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For an unknown continuous distribution on the real line, we consider the
approximate estimation by discretization. There are two methods for dis-
cretization. The first method is to divide the real line into several inter-
vals before taking samples (“fixed interval method”). The second method is
to divide the real line using the estimated percentiles after taking samples
(“moving interval method”). In either method, we arrive at the estimation
problem of a multinomial distribution. We use (symmetrized) f -divergence
to measure the discrepancy between the true distribution and the estimated
distribution. Our main result is the asymptotic expansion of the risk (i.e., ex-
pected divergence) up to the second-order term in the sample size. We prove
theoretically that the moving interval method is asymptotically superior to
the fixed interval method. We also observe how the presupposed intervals
(fixed interval method) or percentiles (moving interval method) affect the
asymptotic risk.
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1 Introduction

Consider a probability distribution on the real line that is absolutely continuous with
respect to the Lebesgue measure. (We do not assume it has full support (−∞,∞).)
We call this distribution the “mother distribution.” Let P (a, b) denote the probability
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of the mother distribution for the interval (a, b). We discretize the mother distribution
and obtain the corresponding multinomial distribution as follows: let

−∞(, a0) < a1 < a2 < . . . < ap <∞(, ap+1). (1)

Consider the multinomial distribution with possible results Ci (i = 0, . . . , p) each of
which having a probability P (ai, ai+1). This multinomial distribution is an approxi-
mation of the mother distribution and convey a certain amount of information on the
mother distribution. In many practical cases, this information could be enough for a
statistical analysis with an appropriate selection of ai. (See e.g., Barbiero [?], Drezner
and Zerom [?], and English et al. [?].) This approximation has the merit that it can
be applicable to any mother distribution even when the mother distribution cannot be
approximated well by a parametric family.

In this paper, we consider the estimation of the unknown mother distribution through
the approximation by discretization. There are two theoretically contrasting methods
on how to choose the ai. One is the “fixed interval method.” The ai are given before
collecting the sample. In other words, we choose the intervals independently of the sam-
ple from the mother distribution. The other method is the “moving interval method.”
First choose the percentiles to be estimated, ξ1 < . . . < ξp, and estimate them from the

sample of the mother distribution. The estimated percentiles ξ̂i (i = 1, . . . , p) are used
as the endpoints of the intervals, that is, ai = ξ̂i (i = 1, . . . , p). The difference between
the two methods lies in “intervals first” or “percentiles first.”

Let us introduce some aspects of the two methods from a practical point of view.
First, we note that in some practical situations, we are only allowed to choose the fixed
interval method. Although the mother distribution is continuous, we are only able to
observe samples within some significant digits. If that number of significant digits is not
large enough to recognize small individual differences, we obtain numbers with many
ties as samples, where we are forced to choose the fixed intervals. For example, if we
have to weigh adult males using kilogram units without accuracy for decimal places, the
above points ai would be numbers such as 49.5, 50.5, 51.5, . . . , 120.5 (kg), which are
prefixed independently of the samples.

Second the fixed intervals and the moving intervals correspond to a histogram and
an empirical percentile graph (E.P.G.), respectively, in view of summarizing the data.
Figure ?? shows the density function of Beta(2, 5) as the mother distribution and the
histogram (relative frequency) made from 103 randomly chosen samples, where the inter-
vals are prefixed as ai = i/10, i = 1, . . . , 9. Figure ?? shows the cumulative distribution
function (C.D.F.) of the mother distribution and the E.P.G. made from the same sample
as the histogram. Percentiles are chosen as ξi = i/10, i = 1, . . . , 9 and they are estimated
from the order statistics x(1) < x(2) < · · · < x(1000), that is, ξ̂i = x(100i), i = 1, . . . , 9.
Both the histogram and the E.P.G. are the approximation of the mother distribution
and used for the estimation (prediction) of the mother distribution. The information
of the whole sample is summarized into a set of nine numbers for both approximations:
the relative frequencies for 10 intervals for the histogram (because the total area of the
histogram is fixed to be 1, there are 9 degrees of freedom) and 9 empirical percentiles
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Figure 1: Beta(2, 5) and its approximation

for the E.P.G. The question then arises, “Which estimate is more efficient?” This is the
main motivation for our research.

Finally, though the two methods are theoretically contrasting, we often use one method
as an auxiliary for another. When we make a histogram, we usually select the width or
number of the intervals using the empirical percentiles. For example, we often choose
the first endpoint a1 and the last one ap for the histogram after observing the minimum
and maximum values of the sample. On the interval width (say h) of a histogram, we
might use the “Freedman–Diaoconis rule,” which recommends choosing h as

h = 2(the third quantile− the first quantile)/n1/3.

In contrast, when we know the mother distribution is symmetric, we set the central
point as the median for the moving interval methods regardless of the value of the
sample median.

Once the intervals ai are given, we have the estimation problem of the parameters of
the multinomial distribution. If we use the fixed interval method, the true (unknown)
parameters are P (ai, ai+1) (i = 0, . . . , p) and we need to estimate these parameters
based on the frequencies of the sample. On the other hand, for the moving interval
method, the true parameter is P (ξ̂i, ξ̂i+1) (ξ̂0 , −∞ and ξ̂p+1 , ∞), whereas the
estimand is the probability given by the presupposed percentiles; if ξi is the lower 100λi%
percentile for 1 ≤ i ≤ p, then the estimated probability for each interval is given by
λi+1 − λi (i = 0, . . . , p) with λ0 , 0, λp+1 , 1. In the above example, where 103

samples are taken from Beta(2, 5), we have two sets of a multinomial distribution and
its estimand (see Tables ?? and ??).

For the measurement of the performance of the estimators, we use the f -divergence.
The f -divergence between the two multinomial distributions (say M1 and M2) is defined
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Table 1: True distribution and estimand for the fixed intervals

Intervals 0–0.1 0.1–0.2 · · · 0.8–0.9 0.9–1.0
True Distribution 0.114265 0.230375 · · · 0.001545 0.000055
Estimand 0.114 0.214 · · · 0.002 0.000

Table 2: True distribution and estimand for the moving intervals

Intervals 0–0.095 0.095–0.140 · · · 0.425–0.508 0.508–1.0
True Distribution 0.103679 0.097323 · · · 0.094771 0.102116
Estimand 0.1 0.1 · · · 0.1 0.1

as

Df [M1 : M2] ,
p∑
i=0

p1i f

(
p2i
p1i

)
, (2)

where p1i, p2i, i = 0, . . . , p, are the probabilities of each result for M1 and M2, respec-
tively, and f is a smooth convex function such that f(1) = 0, f ′(1) = 0, f ′′(1) = 1. The
f -divergence is natural in view of the sufficiency of the sample information. If we use
the dual function of f defined by f ∗(x) = xf(1/x), we have

Df∗ [M1 : M2] = Df [M2 : M1]. (3)

(See Amari [?] and Vajda [?] for the property of f -divergence.)
When the f -divergence is too abstract for us to gain some concrete result, we use the

α-divergence. This is a one-parameter (α) family given by (??) with fα(x) such that

fα(x) ,


4

1−α2

(
1− x(1+α)/2

)
+ 2

1−α(x− 1) if α 6= ±1,

x log x+ 1− x if α = 1,

− log x+ x− 1 if α = −1.

(4)

We use the notation
α

D[M1 : M2] instead of Dfα [M1 : M2]. The α-divergence is the
subclass of the f -divergence, but still a broad class that contains the frequently used
divergences such as the Kullback–Leibler divergence (α = −1), Hellinger distance (α =
0), and χ2-divergence (α = 3). Note that f ∗α, the dual funcion of fα, equals f−α; hence,

−α
D [M1 : M2] =

α

D[M2 : M1]. (5)

In general, divergence D[M1 : M2] satisfies the condition

D[M1 : M2] ≥ 0, D[M1 : M2] = 0 if and only if M1
d
= M2. (6)

However, the triangle inequality and symmetry do not hold true. In this paper, we adopt
the mean of the dual divergences to satisfy the symmetry (see Amari and Cichocki [?]):

|α|
D[M1 : M2] ,

1

2

{
α

D[M1 : M2] +
−α
D [M1 : M2]

}
. (7)
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We take the expectation of the divergence between the estimated multinomial distri-
bution M̂ and the true distribution M :

ED , E
[
Df [M : M̂ ]

]
. (8)

This is the risk of M̂ and we use it to describe the quality of the estimation. In this
paper, we only consider the basic estimators, that is, the maximum likelihood estimator
(m.l.e.) for the fixed interval and the ordered sample for the moving interval.

As it is difficult to analyze the risk theoretically under small sample sizes, we focus on
asymptotic risk under large sample sizes. In Section ??, as the main result, we show the
asymptotic expansion of the risk for both methods: the fixed interval and the moving
interval (Theorems 1 and 2). Using this result, first we observe how the asymptotic
risk is affected by the presupposed intervals (the fixed intervals) or percentiles (the
moving intervals). Second, we compare the asymptotic risk between the two methods
and report the superiority of the moving interval methods when the percentiles are given
with equiprobable intervals.

2 Main Result

We state the asymptotic expansion of the risk (??) up to second order with respect
to the sample size, n, for both methods, that is, the fixed interval method (Section
??) and the moving interval method (Section ??). In each subsection, we analyze how
the asymptotic risk is determined with respect to the sample size, the dimension of
the multinomial distribution and the prefixed intervals (fixed intervals) or percentiles
(moving intervals). In Section ??, we compare both methods and show the superiority
of the moving intervals when the percentiles are given with equiprobable intervals.

2.1 Fixed Intervals

We prefix the intervals with the endpoints (??) before taking the sample from the mother
distribution. In other words, we choose the endpoints (??) independently of the sample.

We consider the multinomial distribution with the possible results Ci, i = 0, . . . , p.
If a sample from the mother distribution takes the value within the interval (ai, ai+1)
for i = 0, . . . , p, we count it as the sample with the result Ci. Then this multinomial
distribution is an approximation of the mother distribution by a discretization. The
probability for Ci is given by

mi , P (ai, ai+1), i = 0, . . . , p,

where P (ai, ai+1) is the probability of the mother distribution for the interval (ai, ai+1).
We estimate this multinomial distribution through the m.l.e. Let Xi, i = 1, . . . , n, be

the independent and identically distributed (i.i.d.) sample from the mother distribution.
Then the m.l.e. of m , (m0, . . . ,mp) is given by m̂ , (m̂0, . . . , m̂p), where

m̂i , #{Xi|Xi ∈ (ai, ai+1)}/n, i = 0, . . . , p. (9)
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Its discrepancy from the true m is given by

Df [m : m̂] ,
p∑
i=0

mi f

(
m̂i

mi

)
. (10)

The performance of m̂ is measured by the risk,

EDI , E
[
Df [m : m̂]

]
. (11)

Let f (i), i = 1, 2, . . ., be the ith derivative of f in (??). For a general multinomial dis-
tribution, which is not necessarily given by a mother distribution as above, the following
result holds.

Theorem 1. Suppose that f (5) exists on (0,∞) and is bounded on [ε,∞) for any ε(> 0).
For a multinomial distribution with the probability m , (m0, . . . ,mp) and its m.l.e. m̂,
the risk of m.l.e. (??) based on an i.i.d. sample of size n is given as follows:

EDI =
p

2n
+

1

24n2

[
4f (3)(1)

(
−3p− 1 +M

)
+ 3f (4)(1)

(
−2p− 1 +M

)]
+ o(n−2), (12)

where

M ,
p∑
i=0

m−1i .

–Proof –
Let

Ri ,
m̂i −mi

mi

.

Note that (√
n(m̂1 −m1), . . . ,

√
n(m̂p −mp)

)
d−→ Np(0,Σ),

where

Σ , (σij), σij ,

{
mi(1−mi) if i = j,

−mimj if i 6= j.

(See e.g., (5.4.13) of [?].) Using this fact and f(1) = 0, f ′(1) = 0, f ′′(1) = 1, we have
the following expansion Df [m : m̂] with respect to n:

Df [m : m̂]

=

p∑
i=0

mif(1 +Ri)

=

p∑
i=0

mi

(
f(1) + f ′(1)Ri +

1

2
f ′′(1)R2

i +
1

6
f (3)(1)R3

i +
1

24
f (4)(1)R4

i +
1

120
f (5)(1 +R∗i )R

5
i

)
=

1

2

p∑
i=0

miR
2
i +

1

6
f (3)(1)

p∑
i=0

miR
3
i +

1

24
f (4)(1)

p∑
i=0

miR
4
i +

1

120

p∑
i=0

f (5)(1 +R∗i )miR
5
i
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=
1

2

p∑
i=0

m−1i (m̂i −mi)
2 +

1

6
f (3)(1)

p∑
i=0

m−2i (m̂i −mi)
3

+
1

24
f (4)(1)

p∑
i=0

m−3i (m̂i −mi)
4 +

1

120

p∑
i=0

f (5)(1 +R∗i )m
−4
i (m̂i −mi)

5, (13)

where R∗i is a smooth function of Ri, hence of m̂i such that

0 < R∗i (m̂i) < Ri(m̂i), if Ri(m̂i) > 0, 0 > R∗i (m̂i) > Ri(m̂i) ≥ −1, if Ri(m̂i) < 0.
(14)

Let
ε , min

0≤m̂i≤1
R∗i (m̂i).

From (??), we have
R∗i (m̂i) > −1,

hence, ε > −1, which means that

R∗i + 1 ≥ ε+ 1 > 0.

Owing to the condition of the boundedness of f (5)(x) on (ε+1,∞), we have some Bi (> 0)
such that

|f (5)(1 +R∗i )| ≤ Bi.

From the central moments of the standardized multinomial distribution, we have

E[m̂i −mi] = 0, E[(m̂i −mi)
2] = n−1(mi −m2

i ),

E[(m̂i −mi)
3] = n−2(mi − 3m2

i + 2m3
i ), E[(m̂i −mi)

4] = 3n−2(mi −m2
i )

2 + o(n−2),

E[(m̂i −mi)
6] = O(n−3),

By noticing that ∣∣∣E[f (5)(1 +R∗i )m
−4
i (m̂i −mi)

5
]∣∣∣

≤ E
[∣∣∣f (5)(1 +R∗i )m

−4
i (m̂i −mi)

5
∣∣∣]

≤ m−4i BiE
[∣∣∣m̂i −mi

∣∣∣5]
= m−4i BiE

[(
(m̂i −mi)

6
)5/6]

≤ m−4i Bi

(
E[(m̂i −mi)

6]
)5/6

= o(n−2),

(15)

we have

EDI =
1

2n

p∑
i=0

(1−mi)+
1

6n2
f (3)(1)

p∑
i=0

(m−1i −3+2mi)+
1

8n2
f (4)(1)

p∑
i=0

(m−1i −2+mi)+o(n
−2),
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which is equivalent to the result (??) because
∑p

i=0mi = 1. Q.E.D.
In particular, for the α-divergence,

α

D[m : m̂] , Dfα [m : m̂],
|α|
D[m : m̂] ,

1

2

{
Dfα [m : m̂] +Df−α [m : m̂]

}
,

where fα is given by (??), the following results hold. (Sheena [?] gained this result as
an example of the asymptotic risk of the m.l.e. for a general parametric model.)

Corollary 1. Suppose that α ≤ 9, then

α

EDI , E
[ α
D[m : m̂]

]
=

p

2n
+

1

96n2

{
(α− 3)(3α− 7)(M − 1)− 6(α− 3)(α− 1)p

}
+ o(n−2),

(16)

|α|
EDI , E

[|α|
D[m : m̂]

]
=

p

2n
+

1

32n2

{
(α2 + 7)(M − 1)− 2(α2 + 3)p

}
+ o(n−2). (17)

–Proof –
From (??), we find that

f (3)
α (x) =

(α− 3)

2
x(α−5)/2, f (4)

α (x) =
(α− 3)(α− 5)

22
x(α−7)/2,

f (5)
α (x) =

(α− 3)(α− 5)(α− 7)

23
x(α−9)/2,

hence,
f (3)
α (1) = (α− 3)/2 f (4)

α (1) = (α− 3)(α− 5)/4,

and if α ≤ 9, then f
(5)
α (x) is bounded on the interval [ε,∞) for any ε (> 0). Q.E.D.

We observe the following points from (??), (??), and (??).

1. The main term, i.e., n−1th-order term, is determined by p/n, that is the ratio
of the dimension of the multinomial distribution model (the number of the free
parameters) to the sample size. We call this the “p–n ratio” hereafter. The p–n
ratio shows the complexity of the model to be estimated relative to the sample
size. The main term is independent of f or α, and mi (i = 0, . . . , p).

2. The second term, i.e., n−2th-order term, depends on the parameter of the multi-
nomial distribution through

M ,
p∑
i=0

m−1i .

Here M attains the minimum value (p + 1)2 when m0 = m1 = · · · = mp. It
increases rapidly if one of the mi is near to zero. The effect of M on the risk
depends on the choice of f or α. If you choose f such that 4f (3)(1) + 3f (4)(1) is
non-positive or α such that 7/3 ≤ α ≤ 3, (??) and (??), respectively, decreases
or is constant as M increases. This is rather unnatural because it contradicts our
beliefs that the existence of a result with a small probability makes estimation
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more difficult for a multinomial distribution. In this sense, the χ2-distance with
α = 3 seems inappropriate, because it is asymptotically insensitive to the difference
in the parameters mi (i = 0, . . . , p). (See Sheena [?], who reported that the α-
divergence seems statistically unnatural when |α| is large for a regression model.)
The α-divergence is a distance if and only if α = 0, and the pair of α- and −α-
divergences work dually in the same manner as a distance. (For the “generalized

Pythagorean theorem,” see [?] or [?].) In this respect, the divergence
|α|
D seems

natural. In fact, (??) shows that the risk is a monotonically increasing function of
M for any α.

3. The n−2th-order term of (??) or (??) can be negative for some f(or α), p , while
that of (??) is always positive as

(α2+7)(M−1)−2(α2+3)p ≥ (α2+7)((p+1)2−1)−2(α2+3)p = p2α2+7p2+8p > 0.

2.2 Moving Intervals

First, we choose points λi(1 ≤ i ≤ p) in the interval (0, 1):

λ0(, 0) < λ1 < λ2 < · · · < λp < λp+1(, 1). (18)

Let
ξi , F−1(λi), 1 ≤ i ≤ p, ξ0 ≡ −∞, ξp+1 ≡ ∞,

where F−1 is the inverse function of the C.D.F., F , of the mother distribution. We call
ξ the percentiles of the mother distribution.

In the moving intervals method, we estimate the percentiles of the mother distribution
from the sample of the mother distribution, and use them as the endpoints of (??):

ai = ξ̂i, 1 ≤ i ≤ p, (19)

where ξ̂i is the estimator of ξi for i = 1, . . . p and ξ̂0 ≡ −∞ and ξ̂p+1 ≡ ∞. In this case,
the multinomial distribution that approximates the mother distribution has unknown
parameters

m̂ , (m̂0, . . . , m̂p), m̂i , P (ai, ai+1) ≡ P (ξ̂i, ξ̂i+1) 0 ≤ i ≤ p,

whereas it is estimated as

m , (m0, . . . ,mp), mi , λi+1 − λi 0 ≤ i ≤ p.

Although there are several ways to estimate the percentile ξ, we focus here on the
simple estimator using the order statistic itself. Take an i.i.d. sample of size n from the
mother distribution and let the ordered sample be denoted by

X(1) ≤ X(2) ≤ · · · ≤ X(n).

9



We estimate ξi by
ξ̂i , X(ni) 1 ≤ i ≤ p, (20)

where ni is a function of n with the values in {1, 2, . . . , n}. Let ri denote the gap between
ni and nλi, namely

ri , ni − nλi 1 ≤ i ≤ p, r0 , 0, rp+1 , 1. (21)

We measure the discrepancy between m and m̂ by f -divergence,

Df [m : m̂] ,
p∑
i=0

mi f

(
m̂i

mi

)
. (22)

If one might think it is natural to consider Df [m̂ : m] in the sense that the true parameter
should come first, it is satisfied by using the dual function f ∗ (see (??)). Hence, we
proceed with (??).

The risk for the moving interval method is given by

EDP , E
[
Df [m : m̂]

]
,

and the following result holds.

Theorem 2. Suppose that f (5) exists on (0,∞) and is bounded on [ε,∞) for any ε(> 0).

If ri/n = o(n
−1/2
i ), then we have

EDP =
p

2n
+

1

24n2

[
−24− 36p+ 12

p∑
i=0

(ri+1 − ri)(ri+1 − ri + 1)m−1i

+ 4f (3)(1)
{
−5− 9p+

p∑
i=0

(
3(ri+1 − ri) + 2

)
m−1i

}
+ f (4)(1)

{
−3− 6p+ 3

p∑
i=0

m−1i

}]
+ o(n−2). (23)

–Proof –
The whole process of the proof is lengthy; hence, we only state the outline of the proof
here. All the details can be found in the Appendix of [?]. Let

U(ni) , F (X(ni)), ∆i ,
√
n(U(ni) − λi) 1 ≤ i ≤ p

and ∆0 , 0, ∆p+1 , 0. The following relationship holds for 0 ≤ i ≤ p:

m̂i = F (ξ̂i+1)− F (ξ̂i)

= F (X(ni+1))− F (X(ni))

= U(ni+1) − U(ni)

= λi+1 − λi + n−1/2(∆i+1 −∆i)
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= mi + n−1/2(∆i+1 −∆i). (24)

Note that
(∆1, . . . ,∆p)

d−→ Np(0,Σ),

where
Σ = (σij) = λi(1− λj) 1 ≤ i ≤ j ≤ p

(see e.g., Theorem 5.4.5 of [?]). Similarly to (??), the following equation holds:

Df [m : m̂] =
1

2

p∑
i=0

miR
2
i +

1

6
f (3)(1)

p∑
i=0

miR
3
i +

1

24
f (4)(1)

p∑
i=0

miR
4
i

+
1

120

p∑
i=0

f (5)(1 +R∗i )miR
5
i , (25)

where R∗i is a function of m̂i and there is some positive constant Bi such that

|f (5)(1 +R∗i )| ≤ Bi.

Using this boundedness and the fact E[R6
i ] = O(n−3), completely similarly to (??) , we

have
E[f (5)(1 +R∗i )miR

5
i ] = o(n−2),

hence,

EDP =
1

2

p∑
i=0

miE[R2
i ] +

1

6
f (3)(1)

p∑
i=0

miE[R3
i ] +

1

24
f (4)(1)

p∑
i=0

miE[R4
i ] + o(n−2). (26)

After a long but straightforward calculation (see the Appendix of [?]), we have

p∑
i=0

miE[R2
i ] = n−1p+ n−2[−2− 3p+

p∑
i=0

(ri+1 − ri)(ri+1 − ri + 1)m−1i ],

p∑
i=0

miE[R3
i ] = n−2[−5− 9p+

p∑
i=0

(
3(ri+1 − ri) + 2

)
m−1i ],

p∑
i=0

miE[R4
i ] = n−2[−3− 6p+ 3

p∑
i=0

m−1i ].

If we insert these results into (??), we have the result. Q.E.D.
We also have the following formulas for the α-divergence.

Corollary 2. Suppose that α ≤ 9 and ri/n = o(n
−1/2
i ), then

α

EDP =
p

2n
+

1

96n2

[
−α2(3 + 6p)− α(16 + 24p)− 18p− 21

11



+

p∑
i=0

{
48(ri+1 − ri)2 + 24(α− 1)(ri+1 − ri) + 3α2 − 8α− 3

}
m−1i

]
+ o(n−2), (27)

|α|
EDP =

p

2n
+

1

96n2

[
−α2(3 + 6p)− 18p− 21

+

p∑
i=0

{
48(ri+1 − ri)2 − 24(ri+1 − ri) + 3α2 − 3

}
m−1i

]
+ o(n−2)

(28)

–Proof –
We can derive the result from (??) in the same way as Corollary ??. Q.E.D.

We make some comments on EDP ,
α

EDP , and
|α|
EDP .

1. The main term is half the p–n ratio just like EDI . It is independent of f or α,
and mi(i = 0, . . . , p).

2. The risk is independent of the mother distribution (it is due to the fact (??)). It
is determined by our choice of mi or equivalently λi in (??).

3. The choice of ni or equivalently ri (i = 1, . . . , p) effects the n−2th-order term. It
is possible that the coefficient of m−1i could be negative for some ri and f (or α).
In this case, small mi could reduce the risk.

The most natural selection of ni is [nλi] or [nλi] + 1, where [ · ] is the Gauss symbol.
Let

r̄i , [nλi]− nλi. (29)

In this paper, we consider the following randomized choice between [nλi] and [nλi] + 1:

P (ri = r̄i)
(

= P (ni = [nλi])
)

= 1+r̄i, P (ri = 1+r̄i)
(

= P (ni = [nλi]+1)
)

= −r̄i (30)

for 1 ≤ i ≤ p, whereas r0 ≡ 0 and rp+1 ≡ 1 as in (??). This is natural in that ni is
chosen to be [nλi] and [nλi] + 1, respectively, with the probabilities proportional to the
closeness to both points. Locating ξ̂i between X([nλi]) and X([nλi]+1) according to r̄i is
another appealing idea. However, if we adopt this estimation of ξi, then the risk depends
on the mother distribution. We do not study this case here.

Let

ED∗P , E[EDP ],
α

ED∗P , E[
α

EDP ],
|α|

ED∗P , E[
|α|
EDP ],

where the entire expectation is taken with respect to the distribution (??). The following
results hold for the randomized choice of ri (??).

Proposition 1. We have

ED∗P =
p

2n
+

1

48n2

[
−48− 72p+ 24

{
−r̄1(1 + r̄1)m

−1
0 +

(
2− r̄p(1 + r̄p)

)
m−1p

12



−
p−1∑
i=1

(
r̄i(1 + r̄i) + r̄i+1(1 + r̄i+1)

)
m−1i

}
+ 8f (3)(1)

{
−5− 9p+ 2

p∑
i=0

m−1i + 3m−1p

}
+ 2f (4)(1)

{
−3− 6p+ 3

p∑
i=0

m−1i

}]
+ o(n−2),

For α ≤ 9,
α

ED∗P =
p

2n
+

1

96n2

[
−α2(3 + 6p)− α(16 + 24p)− 18p− 21

− 48r̄1(1 + r̄1)m
−1
0 +

(
−48r̄p(1 + r̄p) + 24(α + 1)

)
m−1p

− 48

p−1∑
i=1

(
r̄i(1 + r̄i) + r̄i+1(1 + r̄i+1)

)
m−1i

+ (3α2 − 8α− 3)

p∑
i=0

m−1i

]
+ o(n−2),

For α ≤ 9,

|α|
ED∗P =

p

2n
+

1

96n2

[
−α2(3 + 6p)− 18p− 21

− 48r̄1(1 + r̄1)m
−1
0 +

(
24− 48r̄p(1 + r̄p)

)
m−1p

− 48

p−1∑
i=1

(
r̄i(1 + r̄i) + r̄i+1(1 + r̄i+1)

)
m−1i

+ (3α2 − 3)

p∑
i=0

m−1i

]
+ o(n−2).

–Proof –
As was proved in the Appendix of [?], the following results hold:

E[ri] = 0 for 0 ≤ i ≤ p, E[rp+1] = 1

E[r2i ] = −r̄i(1 + r̄i) for 1 ≤ i ≤ p, E[r20] = 0, E[r2p+1] = 1

E[riri+1] = 0 for 0 ≤ i ≤ p.

Applying these results to E[(ri+1−ri)2] = E[r2i ]+E[r2i+1]−2E[riri+1] and E[ri+1]−E[ri]
in (??), (??), and (??), we have the results. Q.E.D.

2.3 Comparison of the two methods

We compare the risks between the fixed interval method and the moving interval method.
For both methods, the main term (n−1th-order term) are common, but we can see some

13



difference in the second term (n−2th-order term). The biggest difference between the
two methods lies in mi. In the fixed interval method, mi depend on the unknown mother
distribution; hence, we are unable to control them. As we observed in Section ??, if they
include even one small mi near to zero, then the (asymptotic) risk becomes extremely
high through M . The more intervals (endpoints) we use for discretization, the more
likely we are to have small mi. Even if we have a large sample set, we have to be
cautious about increasing the dimension of the multinomial distribution. In contrast,
for the moving interval method, mi are controllable. We can choose mi so that the risk
attains as small a value as possible.

To make the comparison between the two methods, we need to evaluate the upper

bounds for ED∗P ,
α

ED∗P , and
|α|

ED∗P . From the inequalities

−1 ≤ r̄i ≤ 0, 0 ≤ −r̄i(1 + r̄i) ≤ 1/4, for i = 1, . . . , p,

we have the following relations:

ED∗P ≤
p

2n
+

1

48n2

[
−48− 72p+ 6

{
m−10 + 9m−1p + 2

p−1∑
i=1

m−1i

}
+ 8f (3)(1)

{
−5− 9p+ 2

p∑
i=0

m−1i + 3m−1p

}
+ 2f (4)(1)

{
−3− 6p+ 3

p∑
i=0

m−1i

}]
+ o(n−2)

(
say ED

∗
P

)
,

α

ED∗P ≤
p

2n
+

1

96n2

[
−α2(3 + 6p)− α(16 + 24p)− 18p− 21

+ 12m−10 + (24α + 36)m−1p

+ 24

p−1∑
i=1

m−1i + (3α2 − 8α− 3)

p∑
i=0

m−1i

]
+ o(n−2)

=
p

2n
+

1

96n2

[
−α2(3 + 6p)− α(16 + 24p)− 18p− 21

+ (3α2 − 8α + 9)m−10 + (3α2 + 16α + 33)m−1p

+ (3α2 − 8α + 21)

p−1∑
i=1

m−1i

]
+ o(n−2)

(
say

α

ED
∗
P

)
,

|α|
ED∗P ≤

p

2n
+

1

32n2

[
−α2(1 + 2p)− 6p− 7 + (α2 + 3)m−10 + (α2 + 11)m−1p

+ (α2 + 7)

p−1∑
i=1

m−1i

]
+ o(n−2)

(
say

|α|

ED
∗
P

)
.

If we choose the equal right-end and left-end probabilities, i.e., m0 = mp,

|α|

ED
∗
P =

p

2n
+

1

32n2

[
−α2(1 + 2p)− 6p− 7 + (α2 + 7)M

]
+ o(n−2). (31)

14



This upper bound for
|α|

ED∗P is affected by mi only through M just like (??). This
indicates that the choice of equally valued mi, that is, mi = 1/(p + 1), i = 1, . . . , p, is
reasonable for the estimation of the mother distribution. It is needless to say that the
percentiles with a common increment (“quantiles”) are most often used in a practical
situation. If we choose “quantiles” for the moving interval method, we have the following
result for α ≤ 9,

Theorem 3. Suppose that α ≤ 9. Set λi in (??) so that mi = 1/(p + 1), i = 0, . . . , p,
then asymptotically (exactly speaking, as for the comparison up to the n−2th-order term),
the following inequality holds:

|α|
EDI ≥

|α|
ED∗P . (32)

–Proof –
As M ≥ (p+ 1)2, from (??), we have

|α|
EDI ≥

p

2n
+

1

32n2

{
(α2 + 7)(p2 + 2p)− 2(α2 + 3)p

}
+ o(n−2)

(
say

|α|
EDI

)
,

whereas when mi = 1/(p+ 1), i = 0, . . . , p,
|α|

ED
∗
P equals

p

2n
+

1

32n2

[
−α2(1 + 2p)− 6p− 7 + (α2 + 7)(p2 + 2p+ 1)

]
+ o(n−2).

Up to the n−2th-order term, we have

|α|
EDI −

|α|
ED∗P ≥

|α|
EDI −

|α|

ED
∗
P = 0. (33)

Q.E.D.

The above theorem states that even if we are lucky enough to choose the best inter-
vals (that is, equiprobable intervals) for the fixed interval method, it is asymptotically
dominated by the moving interval method with “quantiles.” We can conclude that if we
can choose both methods, it is better, at least asymptotically, to use the moving interval
method.

We also present a numerical comparison between the methods.

– Example 1 –
First we take the example given in the introduction again where the mother distribu-

tion is Beta(2, 5). Suppose that we have prior knowledge that the mother distribution
has the support [0, 1], and set ai as ai = i/10 (1 ≤ i ≤ 9) for the fixed intervals. The
mi for the moving interval method with “quantiles” are mi = 1/10(0 ≤ i ≤ 9). The
corresponding probabilities for the fixed intervals are given by

(m0,m1, . . . ,m9) + (0.114, 0.230, 0.235, 0.187, 0.124, 0.068, 0.030, 0.009, 0.002, 5.5×10−5).
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Figure 2: Approximated
|1|

ED∗P and
|1|
EDI for Beta(2, 5)

Note that even if we have the information on the compact support, the fixed intervals
made by equally dividing the support could contain that with a very small probability
such as 5.5× 10−5.

Let us skip the o(n−2) part of
|α|
EDI (

|α|
ED∗P ), and call it the approximated

|α|
EDI (

|α|
ED∗P ).

The graphs of the approximated risks as n varies for both methods with α = 1 are shown
in Figure ??. (Note that |α| are skipped in the legend.)

We propose one indicator for the comparison between the two methods. Let us con-

sider the approximated
|α|
EDI and

|α|
ED∗P as the functions of n and we have the equation

(The approximated
|α|
EDI)(n) = (The approximated

|α|
ED∗P )(100). (34)

The solution of this equation indicates how large a sample is required for the approx-

imated
|α|
EDI to attain the same risk as that of the approximated

|α|
ED∗P with n = 100.

The solution under the present setting when α = 1 is given by n + 379. Even if we are
lucky enough to know the finite support of the mother distribution, the fixed interval
method is still quite inefficient to the moving interval method.

We carried out a more general comparison between the two methods. We calculated
the solution of Equation (??) with α = 1 for various values of the two shape parameters
ν1 and ν2 of Beta(ν1, ν2). (The ai and mi are the same as mentioned previously.)

The result is shown in Table ??. We observe the sample size n significantly changes
as the mother distribution varies. For example, with ν1 = 0.5 fixed, when ν2 is 0.5 or
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Table 3: Required Sample Size –Beta(ν1, ν2)–

ν1 ν2 n ν1 ν2 n ν1 µ2 n ν1 µ2 n ν1 µ2 n
0.5 0.5 106 1.5 1.5 106 2.5 2.5 110 3.5 3.5 123 4.5 4.5 152
0.5 1 107 1.5 2 108 2.5 3 115 3.5 4 133 4.5 5 172
0.5 1.5 111 1.5 2.5 113 2.5 3.5 127 3.5 4.5 157 5 5 176
0.5 2 122 1.5 3 128 2.5 4 153 3.5 5 205
0.5 2.5 148 1.5 3.5 159 2.5 4.5 203 4 4 135
0.5 3 204 1.5 4 219 2.5 5 294 4 4.5 149
0.5 3.5 312 1.5 4.5 330 3 3 115 4 5 182
0.5 4 513 1.5 5 526 3 3.5 122
0.5 4.5 881 2 2 107 3 4 139
0.5 5 1548 2 2.5 110 3 4.5 175
1 1 105 2 3 119 3 5 240
1 1.5 106 2 3.5 138
1 2 111 2 4 177
1 2.5 122 2 4.5 250
1 3 148 2 5 379
1 3.5 201
1 4 302
1 4.5 485
1 5 812

1.0, it is very close to 100, the benchmark sample size of the moving interval method,
whereas it jumps up to 1548 when the mother distribution is Beta(0.5, 5).

– Example 2 –
Now we take as the mother distributions Pearson type IV distributions (in fact, the

Beta distribution in the first example is a Pearson type I distribution), which consists
of skewed-t-type distributions. Its density f(x|m, ν) is given by

f(x|m, ν) ∝ (1 + x2)−m exp
(
−ν arctan(x)

)
, −∞ < x <∞, m > 1/2,−∞ < ν <∞.

We calculated the solution for (??) with α = 1 under various values of m and ν. See
Table ??, where two cases (a) and (b) are treated:

Case (a) ai = −1.0 + (i− 1) ∗ 0.2 (1 ≤ i ≤ 11) for the fixed intervals

mi = 1/12 (0 ≤ i ≤ 11) for the moving intervals (35)

Case (b) ai = −2.0 + (i− 1) ∗ 0.5 (1 ≤ i ≤ 9) for the fixed intervals

mi = 1/10 (0 ≤ i ≤ 9) for the moving intervals (36)

We observe that the relative inefficiency of the fixed interval method largely depends
on the determination of the intervals and the mother distribution. More specifically, we
note that when m is fixed and ν increases (i.e., the skewness increases), the required
sample size rapidly increases. This is more remarkable for the case (b). For example,
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Table 4: Required Sample Size –PearsonIV (m, ν)–

(a) a = (−1,−0.8, . . . , 1.0)
m ν n m ν n m ν n
1.5 0.5 104 2.5 0.5 105 3.5 0.5 108
1.5 1 107 2.5 1 107 3.5 1 110
1.5 1.5 112 2.5 1.5 111 3.5 1.5 115
1.5 2 123 2.5 2 119 3.5 2 124
1.5 2.5 142 2.5 2.5 132 3.5 2.5 139
1.5 3 177 2.5 3 155 3.5 3 162
1.5 3.5 236 2.5 3.5 191 3.5 3.5 196
1.5 4 336 2.5 4 250 3.5 4 249
1.5 4.5 501 2.5 4.5 342 3.5 4.5 329
1.5 5 775 2.5 5 487 3.5 5 449
1.5 5.5 1232 2.5 5.5 715 3.5 5.5 630
1.5 6 1999 2.5 6 1079 3.5 6 906
2 0.5 104 3 0.5 106 4 0.5 110
2 1 106 3 1 108 4 1 113
2 1.5 111 3 1.5 113 4 1.5 119
2 2 119 3 2 121 4 2 130
2 2.5 134 3 2.5 134 4 2.5 146
2 3 159 3 3 156 4 3 170
2 3.5 202 3 3.5 191 4 3.5 207
2 4 272 3 4 244 4 4 261
2 4.5 386 3 4.5 327 4 4.5 342
2 5 569 3 5 454 4 5 461
2 5.5 866 3 5.5 651 4 5.5 637
2 6 1350 3 6 955 4 6 901

(b) a = (−2,−1.5, . . . , 2.0)
m ν n m ν n m ν n
1.5 0.5 110 2.5 0.5 126 3.5 0.5 179
1.5 1 115 2.5 1 137 3.5 1 206
1.5 1.5 127 2.5 1.5 160 3.5 1.5 255
1.5 2 153 2.5 2 200 3.5 2 334
1.5 2.5 202 2.5 2.5 267 3.5 2.5 457
1.5 3 292 2.5 3 377 3.5 3 648
1.5 3.5 453 2.5 3.5 559 3.5 3.5 946
1.5 4 739 2.5 4 861 3.5 4 1416
1.5 4.5 1252 2.5 4.5 1365 3.5 4.5 2165
1.5 5 2174 2.5 5 2216 3.5 5 3368
1.5 5.5 3845 2.5 5.5 3665 3.5 5.5 5323
1.5 6 6890 2.5 6 6152 3.5 6 8528
2 0.5 115 3 0.5 145 4 0.5 232
2 1 123 3 1 163 4 1 273
2 1.5 138 3 1.5 197 4 1.5 346
2 2 169 3 2 252 4 2 460
2 2.5 222 3 2.5 342 4 2.5 634
2 3 315 3 3 484 4 3 898
2 3.5 474 3 3.5 710 4 3.5 1303
2 4 746 3 4 1076 4 4 1930
2 4.5 1215 3 4.5 1672 4 4.5 2910
2 5 2032 3 5 2651 4 5 4459
2 5.5 3464 3 5.5 4277 4 5.5 6928
2 6 5992 3 6 6999 4 6 10899

in the case (b) with m = 1.5, ν = 0.5, required n equals 110, whereas a sample size as
large as 6890 is required when m = 1.5, ν = 6.0. In fact, the probability of the mother
distribution for each fixed interval in (??) is given by

(m0,m1, . . . ,m9) + (0.094, 0.050, 0.092, 0.167, 0.237, 0.189, 0.090, 0.038, 0.017, 0.027)

when m = 1.5, ν = 0.5, and

(m0,m1, . . . ,m9) +(7.784× 10−1, 9.938× 10−2, 7.769× 10−2, 3.689× 10−2, 7.092× 10−3

4.596× 10−4, 2.202× 10−5, 2.009× 10−6, 3.655× 10−7, 1.946× 10−7)

when m = 1.5, ν = 6.0. As an example, the graphs of the approximated
|1|
EDI and

|1|
ED∗P

as n varies are drawn in Figure ?? when m = 1.5, ν = 3 in case (b).
We saw that the moving interval method is superior theoretically and numerically

to the fixed interval method as an estimation of the mother distribution. Now recall
the question raised in the introduction: “Which is more efficient as an estimator of
the approximated mother distribution, histogram or E.P.G.?” We predict E.P.G. would
be more efficient because histogram is a mixture of both methods as referenced in the
introduction, whereas E.P.G. is genuinely based on the moving interval method.
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Figure 3: Approximated
|1|

ED∗P and
|1|
EDI for a Pearson Type IV distribution (m =

1.5, ν=3)
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