
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see e.g. [18, Theorem 1 (ii)], it suffices to show that

sup
0<t<T

‖u(t)‖p ≤ ‖u0‖p exp
(
C exp

(
C

∫ T

0

‖ω(s)‖BMO

log(e+ ‖u(s)‖C1+α)
ds

))
. (3.2)

Recall that u satisfies

(I.E.) u(t) = etΔu0 −
∫ t

0

e(t−s)ΔP (u · ∇u)(s)ds

for all 0 < t < T and

‖u · ∇u‖p ≤ C‖u‖p‖∇u‖BMO ≤ C‖u‖p‖ω‖BMO, (3.3)

see [26, Lemma 3.9]. Since 1 < p < ∞, P is bounded in Lp.
Then, since

‖etΔ‖Lp→Lp ≤ 1,

by (3.3), we have

‖u(t)‖p ≤ ‖etΔu0‖p +
∫ t

0

‖e(t−s)ΔP (u · ∇u(s))‖pds

≤ ‖u0‖p + C

∫ t

0

‖u · ∇u(s)‖pds

≤ ‖u0‖p + C

∫ t

0

‖u(s)‖p‖ω(s)‖BMOds.

Therefore, by the Gronwall lemma, we get

‖u(s)‖p ≤ ‖u0‖p exp
(
C

∫ s

0

‖ω(τ)‖BMOdτ

)
,

which yields

sup
0<s<t

‖u(s)‖p ≤ ‖u0‖p exp
(
C

∫ t

0

‖ω(τ)‖BMOdτ

)
(3.4)

for all 0 < t < T .
Let

M(t) :=
‖ω(t)‖BMO

log(e+ ‖u(t)‖C1+α)
0 < t < T,

and δ > 1 be a sufficiently large number such that(
1 + α

2
+

n

2p

)
·
(
1 +

1

δ

)
< 1.
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Then we have

‖ω(s)‖BMO = M(s) log(e+ ‖u(s)‖C1+α)

≤ M(s) log

((
e+

‖u(s)‖1+δ
C1+α

M δ(s)

)(
e+

M δ(s)

‖u(s)‖δC1+α

))

= M(s) log

(
e+

‖u(s)‖1+δ
C1+α

M δ(s)

)
+M(s) log

(
e+

M δ(s)

‖u(s)‖δC1+α

)

≤ M(s) log

⎛
⎝eδ +

(
‖u(s)‖1+1/δ

C1+α

M(s)

)δ
⎞
⎠+M(s) log

(
e+

(‖ω(s)‖BMO

‖u(s)‖C1+α

)δ
)
.

Since ‖ω‖BMO

‖u‖C1+α
≤ 2‖ω‖∞

‖u‖C1+α
≤ 2, we have

‖ω(s)‖BMO ≤ M(s) log

(
e+

‖u(s)‖1+1/δ

C1+α

M(s)

)δ

+M(s) log(e+ C)

≤ CM(s) log

(
e+

‖u(s)‖1+1/δ

C1+α

M(s)

)
+M(s) log(e+ C).

Let A and M̃ be positive constants and f(ε) := Aε+M̃ log
(
e+ 1

ε

)
for ε > 0.

Then we have

M̃ log

(
e+

A

M̃

)
= M̃ log

(
e+

Aε

M̃

1

ε

)

≤ M̃ log

(
exp

(
Aε

M̃

)
e+ exp

(
Aε

M̃

)
1

ε

)

= M̃ log

(
exp

(
Aε

M̃

))
+ M̃ log

(
e+

1

ε

)
= f(ε).

Thus we obtain

‖ω(s)‖BMO ≤ Cε‖u(s)‖1+1/δ

C1+α + CM(s) log

(
e+

1

ε

)
+M(s) log(e+ C)

(3.5)

for all ε > 0.
Let

h(t) := sup
0<τ<t

‖u(τ)‖p,

g(t) :=

∫ t

0

‖ω(s)‖BMOds
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for 0 < t < T . Therefore, from (3.5), for any positive bounded function
ε(s, t) on (0, T )× (0, T ) we see that

g(t) ≤ C

∫ t

0

ε(s, t)‖u(s)‖1+1/δ

C1+α ds

+ C

∫ t

0

M(s) log

(
e+

1

ε(s, t)

)
ds+

∫ t

0

M(s) log(e+ C)ds

=: I1(t) + I2(t) + I3(t).

(3.6)

Since p > n and 0 < 1 + α < 2− n/p, the following inequality of Gagliardo-
Nirenberg-Sobolev type:

‖F‖C1+α ≤ C

(
‖F‖

1+α
2

+ n
2p

Ẇ 2,p ‖F‖1−
1+α
2

− n
2p

p + ‖F‖p
)

≤ C‖F‖
1+α
2

+ n
2p

W 2,p ‖F‖1−
1+α
2

− n
2p

p

(3.7)

holds for all F ∈ W 2,p, cf. [62, Theorem 3.20, (3.177)]. Then, by (3.7), we
obtain

‖etΔf‖C1+α ≤ C‖etΔf‖
1+α
2

+ n
2p

W 2,p ‖etΔf‖1−
1+α
2

− n
2p

p

≤ C‖(1−Δ)etΔf‖
1+α
2

+ n
2p

p ‖etΔf‖1−
1+α
2

− n
2p

p

≤ C

(
‖etΔf‖p + ‖(−Δ)etΔf‖

1+α
2

+ n
2p

p ‖etΔf‖1−
1+α
2

− n
2p

p

)

≤ C
(
1 + t−

1+α
2

− n
2p

)
‖f‖p

(3.8)

for all f ∈ Lp. Therefore, from (I.E.), (3.3) and (3.8), we obtain

‖u(s)‖C1+α ≤ ‖esΔu0‖C1+α + C

∫ s

0

(
1 + (s− τ)−

1+α
2

− n
2p

)
‖u · ∇u(τ)‖pdτ

≤ C‖esΔu0‖W 2,p + C

∫ s

0

(
1 + (s− τ)−

1+α
2

− n
2p

)
h(τ)‖ω(τ)‖BMOdτ

≤ C‖u0‖W 2,p + Ch(s)

∫ s

0

(
1 + (s− τ)−

1+α
2

− n
2p

)
‖ω(τ)‖BMOdτ,

which yields

‖u(s)‖1+1/δ

C1+α ≤ C‖u0‖1+1/δ

W 2,p + Ch1+1/δ(s)

(∫ s

0

(
1 + (s− τ)−

1+α
2

− n
2p

)
‖ω(τ)‖BMOdτ

)1+1/δ

.

10



Hence, for 0 < t < T we have

I1(t) ≤ C‖u0‖1+1/δ

W 2,p T sup
0<s<T,0<t<T

ε(s, t)

+ C

∫ t

0

h1+1/δ(s)ε(s, t)

(∫ s

0

(
1 + (s− τ)−

1+α
2

− n
2p

)
‖ω(τ)‖BMOdτ

)1+1/δ

ds.

Now we choose ε(s, t) such as

ε(s, t) :=
η

h1+1/δ(s)g1/δ(t) + 1

where η = η(T ) ∈ (0, 1) is a constant to be chosen suitably small later on.
Then we have

I1(t) ≤ C‖u0‖1+1/δ

W 2,p T

+ C
η

g1/δ(t)

∫ t

0

(∫ s

0

‖ω(τ)‖BMOdτ +

∫ s

0

(s− τ)−
1+α
2

− n
2p‖ω(τ)‖BMOdτ

)1+1/δ

ds

≤ C(T, ‖u0‖W 2,p) + C(T )η

∫ t

0

‖ω(τ)‖BMOdτ

+ C
η

g1/δ(t)

∫ t

0

(∫ s

0

(s− τ)−
1+α
2

− n
2p‖ω(τ)‖BMOdτ

)1+1/δ

ds.

Let β := 1+α
2

+ n
2p

and ϕ(τ) := τ−β. For each t ∈ (0, T ), the Young inequality
yields

∫ t

0

(∫ s

0

(s− τ)−
1+α
2

− n
2p‖ω(τ)‖BMOdτ

)1+1/δ

ds

=

∫ t

0

(∫ s

0

ϕ(s− τ)1(0,t)(s− τ) · ‖ω(τ)‖BMO1(0,t)(τ)dτ

)1+1/δ

ds

≤ ∥∥(ϕ · 1(0,t)) ∗ (‖ω(·)‖BMO · 1(0,t))
∥∥1+1/δ

L1+1/δ(R)

≤ ∥∥‖ω(·)‖BMO1(0,t)
∥∥1+1/δ

L1(R)

∥∥ϕ · 1(0,t)
∥∥1+1/δ

L1+1/δ(R)

= C

(∫ t

0

‖ω(τ)‖BMOdτ

)1+1/δ

· t−β(1+ 1
δ )+1

≤ Cg(t)1+1/δT−β(1+ 1
δ )+1.

Hence, we have

I1(t) ≤ C(T, ‖u0‖W 2,p) + C1(T )ηg(t). (3.9)

11



Since (3.4) yields

log

(
e+

1

ε(s, t)

)
= log

(
e+

h1+1/δ(s)g1/δ(t) + 1

η

)

≤ log

⎛
⎜⎝e+

(
‖u0‖p exp

(
Cg(s)

))1+1/δ

g1/δ(t) + 1

η

⎞
⎟⎠

≤ log

[(
exp

(
Cg(s)

))1+1/δ
]
+ log

(
e+

1

η
+

Cg1/δ(t)

η

)

≤ log

[(
exp

(
Cg(s)

))1+1/δ
]
+ log

(
e+

1

η
+

C exp
(
g1/δ(t)

)
η

)

≤ C + Cg(s) + g1/δ(t)

for 0 < t < T and since
∫ T

0
M(s)ds < ∞, we have

I2(t) ≤ C

∫ t

0

M(s)ds+ C

∫ t

0

M(s)g(s)ds

+ C

(∫ t

0

M(s)ds

)(
g1/δ(t)

)
≤ C + C

∫ t

0

M(s)g(s)ds+ C
(
g1/δ(t)

)

≤ C + C

∫ t

0

M(s)g(s)ds+ C +

(
g1/δ(t)

)δ
2

= C + C

∫ t

0

M(s)g(s)ds+
g(t)

2
.

(3.10)

Clearly, we have

I3(t) ≤ log(e+ C)

∫ T

0

M(s)ds < C. (3.11)

Gathering (3.9), (3.10) and (3.11) with (3.6), we obtain

g(t) ≤ C +

(
C1(T )η +

1

2

)
g(t) + C

∫ t

0

M(s)g(s)ds.

Therefore, letting η = 1
4C1(T )

, by the Gronwall lemma, we get

g(t) ≤ C exp

(
C

∫ T

0

M(s)ds

)

for all 0 < t < T . This estimate and (3.4) yield the desired estimate (3.2).
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We can prove Theorem 3.2 in the same way to the proof of Theorem 3.1,
by using

‖P (u · ∇u)‖p = ‖P (ω × u+ (∇|u|2)/2)‖p = ‖P (ω × u)‖p ≤ C‖ω‖∞‖u‖p
and

u(t) = e−tAu0 −
∫ t

0

e−(t−s)AP (ω × u)(s)ds,

instead of (3.3) and (I.E.) respectively.
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Chapter 4

Serrin type extension criteria
for smooth solutions to the
Navier-Stokes equations

4.1 Function Spaces and Main Results

In this chapter, we consider Serrin type extension criteria for smooth solu-
tions to (N-S) in 3-dimension.

First, we introduce Banach spaces of Morrey type and Besov type which
are wider than L∞(Ω). Let B(x, t) := {y ∈ R

n; |y − x| < t} and

L1
uloc(Ω) :=

{
f ∈ L1

loc(Ω̄); ‖f‖L1
uloc(Ω) := sup

x∈Rn

∫
B(x,1)∩Ω

|f(y)|dy < ∞
}
.

Definition 4.1. Let β > 0 and Ω ⊂ R
n be a domain.

Then, M log
β (Ω) :=

{
f ∈ L1

uloc(Ω); ‖f‖M log
β (Ω) < ∞

}
is introduced by the

norm

‖f‖M log
β (Ω) := sup

x∈Ω,0<t<1

1

|B(x, t)| logβ (e+ 1
t

) ∫
B(x,t)∩Ω

|f(y)|dy.

Definition 4.2. Let β > 0 and ψ ∈ S(Rn) be a spherical symmetric function
with ψ̂(ξ) = 1 in B(0, 1) and ψ̂(ξ) = 0 in B(0, 2)c.

Then, Vβ := {f ∈ S ′(Rn); ‖f‖Vβ
< ∞} is introduced by the norm

‖f‖Vβ
:= sup

N=1,2,···

‖ψN ∗ f‖∞
Nβ

, where ψN(x) := 2nNψ(2Nx).

Note that the space Vβ is a modified version of spaces introduced by
Vishik [64]. We also note that the following inclusions hold:

14



M log
β (Ω) ⊃ L∞(Ω),

Vβ ⊃ M log
β (Rn) ⊃ L∞(Rn).

For example,

√
log

(
e+ 1

|x|

)
belongs toM log

1/2(Ω), but doesn’t belong to L
∞(Ω).

Let Ẇ 1,2
0,σ := C∞

0,σ

‖∇·‖2
. Now our main results read as follows.

Theorem 4.1 ([44]). Let Ω be R3, the 3-dimensional half space, a 3-dimensional
bounded domain or a 3-dimensional exterior domain with smooth boundary,
and let 3 ≤ p < ∞, 0 < T < ∞, u0 ∈ Lp

σ ∩ Ẇ 1,2
0,σ and u be a solution to (N-S)

in the class Cp(0, T ). If∫ T

s

‖u(τ)‖2
M log

1/2
(Ω)

dτ < ∞ for some s ∈ (0, T ),

then u can be continued to the solution in the class Cp(0, T
′) for some T ′ > T .

Theorem 4.2 ([44]). Let Ω = R
3, 3 ≤ p < ∞, 0 < T < ∞, u0 ∈ Lp

σ ∩ Ẇ 1,2
0,σ

and u be a solution to (N-S) in the class Sp(0, T ). If∫ T

s

‖u(τ)‖2V1/2
dτ < ∞ for some s ∈ (0, T ),

then u can be continued to the solution in the class Sp(0, T
′) for some T ′ > T .

Here, for definitions of Cp(0, T ) and Sp(0, T ), see Theorem 3.2 and The-
orem 3.1.

Remark 4.1. In [43], we established Beale-Kato-Majda type extension cri-
teria by means of∫ T

s

‖rot u(τ)‖M log
1 (Ω)dτ and

∫ T

s

‖rot u(τ)‖V1dτ.

4.2 Brezis-Gallouet-Wainger type inequalities

We introduce logarithmic inequalities for the proof of our theorems.

Lemma 4.1 ([43, 44]). (i) Let n ≥ 3, and let Ω ⊂ R
n be the whole space, the

half space, a bounded domain or an exterior domain with smooth boundary.
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For any α ∈ (0, 1) and β > 0, there exists a constant C(Ω, α, β, n) > 0 such
that

‖f‖L∞(Ω) ≤ C
(
1 + ‖f‖M log

β (Ω) log
β
(
e+ ‖f‖Ċα(Ω)

))
(4.1)

for all f ∈ Ċα(Ω) ∩M log
β (Ω).

(ii) Let n ≥ 3. For any α ∈ (0, 1) and β > 0, there exists a constant
C(α, β, n) > 0 such that

‖f‖L∞(Rn) ≤ C
(
1 + ‖f‖Vβ

logβ
(
e+ ‖f‖Ċα(Rn)

))
(4.2)

for all f ∈ Ċα(Rn) ∩ Vβ.

These inequalities are called Brezis-Gallouet-Wainger type inequalities:

(BGW )β ‖u‖L∞ ≤ C(1 + ‖f‖X logβ(e+ ‖f‖Y )).
When Ω = R

n, by using the Fourier transform, Brezis-Gallouet-Wainger [6, 7]
proved (BGW )β in the case

β = 1− 1/p, X = W n/p,p(Rn), Y = W n/q+α,q(Rn)
(
⊂ Ċα(Rn)

)
(α > 0).

Engler [11] proved the same inequality for general domains Ω without us-
ing the Fourier transform. Ozawa [50] proved the Gagliardo-Nirenberg type
inequality

‖f‖Lq(Rn) ≤ C(p, n)q1−1/p‖(−Δ)n/2pf‖1−p/q
Lp(Rn)‖f‖p/qLp(Rn) for all q ∈ [p,∞)

with the explicit growth rate with respect to q and that this estimate directly
yields (BGW )β with β = 1 − 1/p. When Ω = R

n, Chemin [9] proved
(BGW )β for β = 1, X = B0

∞,∞(Rn) and Y = Cα(Rn). Kozono-Ogawa-

Taniuchi [28, 49] proved (BGW )β for 0 ≤ β ≤ 1, X = Ḃ0
∞,1/(1−β)(R

n) and

Y = Ċα(Rn)∩Ḃ−α
∞,∞(Rn). When Ω is a bounded domain, in [47, 48], (BGW )β

was proven in the cases

β = 1, X = bmo(Ω), Y = Ċα(Ω), or

β = 1, X = B(Ω), Y = Ċα(Ω),

where B(Ω) is introduced by the norm ‖f‖B(Ω) := supq≥1
‖f‖Lq(Ω)

q
. Further-

more, in [1, 9, 11, 15, 20, 24, 28, 30, 31, 37, 40, 46, 47, 48, 49, 50, 51, 55, 63,
67, 68] several inequalities of Brezis-Gallouet-Wainger type were established.

We shall show Lemma 4.1.
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Proof of Lemma 4.1 (i). We use arguments given in Engler [11] and Ozawa
[50]. See also Ogawa-Taniuchi [48]. For the sake of simplicity, we assume
n = 3. Since ∂Ω is smooth, we see that ∂Ω satisfies the interior cone con-
dition. Namely there are δ ∈ (0, 1) and θ ∈ (π/2, π) depending only on
Ω with the following property: For any point x ∈ Ω, there exists a spher-
ical sector Cθ

δ (x) = {x + ξ ∈ R
3; 0 < |ξ| < δ, −|ξ| ≤ κ(x) · ξ < |ξ| cos θ}

having a vertex at x such that Cθ
δ (x) ⊂ Ω, where κ(x) is an appropriate

unit vector from x. We note that for each x ∈ Ω, Cθ
δ (x) is congruent to

Cθ
δ ≡ {ξ ∈ R

3; 0 < |ξ| < δ, −|ξ| ≤ ξ3 < |ξ| cos θ}. In particular, for any
boundary point x ∈ ∂Ω, Cθ

δ (x) can be expressed as Cθ
δ (x) ≡ {x+ ξ ∈ R

3; 0 <
|ξ| < δ, −|ξ| ≤ ξ · ν(x) < |ξ| cos θ}, where ν(x) denotes the unit outward
normal at x.

Let 0 < t ≤ δ and Cθ
t (x) := Cθ

δ (x) ∩ B(x, t). For any fixed x ∈ Ω and
y ∈ Cθ

t (x) ⊂ Ω,

|f(x)| ≤ |f(x)−f(y)|+|f(y)| ≤ ‖f‖Ċα(Ω)|x−y|α+|f(y)| ≤ ‖f‖Ċα(Ω)t
α+|f(y)|.

Integrating both sides of the above inequality with respect to y over Cθ
t (x),

|f(x)||Cθ
t (x)| ≤ tα‖f‖Ċα(Ω)|Cθ

t (x)|+
∫
y∈Cθ

t (x)

|f(y)|dy

≤ tα‖f‖Ċα(Ω)|Cθ
t (x)|+

∫
y∈B(x,t)∩Ω

|f(y)|dy

≤ tα‖f‖Ċα(Ω)|Cθ
t (x)|+ |B(x, t)| logβ

(
1

t
+ e

)
‖f‖M log

β (Ω).

Since |B(x, t)|/|Cθ
t (x)|(=: Kθ) is a constant independent of x and t, we have

|f(x)| ≤ tα‖f‖Ċα(Ω) +Kθ log
β

(
1

t
+ e

)
‖f‖M log

β (Ω)

for all 0 < t ≤ δ.
Then we optimize t by letting t = (1/‖f‖Ċα(Ω))

1/α if ‖f‖Ċα(Ω) ≥ δ−α and
letting t = δ if ‖f‖Ċα(Ω) ≤ δ−α to obtain (4.1).

Proof of Lemma 4.1 (ii). We first recall the Littlewood-Paley decompo-
sition. Let ψ be the function given in Definition 4.2 and let ϕj ∈ S be the
functions defined by

ϕ̂(ξ) := ψ̂(ξ)− ψ̂(2ξ) and ϕ̂j(ξ) := ϕ̂(ξ/2j)

for ξ ∈ R
n. Then, supp ϕ̂j ⊂ {2j−1 ≤ |ξ| ≤ 2j+1} and

1 = ψ̂(ξ/2N) +
∞∑

j=N+1

ϕ̂(ξ/2j) = ψ̂N(ξ) +
∞∑

j=N+1

ϕ̂j(ξ) (4.3)
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for ξ ∈ R
n, N = 1, 2, · · · .

Using (4.3), we decompose f into two parts such as

f(x) = ψN ∗ f(x) +
∞∑

j=N+1

ϕj ∗ f(x). (4.4)

By Definition 4.2,

‖ψN ∗ f‖∞ ≤ Nβ‖f‖Vβ
(4.5)

holds. Since Ḃα
∞,∞(Rn) = Ċα(Rn) for 0 < α < 1, we have

∞∑
j=N+1

‖ϕj ∗ f‖∞ =
∞∑

j=N+1

2αj‖ϕj ∗ f‖∞2−αj

≤ ‖f‖Ḃα∞,∞

∞∑
j=N+1

2−αj

≤ C‖f‖Ċα2−αN .

(4.6)

Gathering (4.5) and (4.6) with (4.4), we obtain

‖f‖∞ ≤ C(2−αN‖f‖Ċα +Nβ‖f‖Vβ
).

Now we take N =
[
log(‖f‖Ċα+e)

α log 2

]
+ 1, where [·] denotes Gauss symbol.

Then we have the desired estimate (4.2).

4.3 Proof of Theorem 4.1

Proof of Theorem 4.1. Since u ∈ C((0, T );D(A6)∩Ẇ 1,2
0,σ ), without loss of

generality, we may assume that u0 ∈ D(A6)∩ Ẇ 1,2
0,σ . Since the local existence

time of strong Lp solutions T∗ can be estimated from below as

T∗ > C(Ω)/‖u0‖46,
see Appendix, it suffices to show that

sup
0<τ<T

‖u(τ)‖6 ≤ C‖∇u‖2 exp
(
C exp

(
C

∫ T

0

‖u(τ)‖2
M log

1/2
(Ω)

dτ

))
. (4.7)

Recall that u satisfies

(I.E.)* u(t) = e−tAu0 −
∫ t

0

e−(t−s)AP∇ · (u⊗ u)(s)ds
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for all 0 < t < T .
From (I.E.)*, the duality argument and the Gronwall lemma we have

sup
0<τ<t

‖u(τ)‖6 ≤ C sup
0<τ<t

‖∇u(τ)‖2

≤ C‖∇u0‖2 exp
(
C

∫ t

0

‖u(s)‖2∞ds

) (4.8)

for all 0 < t < T . See Appendix.
Let

h(t) := sup
0<τ<t

‖u(τ)‖6,

g(t) :=

∫ t

0

‖u(τ)‖2∞dτ

for 0 < t < T . Then, we have

h(t) ≤ C‖∇u0‖2 exp(Cg(t)) (4.9)

for all 0 < t < T .
Letting 0 < α < 1/2 and substituting f = u(s)

ε‖u(s)‖Ċα
into the Brezis-

Gallouet-Wainger type inequality (4.1) with β = 1/2, we obtain

‖u(s)‖∞ ≤ C

(
ε‖u(s)‖Ċα + log1/2

(
e+

1

ε

)
‖u(s)‖M log

1/2
(Ω)

)
,

which means

‖u(s)‖2∞ ≤ C

(
ε2‖u(s)‖2

Ċα + log

(
e+

1

ε

)
‖u(s)‖2

M log
1/2

(Ω)

)
(4.10)

for all ε > 0, where C is a constant independent of s and ε. Then, by (4.10),
for any positive bounded function ε(s) on (0, T ), we have

g(t) ≤ C

∫ t

0

ε2(s)‖u(s)‖2
Ċαds+ C

∫ t

0

log

(
e+

1

ε(s)

)
‖u(s)‖2

M log
1/2

(Ω)
ds

=: I1(t) + I2(t).

(4.11)

By the Gagliardo-Nirenberg inequality

‖f‖Ċα(Ω) ≤ C‖f‖θW 2,6(Ω)‖f‖1−θ
L6(Ω),
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where θ = 1
4
+ α

2
, we have

‖e−tAP∇ · f‖Ċα

≤ C‖(1 + A)e−(t/2)Ae−(t/2)AP∇ · f‖θ6‖e−(t/2)AP∇ · f‖1−θ
6

≤ C
(
(1 + (t/2)−1)‖e−(t/2)AP∇ · f‖6

)θ ‖e−(t/2)AP∇ · f‖1−θ
6

≤ C(1 + (t/2)−θ)‖e−(t/2)AP∇ · f‖6

(4.12)

for all 0 < t < T and f ∈ (L6(Ω))3×3. Since the duality argument yields

‖e−(t/2)AP∇ · f‖6 ≤ C(t/2)−
1
2‖f‖6, by (4.12) we obtain

‖e−tAP∇ · f‖Ċα ≤ C(1 + t−
3
4
−α

2 )‖f‖6
for all 0 < t < T and f ∈ (L6(Ω))3×3. Thus, from (I.E.)* we obtain

‖u(s)‖Ċα ≤C‖u0‖D(A6) + C

∫ s

0

(1 + (s− τ)−
3
4
−α

2 )‖u⊗ u(τ)‖6dτ

≤C‖u0‖D(A6) + Ch(s)

∫ s

0

(1 + (s− τ)−
3
4
−α

2 )‖u(τ)‖∞dτ,

which yields

‖u(s)‖2
Ċα ≤ C‖u0‖2D(A6)

+ Ch2(s)

(∫ s

0

(1 + (s− τ)−
3
4
−α

2 )‖u(τ)‖∞dτ

)2

.

Hence, for 0 < t < T we have

I1(t) ≤C‖u0‖2D(A6)
T sup

0<s<T
ε2(s)

+ C

∫ t

0

h2(s)ε2(s)

(∫ s

0

(1 + (s− τ)−
3
4
−α

2 )‖u(τ)‖∞dτ

)2

ds.

Now we choose ε(s) such as

ε(s) :=
δ

h(s) + 1
,

where δ = δ(T ) ∈ (0, 1) is a constant to be chosen suitably small later on.
Then, since h2(s)ε2(s) < δ2 and ε2(s) < δ2, we have

I1(t) ≤ C‖u0‖2D(A6)
Tδ2 + Cδ2

∫ t

0

(∫ s

0

(1 + (s− τ)−
3
4
−α

2 )‖u(τ)‖∞dτ

)2

ds.
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Since 3
4
+ α

2
< 1, the Hardy-Littlewood-Sobolev inequality yields∫ t

0

(∫ s

0

(s− τ)−
3
4
−α

2 ‖u(τ)‖∞dτ

)2

ds

=

∫
R

(∫
R

(
(s− τ)−

3
4
−α

2 1(0,t)(s− τ)
)(

‖u(τ)‖∞1(0,t)(τ)
)
dτ

)2

ds

≤ C
∥∥‖u(·)‖∞1(0,t)

∥∥2
L

4
3−2α (R)

≤ Ct
1
2
−α ‖‖u(·)‖∞‖2L2(0,t) .

Hence,

I1(t) ≤ C‖u0‖2D(A6)
Tδ2 + C

(
t2 + t

1
2
−α
)
δ2
∫ t

0

‖u(τ)‖2∞dτ

≤ C + C1(T )δ
2g(t).

(4.13)

Since (4.9) yields

log

(
e+

1

ε(s)

)
= log

(
e+

h(s) + 1

δ

)
≤ C(1 + ‖∇u0‖2 + g(s)),

and since
∫ T

0
‖u(s)‖2

M log
1/2

(Ω)
ds < ∞, we have

I2(t) ≤ C

∫ t

0

‖u(s)‖2
M log

1/2
(Ω)

(1 + ‖∇u0‖2 + g(s))ds

≤ C(1 + ‖∇u0‖2)
∫ t

0

‖u(s)‖2
M log

1/2
(Ω)

ds

+ C

∫ t

0

‖u(s)‖2
M log

1/2
(Ω)

g(s)ds

≤ C + C

∫ t

0

‖u(s)‖2
M log

1/2
(Ω)

g(s)ds.

(4.14)

Gathering (4.13) and (4.14) with (4.11), we obtain

g(t) ≤ C + C1(T )δ
2g(t) + C

∫ t

0

‖u(s)‖2
M log

1/2
(Ω)

g(s)ds.

Thus, letting δ2 = 1
2C1(T )+1

, by the Gronwall lemma, we have

g(t) ≤ C exp

(
C

∫ T

0

‖u(s)‖2
M log

1/2
(Ω)

ds

)

for all 0 < t < T . Then, this estimate and (4.9) yield the desired estimate
(4.7).
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We can prove Theorem 4.2 in the same way to the proof of Theorem 4.1
by using (4.2) instead of (4.1).

4.4 Appendix

In this section, we prove (4.8).

Proposition 4.1. Let Ω be R3, the 3-dimensional half space, a 3-dimensional
bounded domain or a 3-dimensional exterior domain with smooth boundary.
(i) If a ∈ Ẇ 1,2

0,σ , then e−tAa ∈ C([0,∞); Ẇ 1,2
0,σ ) and ‖∇e−tAa‖2 ≤ ‖∇a‖2.

(ii) If v ∈ C([0, T ]; Ẇ 1,2
0,σ ), then

F (t) :=

∫ t

0

e−(t−s)AP (v · ∇v)(s)ds ∈ C([0, T ]; Ẇ 1,2
0,σ ).

Proof of Proposition 4.1. (i) We first recall C∞
0,σ ⊂ D(A2) ⊂ Ẇ 1,2

0,σ , see
Sohr [58, Chap.III, Sect.2.1]. Hence

Ẇ 1,2
0,σ = D(A2)

‖∇·‖2
.

By the definition of Ẇ 1,2
0,σ , there exists an ∈ C∞

0,σ such that an → a in Ẇ 1,2
0,σ .

Since e−tAan ∈ C([0,∞);D(A2)) and since

sup
t≥0

‖∇e−tAan −∇e−tAam‖2
= sup

t≥0
‖A1/2e−tAan − A1/2e−tAam‖2

≤ ‖A1/2(an − am)‖2 = ‖∇am −∇an‖2 → 0

asm,n → ∞, we see that e−tAa ∈ C
(
[0,∞);D(A2)

‖∇·‖2)
= C([0,∞); Ẇ 1,2

0,σ ).

Since ‖∇e−tAan‖2 = ‖e−tAA
1/2
2 an‖2 ≤ ‖A1/2

2 an‖2 = ‖∇an‖2, we have
‖∇e−tAa‖2 ≤ ‖∇a‖2.
(ii) Let t ∈ (0, T ] be fixed and 0 < ε < t. Since ‖P (v · ∇v)(s)‖3/2 ≤
C sup0≤s≤T ‖∇v(s)‖22, it is straightforward to see that

∫ t−ε

0
e−(t−s)AP (v·∇v)(s)ds ∈

D(A2). Since ∥∥∥∥∇
∫ t−ε

0

e−(t−s)AP (v · ∇v)(s)ds−∇F (t)

∥∥∥∥
2

→ 0

as ε ↓ 0, we have F (t) ∈ Ẇ 1,2
0,σ . By the direct calculation, we can also show the

continuity of ∇F (t) in L2 with respect to t ∈ [0, T ], which proves Proposition
4.1.
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Lemma 4.2. (i) Let Ω be R
3, the 3-dimensional half space, a 3-dimensional

bounded domain or a 3-dimensional exterior domain with smooth boundary,
and let 3 ≤ p < ∞. If v0 ∈ Lp

σ(Ω) ∩ Ẇ 1,2
0,σ , then there exist T∗ > 0 and a

unique solution v on (0, T∗) to (N-S) with initial data v(0) = v0 in the class

v ∈ Cp(0, T∗) ∩ C6(0, T∗) ∩ C([0, T∗); Ẇ
1,2
0,σ ).

Moreover, it holds that
T∗ > C/‖v0‖46,

where C is a constant depending only on Ω.
(ii) Let Ω be R

3, the 3-dimensional half space, a 3-dimensional bounded do-
main or a 3-dimensional exterior domain with smooth boundary, and let u
be a solution to (N-S) in the class

u ∈ C6(0, T ) ∩ C([0, T ); Ẇ 1,2
0,σ ).

Then, it holds that

sup
0<τ<t

‖∇u(τ)‖2 ≤ C‖∇u0‖2 exp
(
C

∫ t

0

‖u(s)‖2∞ds

)
(4.15)

for all 0 < t < T .

Proof of Lemma 4.2. (i) Since Assertion (i) is proven by the standard
iteration argument and Proposition 4.1, we omit the proof of (i).
(ii) Let ϕ ∈ C∞

0,σ. Since w(τ) = e−τAϕ is a solution to the Stokes equation
on (0,∞) with the initial data w(0) = ϕ, the energy calculation yields∫ t

0

‖∇e−τAϕ‖22dτ ≤ ‖ϕ‖22

for all t > 0, which implies∫ t

0

‖A1/2e−(t−s)Aϕ‖22ds ≤ ‖ϕ‖22

for all t > 0. Since

(u(t), ψ) = (e−tAu(0), ψ) +

∫ t

0

(u · ∇u(s), e−(t−s)Aψ)ds
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for all ψ ∈ L
6/5
σ , letting ψ = A1/2ϕ, we have

|(A1/2u(t), ϕ)|

≤ |(e−tAA1/2u(0), ϕ)|+
∫ t

0

|(u · ∇u(s), A1/2e−(t−s)Aϕ)|ds

≤ ‖A1/2u(0)‖2‖ϕ‖2 +
∫ t

0

‖u(s)‖∞‖∇u(s)‖2‖A1/2e−(t−s)Aϕ‖2ds

≤ ‖A1/2u(0)‖2‖ϕ‖2 +
(∫ t

0

‖u(s)‖2∞‖∇u(s)‖22ds
) 1

2
(∫ t

0

‖A1/2e−(t−s)Aϕ‖22ds
) 1

2

≤ ‖A1/2u(0)‖2‖ϕ‖2 +
(∫ t

0

‖u(s)‖2∞‖∇u(s)‖22ds
) 1

2

‖ϕ‖2.

Thus, the duality yields

‖∇u(t)‖2 ≤ ‖∇u0‖2 +
(∫ t

0

‖u(s)‖2∞‖∇u(s)‖22ds
) 1

2

and consequently

‖∇u(t)‖22 ≤ 2‖∇u0‖22 + 2

∫ t

0

‖u(s)‖2∞‖∇u(s)‖22ds.

Therefore, from the Gronwall lemma, we obtain the desired estimate (4.15).

By the embedding theorem: Ẇ 1,2
0,σ ↪→ L6

σ and (4.15), we get (4.8).
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Chapter 5

Time-periodic solutions to the
Boussinesq equations in
exterior domains

5.1 Main Result

In this chapter, we consider time-periodic soutions to (B).
Let BUC(R, X) denote the set of bounded and uniformly continuous

functions on R, equipped with the norm ‖u|X‖ = supt∈R ‖u(t)‖X .
We assume that there exists F such that f = divF . We define the mild

solution of (B) as follows (see [66, Definition 1]):

Definition 5.1. A pair of functions (u, θ) is said to be a mild solution of (B)
if the identity

(u(·, t), ϕ) =
3∑

j,k=1

∫ ∞

0

(uj(·, t− τ)uk(·, t− τ)− Fjk(·, t− τ), (∂je
−τAϕ)k)dτ

+

∫ ∞

0

(gθ(·, t− τ), e−τAϕ)dτ

holds for all ϕ ∈ L
3/2,1
σ (Ω) and t ∈ (−∞,∞), and the identity

(θ(·, t), ψ) =
∫ ∞

0

(u(·, t− τ)θ(·, t− τ),∇e−τBψ)dτ +

∫ ∞

0

(S(·, t− τ), e−τBψ)dτ

holds for all ψ ∈ C∞
0 (Ω) and t ∈ (−∞,∞).

Now our main result reads as follows:
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Theorem 5.1 ([41]). There exist Cforce > 0 and M∞ > 0 such that if
‖F |L3/2,∞‖ < Cforce and ‖S|Ḣ−1

6/5,∞ ∩ L12/11‖ < Cforce, then there exists one

and only one mild solution (u, θ) of (B) such that u ∈ {u ∈ BUC(R, L3,∞
σ );

‖u|L3,∞
σ ‖ < M∞} and θ ∈ {θ ∈ BUC(R, L3,1); ‖θ|L3,1‖ < M∞}. Moreover,

if f and S are time-periodic, the solution (u, θ) is also time-periodic.

5.2 Proof of Theorem 5.1

For the proof of our theorem, we prepare some estimates on the Lorentz
space. Concretely, we prepare Hölder’s inequalities, the Sobolev embedding
theorem, and Lp-Lq estimates of the Stokes semigroup and heat semigroups.

Lemma 5.1 ([4, 25, 33]). (i) Let 1 < p0, p1 < ∞, 1 ≤ q0, q1 ≤ ∞, q =
min{q0, q1}, and p > 1 satisfy 1

p
= 1

p0
+ 1

p1
. Then there exists a constant C

such that

‖fg‖p,q ≤ C‖f‖p0,q0‖g‖p1,q1 (5.1)

for all f ∈ Lp0,q0 and g ∈ Lp1,q1.
(ii) Let 1 < p0, p1 < ∞, p ≥ 1 satisfy 1

p
= 1

p0
+ 1

p1
, and 1 ≤ q0, q1 ≤ ∞ satisfy

1
q0
+ 1

q1
≥ 1. Then there exists a constant C such that

‖fg‖p,1 ≤ C‖f‖p0,q0‖g‖p1,q1 (5.2)

for all f ∈ Lp0,q0 and g ∈ Lp1,q1.

Let Ḣ1
3,1 := C∞

0

‖∇·‖3,1
. Then this space satisfies an embedding theorem as

follows:

Lemma 5.2 ([32]). There exists a constant C such that

‖u‖∞ ≤ C‖∇u‖3,1 (5.3)

for all u ∈ Ḣ1
3,1.

Lemma 5.3 ([66]). Let 1 < p < q ≤ 3. Then there exists a constant C such
that ∫ ∞

0

τ
3
2p

− 3
2q

− 1
2‖∇e−τAϕ‖q,1dτ ≤ C‖ϕ‖p,1 (5.4)

for all ϕ ∈ Lp,1
σ (Ω).
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Lemma 5.4. (i) Let 1 < p < q < ∞. Then there exists a constant C such
that ∫ ∞

0

τ
3
2p

− 3
2q

−1‖e−τBψ‖q,1dτ ≤ C‖ψ‖p,1 (5.5)

for all ψ ∈ Lp,1(Ω).
(ii) Let 1 < p < ∞ and max{2, p} < q < ∞. Then there exists a constant C
such that ∫ ∞

0

τ
3
2p

− 3
2q

− 1
2‖∇e−τBψ‖q,1dτ ≤ C‖ψ‖p,1 (5.6)

for all ψ ∈ Lp,1(Ω).

We show Lemma 5.4 in Appendix.

Proof of Theorem 5.1. First, we define functions on integral equations.
For u, v ∈ BUC(R, L3,∞

σ ), θ ∈ BUC(R, L3,1) and F ∈ BUC(R, (L3/2,∞)3×3),
we define Φ[u, v, θ, F ] so that the formula

(Φ[u, v, θ, F ](·, t), ϕ)

:=
3∑

j,k=1

∫ ∞

0

(uj(·, t− τ)vk(·, t− τ)− Fjk(·, t− τ), (∂je
−τAϕ)k)dτ +

∫ ∞

0

(gθ, e−τAϕ)dτ

holds for all ϕ ∈ L
3/2,1
σ (Ω), and that

(Φ[u, v, θ, F ](·, t),∇ϕ̃) = 0

for all scalar function ϕ̃ such that ∇ϕ̃ ∈ (L3/2,1(Ω))3.
On the other hand, for u ∈ BUC(R, L3,∞

σ ), θ ∈ BUC(R, L2,∞∩L4,∞) and
S ∈ BUC(R, Ḣ−1

6/5,∞) ∩ BUC(R, L12/11), we define Ψ[u, θ, S] so that the for-
mula

(Ψ[u, θ, S](·, t), ψ)
:=

∫ ∞

0

(u(·, t− τ)θ(·, t− τ),∇e−τBψ)dτ +

∫ ∞

0

(S(·, t− τ), e−τBψ)dτ

holds for all ψ ∈ C∞
0 (Ω). Then we get

|(Φ[u, v, θ, F ](·, t), ϕ)|
≤
∑∫ ∞

0

|(uj(·, t− τ)vk(·, t− τ), (∂je
−τAϕ)k)|dτ

+
∑∫ ∞

0

|(Fj,k(·, t− τ), (∂je
−τAϕ)k)|dτ

+

∫ ∞

0

|(gθ(·, t− τ), e−τAϕ)|dτ
=: I1(t) + I2(t) + I3(t)

(5.7)
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for all t ∈ (−∞,∞), and

|(Ψ[u, θ, S](·, t), ψ)| ≤
∫ ∞

0

|(u(·, t− τ)θ(·, t− τ),∇e−τBψ)|dτ

+

∫ ∞

0

|(S(·, t− τ), e−τBψ)|dτ
=: II1(t) + II2(t)

(5.8)

for all t ∈ (−∞,∞).
By (5.1), (5.2) and (5.4), we have

I1(t) ≤ C
∑∫ ∞

0

‖uj(·, t− τ)vk(·, t− τ)‖3/2,∞‖∇e−τAϕ‖3,1dτ

≤ C sup
t∈R

‖u(t)‖3,∞ sup
t∈R

‖v(t)‖3,∞
∫ ∞

0

‖∇e−τAϕ‖3,1dτ

≤ C

(
sup
t∈R

‖u(t)‖3,∞ sup
t∈R

‖v(t)‖3,∞
)
‖ϕ‖3/2,1,

(5.9)

I2(t) ≤ C

∫ ∞

0

‖F (·, t− τ)‖3/2,∞‖∇e−τAϕ‖3,1dτ

≤ C sup
t∈R

‖F (t)‖3/2,∞
∫ ∞

0

‖∇e−τAϕ‖3,1dτ

≤ C

(
sup
t∈R

‖F (t)‖3/2,∞
)
‖ϕ‖3/2,1.

(5.10)

By (5.1), (5.2), (5.3) and (5.4), we have

I3(t) ≤
∫ ∞

0

‖gθ(·, t− τ)‖1‖e−τAϕ‖∞dτ

≤
∫ ∞

0

‖g‖3/2,∞‖θ(·, t− τ)‖3,1‖∇e−τAϕ‖3,1dτ

≤ C(g)

(
sup
t∈R

‖θ(t)‖2,∞ + sup
t∈R

‖θ(t)‖4,∞
)∫ ∞

0

‖∇e−τAϕ‖3,1dτ

≤ C(g)

(
sup
t∈R

‖θ(t)‖2,∞ + sup
t∈R

‖θ(t)‖4,∞
)
‖ϕ‖3/2,1.

(5.11)

Here, by the definition of the acceleration of gravity g(x) = −g̃ x
|x|3 , we have

g ∈ L3/2,∞.
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By (5.1), (5.2), and (5.6), we have

II1(t) ≤ C

∫ ∞

0

‖u(·, t− τ)θ(·, t− τ)‖6/5,∞‖∇e−τBψ‖6,1dτ

≤ C sup
t∈R

‖u(t)‖3,∞ sup
t∈R

‖θ(t)‖2,∞
∫ ∞

0

‖∇e−τBψ‖6,1dτ

≤ C

(
sup
t∈R

‖u(t)‖3,∞ sup
t∈R

‖θ(t)‖2,∞
)
‖ψ‖2,1,

(5.12)

II1(t) ≤ C

∫ ∞

0

‖u(·, t− τ)θ(·, t− τ)‖12/7,∞‖∇e−τBψ‖12/5,1dτ

≤ C sup
t∈R

‖u(t)‖3,∞ sup
t∈R

‖θ(t)‖4,∞
∫ ∞

0

‖∇e−τBψ‖12/5,1dτ

≤ C

(
sup
t∈R

‖u(t)‖3,∞ sup
t∈R

‖θ(t)‖4,∞
)
‖ψ‖4/3,1.

(5.13)

By (5.2) and (5.6), we have

II2(t) ≤
∫ ∞

0

‖S(·, t− τ)‖Ḣ−1
6/5,∞

‖∇e−τBψ‖6,1dτ

≤ sup
t∈R

‖S(t)‖Ḣ−1
6/5,∞

∫ ∞

0

‖∇e−τBψ‖6,1dτ

≤ C

(
sup
t∈R

‖S(t)‖Ḣ−1
6/5,∞

)
‖ψ‖2,1,

(5.14)

Since L12 = L12,12 ⊃ L12,1 and (5.5), we have

II2(t) ≤
∫ ∞

0

‖S(·, t− τ)‖12/11‖e−τBψ‖12dτ

≤ sup
t∈R

‖S(t)‖12/11
∫ ∞

0

‖e−τBψ‖12,1dτ

≤ C

(
sup
t∈R

‖S(t)‖12/11
)
‖ψ‖4/3,1.

(5.15)

Gathering (5.9)-(5.15) with (5.7) and (5.8), we get

‖Φ[u, v, θ, F ]|L3,∞
σ ‖

≤ C‖F |(L3/2,∞)3×3‖+ C‖u|L3,∞
σ ‖‖v|L3,∞

σ ‖
+ C‖θ|L2,∞‖+ C‖θ|L4,∞‖,

(5.16)

‖Ψ[u, θ, S]|L2,∞ ∩ L4,∞‖
≤ C(‖S|Ḣ−1

6/5,∞‖+ ‖S|L12/11‖) + C‖u|L3,∞
σ ‖(‖θ|L2,∞‖+ ‖θ|L4,∞‖). (5.17)
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By (5.16) and (5.17), we can show continuity of Φ and Ψ (see [66, pp.652-
653]).

We construct sequences

{
u(j)(x, t)

}∞
0

=

{{
u
(j)
l (x, t)

}3

l=1

}∞

j=0{
θ(j)(x, t)

}∞
0

=
{
θ(j)(x, t)

}∞
j=0

inductively by θ(0)(x, t) := 0, u(0)(x, t) := 0, θ(j+1)(x, t) := Ψ[u(j), θ(j), S] and
u(j+1)(x, t) := Φ[u(j), u(j), θ(j+1), F ].

We set

Aj := ‖u(j)|L3,∞
σ ‖, B2,j := ‖θ(j)|L2,∞‖, B4,j := ‖θ(j)|L4,∞‖,

Dj := max{B2,j, B4,j}.
By (5.16) and (5.17), we have

Aj+1 ≤ C2A
2
j + C1Dj+1 + C(F ),

Dj+1 ≤ C3AjDj + C(S)

Furthermore we set Mj := max{Aj, Dj}. Then we have

Mj+1 ≤ (C1C3 + C2 + C3)M
2
j + (C1C(S) + C(F ) + C(S))

=: CmaxM
2
j + (C1C(S) + C(F ) + C(S))

Therefore, if F, S are sufficiently small i.e.

C1C(S) + C(F ) + C(S) <
5

36Cmax

,

then we have

Mj ≤ 1−√
1− 4Cmax(C1C(S) + C(F ) + C(S))

2Cmax

=: M∞.

Here we get

2CmaxM∞ <
1

3
. (5.18)

We set

Ãj = ‖u(j+1) − u(j)|L3,∞
σ ‖, B̃2,j := ‖θ(j+1) − θ(j)|L2,∞‖, B̃4,j := ‖θ(j+1) − θ(j)|L4,∞‖,

M̃j := max{Ãj, B̃2,j, B̃4,j}.
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Since

u(j+2) − u(j+1)

= Φ[u(j+1), u(j+1), θ(j+2), F ]− Φ[u(j), u(j), θ(j+1), F ]

= Φ[u(j+1), u(j+1) − u(j), 0, 0] + Φ[u(j+1) − u(j), u(j), 0, 0] + Φ[0, 0, θ(j+2) − θ(j+1), 0]

and

θ(j+2) − θ(j+1) = Ψ[u(j+1), θ(j+1), S]−Ψ[u(j), θ(j), S]

= Ψ[u(j+1), θ(j+1) − θ(j), 0] + Ψ[u(j+1) − u(j), θ(j), 0],

we have

B̃2,j+1 ≤ C3‖u(j+1)|L3,∞
σ ‖‖θ(j+1) − θ(j)|L2,∞‖+ C3‖u(j+1) − u(j)|L3,∞

σ ‖‖θ(j)|L2,∞‖
≤ 2C3M∞M̃j(≤ 6CmaxM∞M̃j),

B̃4,j+1 ≤ 2C3M∞M̃j(≤ 6CmaxM∞M̃j),

and

Ãj+1 ≤ C2‖u(j+1)|L3,∞
σ ‖‖u(j+1) − u(j)|L3,∞

σ ‖+ C2‖u(j+1) − u(j)|L3,∞
σ ‖‖u(j)|L3,∞

σ ‖
+ C1‖θ(j+2) − θ(j+1)|L2,∞‖+ C1‖θ(j+2) − θ(j+1)|L4,∞‖

≤ 2C2M∞Ãj + C1B̃2,j+1 + C1B̃4,j+1

≤ 2C2M∞Ãj + 2C1C3M∞M̃j + 2C1C3M∞M̃j ≤ 6CmaxM∞M̃j.

Namely, we have
M̃j+1 ≤ 6CmaxM∞M̃j.

Then we get

‖u(k) − u(j)|L3,∞
σ ‖ ≤

k−1∑
l=j

Ãl

≤
k−1∑
l=j

M̃l ≤
k−1∑
l=j

M̃0(6CmaxM∞)l ≤ M̃0(6CmaxM∞)j

1− 6CmaxM∞

for all j, k > 0 such that j < k. Similarly we get

‖θ(k) − θ(j)|L2,∞‖ ≤ M̃0(6CmaxM∞)j

1− 6CmaxM∞
, ‖θ(k) − θ(j)|L4,∞‖ ≤ M̃0(6CmaxM∞)j

1− 6CmaxM∞
.

for all j, k > 0 such that j < k. Since

6CmaxM∞ = 3
(
1−

√
1− 4Cmax(C1C(S) + C(F ) + C(S))

)
< 1,
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we have ‖u(k)−u(j)|L3,∞
σ ‖ → 0, ‖θ(k)−θ(j)|L2,∞‖ → 0 and ‖θ(k)−θ(j)|L4,∞‖ →

0 as j, k → ∞.
Therefore, we see that there exist functions u ∈ BUC(R, L3,∞

σ ) and θ ∈
BUC(R, L3,1) such that

u(j) → u in BUC(R, L3,∞
σ ) as j → ∞,

θ(j) → θ in BUC(R, L3,1) as j → ∞.

By the direct calculation, we can show that (u, θ) satisfies integral equations
and time-periodicity (see [66, pp.656-657, Corollary 1.2]).

Similarly [27, p.42] and [66, p.658], we can show the uniqueness of the
solution. Concretely, we suppose that (u, θ) and (v, ξ) are mild solutions of
(B) with ‖u|L3,∞‖ < M∞, ‖θ|L3,1‖ < M∞, ‖v|L3,∞‖ < M∞ and ‖ξ|L3,1‖ <
M∞. Then we have u = Φ[u, u, θ, F ], θ = Ψ[u, θ, S], v = Φ[v, v, ξ, F ] and
ξ = Ψ[v, ξ, S]. Then we obtain

‖θ − ξ|L2,∞ ∩ L4,∞‖
= ‖Ψ[u, θ, S]−Ψ[v, ξ, S]|L2,∞ ∩ L4,∞‖
= ‖Ψ[u, θ − ξ, 0] + Ψ[u− v, ξ, 0]|L2,∞ ∩ L4,∞‖
≤ ‖Ψ[u, θ − ξ, 0]|L2,∞ ∩ L4,∞‖+

‖Ψ[u− v, ξ, 0]|L2,∞ ∩ L4,∞‖
= ‖Ψ[u, θ − ξ, 0]|L2,∞‖+ ‖Ψ[u, θ − ξ, 0]|L4,∞‖+

‖Ψ[u− v, ξ, 0]|L2,∞‖+ ‖Ψ[u− v, ξ, 0]|L4,∞‖
≤ C3‖u|L3,∞

σ ‖(‖θ − ξ|L2,∞‖+ ‖θ − ξ|L4,∞‖)
+ C3‖u− v|L3,∞

σ ‖(‖ξ|L2,∞‖+ ‖ξ|L4,∞)

≤ C3M∞(‖θ − ξ|L2,∞‖+ ‖θ − ξ|L4,∞‖) + 2C3M∞‖u− v|L3,∞
σ ‖,

and

‖u− v|L3,∞‖ = ‖Φ[u, u, θ, F ]− Φ[v, v, ξ, F ]|L3,∞‖
= ‖Φ[u, u− v, 0, 0]

+ Φ[u− v, v, 0, 0] + Φ[0, 0, θ − ξ, 0]|L3,∞‖
≤ C2(‖u|L3,∞‖+ ‖v|L3,∞‖)‖u− v|L3,∞‖

+ C1(‖θ − ξ|L2,∞‖+ ‖θ − ξ|L4,∞‖)
≤ 2C2M∞‖u− v|L3,∞

σ ‖
+ C1(‖θ − ξ|L2,∞‖+ ‖θ − ξ|L4,∞‖)

≤ 2C2M∞‖u− v|L3,∞
σ ‖

+ C1C3M∞(‖θ − ξ|L2,∞‖+ ‖θ − ξ|L4,∞‖)
+ 2C1C3M∞‖u− v|L3,∞

σ ‖.
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Then we have

‖u− v|L3,∞
σ ‖+ ‖θ − ξ|L2,∞ ∩ L4,∞‖

≤ 2(C1C3 + C2 + C3)M∞(‖u− v|L3,∞
σ ‖+ ‖θ − ξ|L2,∞ ∩ L4,∞‖)

= 2CmaxM∞(‖u− v|L3,∞
σ ‖+ ‖θ − ξ|L2,∞ ∩ L4,∞‖),

where Cmax = C1C3 + C2 + C3. Noting that 2CmaxM∞ < 1
3
< 1 (see (5.18)),

we get u = v and θ = ξ.

5.3 Appendix

In this section, we show Lemma 5.4. We consider the heat equation as follows:

(H)

{
∂tv −Δv = 0, x ∈ Ω, t ∈ (0,∞),

v|t=0 = ψ, ∂v
∂η
|∂Ω = 0.

Then v = e−tBψ is the solution of (H).

Lemma 5.5 ([21]). (i) Let 1 ≤ p ≤ q ≤ ∞. Then there exists a constant C
such that

‖e−tBψ‖q ≤ Ct−
3
2(

1
p
− 1

q )‖ψ‖p (5.19)

for all t > 0 and ψ ∈ Lp.
(ii) Let 1 ≤ p ≤ ∞. Then there exists a constant C such that

‖∇e−tBψ‖∞ ≤ Ct−
3
2p

− 1
2‖ψ‖p (5.20)

for all t > 0 and ψ ∈ Lp.

Lemma 5.6. There exists a constant C such that

‖∇e−tBψ‖2 ≤ Ct−
1
2‖ψ‖2 (5.21)

for all t > 0 and ψ ∈ L2.

Corollary 5.1. Let 1 ≤ p ≤ ∞ and max{2, p} ≤ q ≤ ∞. Then there exists
a constant C such that

‖∇e−tBψ‖q ≤ Ct−
3
2(

1
p
− 1

q )− 1
2‖ψ‖p (5.22)

for all t > 0 and ψ ∈ Lp.
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Proof of Lemma 5.6. We use a method by Dan-Shibata [10, pp.205-206].
Multiplying the first equation of (H) by v, we obtain the energy equality.

1

2
‖v(t)‖22 +

∫ t

0

‖∇v(s)‖2ds = 1

2
‖ψ‖22. (5.23)

By the equation of (H), we have

d

dt

(
t‖∇v(t)‖22

)
= ‖∇v(t)‖22 + 2t(∇v(t),∇∂tv(t))

= ‖∇v(t)‖22 − 2t(Δv(t), ∂tv(t))

= ‖∇v(t)‖22 − 2t(∂tv(t), ∂tv(t))

≤ ‖∇v(t)‖22.

(5.24)

Therefore, by (5.23) and (5.24), we get the desired estimate.

Proof of Corollary 5.1. By the Riesz-Thorin theorem on ∇e−tB (see e.g.
[2, Theorem 1.1.1]) with (5.20) and (5.21), we have

‖∇e−tBψ‖q ≤ Ct−
1
2‖ψ‖q (5.25)

for t > 0 and ψ ∈ Lq, where q ≥ 2. Therefore, by (5.19) and (5.25), we get
the desired estimate.

Proof of Lemma 5.4. We prove only (5.6). We can prove (5.5) in the same
way. We use a method by Yamazaki [66, pp.649-650].

Let p0 and p1 satisfy 1 < p0 < p < p1,
1
p
− 1

p1
< 2

3
and p1 < q. By real

interpolation on ∇e−tB with (5.22), we have

‖∇e−tBψ‖q,1 ≤ Ct
− 3

2

(
1
pi

− 1
q

)
− 1

2‖ψ‖pi,1 (5.26)

for t > 0 and ψ ∈ Lpi,1, where i = 0, 1. (On Lp-Lq estimates of the Stokes
semigroup in the Lorentz space, see [53, 54, 66].)

Here we set ρ = 3
2p

− 3
2q

− 1
2
and we define an operator T which maps

u ∈ Lp0,1 + Lp1,1 to a function v(t) on (0,∞), where v(t) := tρ‖∇e−tBu‖q,1.
By (5.26), we have

v(t) ≤ Ct
3
2p

− 3
2pi

−1‖u‖pi,1. (5.27)

for u ∈ Lpi,1. There exist numbers s0 and s1 such that 1
si

= 1 − 3
2p

+ 3
2pi

.

By (5.27), we have v(t) ∈ Lsi,∞(0,∞) and ‖v(·)‖si,∞ ≤ C‖u‖pi,1, that is, the
operator T maps Lp0,1(Ω) + Lp1,1(Ω) to Ls0,∞(0,∞) + Ls1,∞(0,∞).
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Here, when we choose 0 < θ < 1 satisfying 1
p

= 1−θ
p0

+ θ
p1
, we have

1 = 1−θ
s0

+ θ
s1
. Then we obtain as follows:

(Lp0,1(Ω), Lp1,1(Ω))θ,1 = Lp,1(Ω) (5.28)

and

(Ls0,∞(0,∞), Ls1,∞(0,∞))θ,1 = L1(0,∞). (5.29)

Therefore by real interpolation on the operator T with (5.28) and (5.29), we
have ∫ ∞

0

v(τ)dτ ≤ C‖u‖p,1,

that is, we get the desired estimate.
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Additional information

Nakao-Taniuchi (Nonlinear Anal. 176:48-55, 2018) is available at Elsevier via
https://doi.org/10.1016/j.na.2018.05.018. Nakao-Taniuchi (Comm. Math.
Phys. 359:951-973, 2018) is available at Springer via https://doi.org/10.1007/
s00220-017-3061-0. Nakao-Taniuchi (Contemp. Math. 710:211-222, 2018) is
available at the American Mathematical Society via http://dx.doi.org/10.
1090/conm/710/14372. The content of Section 1.2 and Chapter 4 is first pub-
lished in Contemporary Mathematics 710 (2018), published by the American
Mathematical Society. c© 2018 American Mathematical Society.
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Otdel. Mat. Inst. Steklov. (LOMI) 5 1967 169-185.
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