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Submanifolds of statistical manifolds admitting almost
complex structures

KAZUHIKO TAKANO

1 Introduction.

Statistical models in information geometry have a Fisher metric as the Riemannian metric, and admit
a torsion-free affine connection which is constructed from the expectation of the probability distribution
([1]). We have studied the exponential family admitting almost complex structures which is parallel
relative to the e and m—connections. Especially, the multinomial distribution or negative multinomial
distribution which are discrete distributions, the multivariate normal distribution or Dirichlet distribu-
tion which are continuous distributions, these distributions are important examples of the exponential
family, and we proved that these spaces admit almost complex structures which is parallel relative to
the e and m—connections. In this time, we report submanifolds of statistical manifolds admitting almost
complex structures.

2 Statistical manifolds with almost complex structures.

Let (M,g) and V be a semi-Riemannian manifold and affine connection, respectively. We define
another affine connection V* by

(2.1) Eg(F,G) = g(V&F,G) + g(F, VG)

for vector fields E, F and G on M. The affine connection V* is called conjugate (or dual) of V with
respect to g. The triple (M,g,V) is called a statistical manifold if both V and V* are torsion-free.
Clearly (V*)* = V holds. It is easy to see that +(V + V*) is a metric connection. We denote
by R and R* the curvature tensors with respect to the affine connection V and its conjugate V*,
respectively. Then we find g(R(E, F)G, H) = —g(G,R*(E, F)H) for vector fields E, F, G, H on M,
where R(E,F)G = [Vg,VF]G — V|g,r)G. Thus R vanishes identically if and only if so is R*.

An almost complex structure on a manifold M is a tensor field J of type (1,1) such that J2 = —1I,
where I stands for the identity transformation. An almost complex manifold is such a manifold with a
fixed almost complex structure. An almost complex manifold is necessarily orientable and must have
an even dimension. If J preserves the metric g, that is,

(2.2) g(JE,JF) =g(E,F)

for vector fields E and F on M, then (M, g,J) is an almost Hermitian manifold. Now, we consider the
semi-Riemannian manifold (M, g) with the almost complex structure J which has another tensor field
J* of type (1,1) satisfying

(2.3) 9(JE,F)+g4(E,J*F)=0.
Then (M, g, J) is called an almost Hermite-like manifold. We see that (J*)* = J, (J*)? = —I and
(2.4) 9(JE,J*F) = g(E, F).

If J is parallel with respect to the affine connection V, then (M, g,V, J) is called a Kahler-like statistical
manifold. By virtue of (2.3), we get

(2.5) 9(VeJ)E, F)+g(E,(V5J*)F) =0
for vector fields E, F and G on M.
LEMMA A ([2]). We have
(1) (M,g,J) is an almost Hermite-like manifold if and only if so is (M,g,J*),
(2) (M,g,V,J) is a Kahler-like statistical manifold if and only if so is (M,g,V*,J*).



3 Submanifolds of statistical manifolds

Let ( M , 9, €7) be an m-dimensional statistical manifold and M be a connected n-dimensional subman-
ifold of M with the induced metric g. The letters X, Y, Z, W will always denote tangential vector fields

and U, V normal vector fields on M. We denote the Gauss formulae relative to the affine connection V
and its conjugate V* by

(3.1) VxY = VxY +o(X,Y) and V%Y = ViY +0*(X,Y),

respectively. It is easy to see that V and V* are affine connections and o, o* are bilinear and symmetric.
Since V and V* are torsion-free, we find V and V* are torsion-free. Because of X§(Y, Z) = §(VxY, Z)+
9(Y,V%Z), affine connections V and V* are conjugate each other. Hence we have

THEOREM 3.1. (M,g,V) is a statistical submanifold of (M,ﬁ, 6)

Next, we denote the Weingarten formulae relative to the affine connections V and V* by
(3.2) VxV =—AvX + DxV and V%V = —AL X + DV,
respectively. Owing to g(Y, V) = 0, we obtain

LEMMA 3.2. We have §(o(X,Y),V) =g(Y, A}, X) and §(c*(X,Y), V) = g(Y, Av X).

LEMMA 3.3. We get g(A} X,Y) = g(X, A}Y) and g(AvX,Y) = g(X, AvY).

Let g be an induced metric on the normal bundle T+ M. We get g(Dx V,U)+g(V, D% U) = Xg(V,U).
Hence we have

LEMMA 3.4. D and D* are affine connections in TXM of M in M with respect to § on T+ M.
Moreover D and D* are conjugate each other.

From (V*)* = V, we have

LEmMA 3.5. (V¥)* =V, (¢*)* =0, (A*)* = A and (D*)* = D hold.

For the second fundamental forms o and o*, we define the covariant differentiations V and v by
(3.3) (Vxo)(Y,Z2) = Dx(0(Y, 2)) — o(V%Y,Z) — o(Y,Vx Z),
(3.4) (Vo*) (Y, Z) = D (0*(Y, Z)) — o* (VxY, Z) — *(Y, Vi 2).
Then we have

LEMMA 3.6.

~

(3.5) I(R(X,Y)Z,W) =g(R(X,Y)Z,W) —G(o(Y, Z), 0" (X, W)) + 3(0(X, 2),0"(Y,W))
(Equation of Gauss relative to 6)
(3.6) (R(X,Y)Z)J' = (Vxo)(Y,2) - (Vyo)(X,2) (Equation of Codazzi relative to V)
LEMMA 3.7.
37  FR(X,Y)Z,W)=g(R(X,Y)2,W) —§(c*(Y, 2),0(X,W)) +§(c*(X, Z),0(Y,W))
(Equation of Gauss relative to 6')
(3.8) (E* (X,Y)2)* = (V*Xa*)(Y, Z) — (v;/a*)(X, Z) (Equation of Codazzi relative to V*)
Let €ny1, ..., em be an othonormal basis in ;- M for each £ € M, that is, §(eq, €5) = €adab (@,b,... =
n+1,...,m;eq =41 or —1), and we set A, = A,, A7, = Aj. Then we have

LEMMA 3.8. The equations of Gauss relative to V and V* are rewritten as follows:

i(R(X)Y)Za W) = g(R(X,Y)Z, W) - Xm: 54{9(Y: A:Z)H(X,Aaw) - g(X, AZZ)g(Y? AGW)}’
a=n+1
JE (X V)2W) = g B X ZW) - 3 cala(ts AuZ)g(X, ATW) — g(X, AuZ)g(Y, ASW)).
a=n+1



We now define the curvature tensors R+ and (R*)* of the normal bundle of M with respect to the
affine connections V and V* by

(3.9) RY(X,Y)V = Dx(DyV) — Dy(DxV) — Dix v}V,
(3.10) (R (X,Y)V = Dx(DyV) — Dy (DxV) — Dix v}V,
respectively. Therefore we have
R(X,Y)V = —(VxA)vY + (Vy Ay X + R*(X,Y)V — 0(X, AvY) + o(Y, Av X),
R*(X,Y)V = —(Vx A )WY + (Vy A* )y X + (RY)*(X,Y)V — 0* (X, A}Y) 4 o* (Y, A} X).
Hence we find
LEMMA 3.9.
(3.11) :q'(E(X, YW, U) = ﬁ(Rl (X, Y)YV,U) + 9([Ap, Av]X, Y) (Equation of Ricci relative to 6)
(3.12) ﬁ(ﬁ* (X, )Y/V,U) = :J((RJ')*(X, Y)V,U) + g([Av, AV)X,Y) (Eguation of Ricci relative to €7’)
Let el, ...,en denote an othonormal basis of T, M for each z € M, that is, g(ei,e;) = €ids;
(z _7, ..=1,...,n;6; = 41 or —1). The mean curvature vectors p and p* of M are defined to be
LY eio(ei, ei) and p* = L Y eio*(ei, ei), respectively. If o(X,Y) = g(X,Y)u (resp. o(X,Y) =
), then M is said to be totally umbilical (resp. totally geodesic) relative to V. Let (M ,3,V) be > a space
of constant curvature ¢ relative to V, namely, R(X,Y)Z =¢{9(Y,Z2)X —§(X,Z)Y}. Then (M,q,V)

is of constant curvature ¢ relative to V if and only if so is (M,g, V*) relative to V*. The equations of
Gauss and Codazzi are given by

(3'13) 9(R(X,Y)Z,W) = E{g(Y, Z)g(X, W) - g(X, Z)g(Y, W)}
+§(‘7(Y’ Z)’U* (X’ W)) - E(G(X7 Z), o'*(Y) W)):
(3.14) (Txo)(Y, 2) = (Vyo)(X, Z).

Hence we have

THEOREM 3.10. Let (M g,V) be of constant curvature ¢ relative to V. If M™ (n > 2) is totally
umbzlical ofM relative to both V and V* then we have

(1) g(p,p*) is a constant on M,
(2) (M,g,V) is of constant curvature ¢+ §(p, u*) relative to V,
(3) (M,g,V*) is of constant curvature €+ g(p, p*) relative to V*.

4 Submanifolds of the Kahler-like statistical manifold

Let (M, 3, ) be an almost Hermite-like manifold. We put
(4.1) JX=PX+FX, JV=tV+fVv, FX=PX+FX, JV=tV+fV,

where PX,tV, P*X, t*V are tangential components and FX, fV, F*X, f*V are normal components.
By virtue of (2.3), we have

9(PX,Y)+ g(X,P*Y) =0, 9(FX,U)+g(X,t*U) =0,

(4.2) 9(tU, X) +3(U, F*X) = 0, J(FUV)+3(U.fV) = 0.

_ Lemma 4.1. Let (M,§,J) be an almost Hermite-like manifold. Then J(TyM) C TyM (resp.
J*(Tz M) C T, M) is equivalent to J* (T M)t C (T M)* (resp. J(TeM)* C (T.M)*4).

From J and J* are almost complex structures, we have
P’=—-]—-tF, FP+fF=0, Pt+tf=0, f*=-I-Ft,

4.3
( ) (P*)Zz—f—t*F*, F*P*-l—f*F*-_—O, P*t* +t*f*=0, (f*)ZI—I—F*t*.



We define the covariant derivatives Vx P of P and Vx F of F by (VxP)Y = Vx(PY) — P(VxY)
and (VxF)Y = Dx(FY) — F(VxY), respectively. Also, we define the covariant derivative Vxt (resp.
Vx f) oft (resp. f) by (Vxt)V = Vx(tV)—t(DxV) (resp. (Vxf)V = Dx(fV)—f(DxV)). Similarly,
we can define the covariant derivative with respect to V*. Hence we get

LEMMA 4.2. Let (M , 3, 6) be a statistical manifold admitting the Hermite-like structuter J. Then
we have

(1) VP =0 is equivalent to V*P* =0, (2) VF =0 is equivalent to V*t* = 0,
(3) Vit =0 is equivalent to V*F* =0, (4) Vf =0 is equivalent to V*f* = 0.

LEMMA 4.3. Let (M, 3,9, J) be a Kahler-like statistical manifold. Then VJ =0 is equivalent to the
following equations:
(4.4) (VxP)Y = Ay X +to(X,Y),
(4.5) (VxF)Y = —-0(X,PY)+ fo(X,Y),
(4.6) (Vxt)V = —P(Av X) + A; v X,
(4.7 (Vxf)V =—-F(AvX) —o(X,tV).

Finally, we discuss that M is a J—-invariant submanifold of the almost Hermite-like manifold (M .4, J ),

namely, J| (TeM) C TyM for each ¢ € M. We call such a submanifold M an almost Hermite-like
submanifold. Owing to Lemma 4.1, we can put JX =JX, JV =tV + 7V, J*X = J*X + F*X
and J*V = J'V. Since J and J* are almost complex structures, we obtain J2 = —I, Jt+tJ =
0, T = I, (J*2=—I, F*J*+ T F* =0 and (T“)2 = —I. Also, we find g(JX,Y) + g(X,J*Y) =
0, 9(tU, X) +g(U,F*X) = 0 and g(JU,V) + §(U,J V) = 0 from (4.2). Thus we have

LEMMA 4.4. Let (M, g, j) be an almost Hermite-like manifold and M be a J—invariant submanifold.
Then we get

(1) (M,g,J) is an almost Hermite-like submanifold,
(2) (M,g,J*) is an almost Hermite-like submanifold.

Let (H ,3,V,J) be a Kahler-like statistical manifold and M be a J-invariant submanifold. From
(4.5), we find ¢(X,JY) = Jo(X,Y). Hence we have

THEOREM 4.5. Let (M, §,§,ff) be a Kdhler-like statistical manifold and M be a J—invariant sub-

manifold. If M 1is totally umbilical relative to 6, then M 1s totally geodesic relative to V. Moreover
(M,g,V,J) is a Kdhler-like statistical manifold.
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