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Efficient generation of an oxidopyrylium ylide using a Pd catalyst
and its [5+2] cycloadditions with several dipolarophiles
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An efficient method for the generation of an oxidopyrylium ylide
from 6-acetoxy-6-acetoxymethyl-2H-pyran-3(6H)-one using a Pd
catalyst and [5+2] cycloadditions of the resulting ylide are
described. Among substituted styrene derivatives as
dipolarophiles, electron-rich styrenes showed higher yield (up to
80%). The [5+2] cycloaddition reactions can also be applied to exo-
methylene cyclic compounds, and an improved method for the
synthesis of polygalolide intermediate has been demonstrated.

A number of natural products containing an 8-
oxabicyclo[3.2.1]octane  skeleton, such as englerins,?
intricarene,?2 anthecularin,® polygalolides,* descurainin,> and
cartorimine,® are biologically and medicinally important
compounds (Figure 1). In addition to being a common
structural motif in numerous natural products, the
[3.2.1]oxabicyclic ring system has also been shown to be a
versatile intermediate for transformation to functionalized
seven-membered carbon skeletons.” The [5+2] cycloaddition
between oxidopyrylium ylides and alkenes is one of the best
synthetic approaches to the 8-oxabicyclo[3.2.1]octane
scaffold.? In fact, these [5+2] cycloadditions were used for the
construction of [3.2.1]oxabicyclic rings as the key step in the
syntheses of englerins A and B,? polygalolides A and B,
descurainin,* and cartorimine!? (Figure 1).22 Typically,
oxidopyrylium ylides are generated from 2H-pyran-3(6H)-one
derivatives by thermal, base-promoted, or acid-mediated
elimination (Figure 2, classical method).81314 However,
depending on the substitution pattern of the precursors such
as 6-acetoxy-6-acetoxymethyl-2H-pyran-3(6H)-one (1), low
yields of the cycloadducts can be problematic for the practical
synthesis of the [3.2.1]oxabicyclic core. To overcome this issue,
we hypothesized that Pd catalysis would enable efficient
generation of the oxidopyrylium ylides through formation of a
nt-allyl palladium species?® followed by deprotonation with a
base (Figure 2, novel Pd-catalyzed method). Indeed, it has
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Fig. 1 The oxidopyrylium ylide [5+2] cycloadditions for syntheses of selected
natural products containing an 8-oxabicyclo[3.2.1]octane skeleton

been known that [3+2] trimethylenemethane cycloaddition
reactions are catalyzed by Pd(0) species effectively, in which 3-
acetoxy-2-trimethylsilylmethyl-1-propene undergoes oxidative
addition to form the m-allyl intermediate.’®7 Thus, we
expected that mw-allyl formation by a Pd catalyst may facilitate
deprotonation by enhancing the acidity of the carbonyl a-
proton. Furthermore, the catalytic generation under mild
conditions would enable evaluation of the reactivity of
dipolarophiles toward oxidopyrylium ylides based on their
electronic properties. Herein, we report that the addition of a
catalytic amount of [Pd(n3-CsHs)Cl]; in the presence of i-Pr,NEt
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Fig. 2 Our novel Pd-catalyzed method vs. classical method

was found to be effective for the efficient generation of an
oxidopyrylium ylide from 2H-pyran-3(6H)-one 1.

Initially, the reaction of 2H-pyran-3(6H)-one 1 with styrene
(2a: 2.0 or 5.0 equiv) as a model reaction was carried out in
the presence of i-ProNEt (1.0 equiv) in CH,Cl, (Table 1).18 In the
absence of a Pd catalyst, low conversion (10 — 41%) of starting
material 1 was observed even at 100 °C in toluene (entries 1 —
3). Addition of PdCl; (10 mol%) in CH,Cl, (0.063 M) at 25 °C
using 2.0 equiv of 2a resulted in 100% conversion of 1 in 16 h,

Table 1 Optimization of reactions of 2H-pyran-3(6H)-one 1 with styrene (2a)?

P
2a (Zi'-?: ;)ersé(lJ equiv) o IO o
(1.0 equiv) o o
/ Pd-catalyst f? . Ph \L? O\/ A o
CH,CI
OAcolAc (0.0623 ) :ndo_z:c exo_3:A° .. oAc
Pd-catalyst Temp Time Conv  Yield (%) of 3a
Entry (mol%) (°C) (h) (%) (endo/exo)>f
1 none 25 16 10 8(81:19)
2 none 35 16 25 16¢(82:18)
3 none 100 16 41 36¢(78:22)
4d PdCl2 (10) 25 16 100 24¢(80:20)
54 PdCl,/PPhs (10) 25 16 100 27¢(79:21)
64 Pd(PPhs)a (10) 25 16 100 0°
74 Pd,(dba)s (5) 25 5 100 16¢ (84 : 16)
8 Pd2(dba)s (5) 25 3 100 26 (81:19)
9 [Pd(al)Cl]2¢ (5) 25 72 100 68 (79 :21)
10 [Pd(al)Cl]2¢ (10) 25 42 100 65 (80 : 20)
11 [Pd(al)Cl]2¢ (5) 35 24 100 60 (82 :18)
12 [Pd(al)Cl].¢ (10) 35 20 100 71(81:19)

9 The reaction of 2H-pyran-3(6H)-one 1 (0.063 M) with styrene (5.0 equiv)
was carried out in the presence of i-PraNEt (1.0 equiv) in CH2Cla. ® Combined
yield (isolated). The selectivity (endo/exo) was determined by H NMR
analysis. ¢ Determined by 'H NMR using 1,1,2,2-tetrachloroethane as an
internal standard. ¢ 2.0 equiv of 2a.¢ [Pd(n3-C3Hs)Cl]2. / Yield of 4 (%); Entry
2: trace, Entry 4: 15%, Entry 5: 25%, Entry 7: 33%, Entry 8: 29%, Entry 9:
trace, Entry 10: 10%, Entry 11: 8%, Entry 12: 13%.
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and [5+2] cycloadducts 3a were obtained in 24% NMR vyield
(endo/exo = 80 : 20) along with 15% NMR yield of by-product 4,
which corresponds to the dimer of the oxidopyrylium ylide
(entry 4). PdCl,/PPhs or Pd(PPhs)s did not show satisfactory
results in terms of the yield of the desired cycloaddition
products (entries 5 and 6). The use of Pdy(dba)s (5 mol%)
shortened the reaction time to 5 h for 100% conversion,
affording 16% (NMR vyield) of cycloadducts 3a, albeit with 33%
(NMR vyield) of dimer 4 (entry 7). The Pdy(dba)s-catalyzed
reaction in the presence of 5.0 equiv of 2a resulted in 26%
yield of 3a and 29% yield of 4 (entry 8). Finally, [Pd(n3-CsHs)Cl],
was found to be the most suitable catalyst to obtain the
highest yield of 3a among the Pd catalysts tested (entries 9 —
12). After investigation of catalyst loading and reaction
temperature, the conditions shown in entry 12 (10 mol%
[Pd(n3-C3Hs)Cl], at 35 °C) led to the best result [3a: 71%
(isolated); 4: 13% yield], which indicates that at least 84% of
the corresponding oxidopyrylium ylide was generated.!®

With the optimized conditions in hand, the substrate scope
of several electron-deficient and electron-rich styrene
derivatives was investigated (Scheme 1a). The reactions with
styrenes 2b — 2d possessing electron-withdrawing substituents

o o
[Pd(*-C3Hs)Cll2 o o
(10 Mol%) R
/ + R/\ - =\ 4+ =
2a-2i (R=An) i-Pr,NEt
OAC 5a-5¢ (R=OR) (1.00°r 0.2 equiv) _OAc . OAc
Ac 1 7a-7c (g = COX) CH,Cl,, 35 C end0_3a -3i €x0 3a - 3i
equiv endo 6a - 6¢ exo 6a - 6¢c
(5.0 equiv) endo 8a - 8¢ exo'8a - 8¢

(a) Scope of styrene derivatives: R = Ar (0,063 M, 1.0 equiv of i-Pr,NEt)

o o0 OO
Cl MeO,C: NC Me:

3a 3b 3c 3d 3e
20 h, 71% 24 h, 69% 20 h, 67% 20 h, 53% 24, 75%
(81:19) (84 16) (78:22) (84 16) (82:18)
4:13% 4:12% 4:15% 4:16% 4:8% (NMR)
OMe MeO %
n MO 3 £
TBSO
MeO' Me
3f 39 3h 3i
20 h, 80% 24 h, 75% 22 h, 80% 20 h, 79%
(88:12) (81:19) (85 15) (92°8)
41 2% (NMR) 4:11% 4: trace (NMR) 41 2% (NMR)
(b) Scope of vinyl ehters: R = OR' (0,13 M, 0.2 equiv of i-Pr,NEt)
o
40 h, 71% 48 h, 65% 40 h, 76% o, 40 h, 60%
n. : \ ) 3
Pro)"‘ endo only EtO?l' endo only O/ endo only +Buo endo only
6a  4:49 6b 429 (R 6c 400 6d 4: 196 (NMmR)

(c) Scope of electron-deficient alkenes: R = COX' (0.13 M, 1.0 equiv of i-Pr,NEt)

Bn o
N7 Ph o o
t-BuO, \ 0Ny
]) ' ’
o) 3 =
8a 8b o OAC g¢ oAc
24 h?, 62940 20 h, 62% (NMR) Ph 64 h, 65%
(66 - 34) (63:37) (43:57)
4:5% (NMR) 4’ trace (NMR) 4: 0%

2 6-OBoc derivative was used instead of 6-OAc derivative 1 with 5 mol% of
[Pd(ﬂ3-03H5)0|]2 and 0.2 equiv of i-Pr,NEt. b Regio selectivity 97%.

Scheme 1 Pd-catalyzed [5 + 2] cycloadditions of styrenes, vinyl ethers, and
electron-deficient alkenes with the oxidopyrylium ylide generated from 2H-
pyran-3(6H)-one 1
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Scheme 2 Pd-catalyzed [5 + 2] cycloadditions of exo-methylene cyclic compounds

at the para-position showed lower yields (3b — 3d: 53 — 69%)
compared with that of styrene (71%), with formation of dimer
4 in 12 — 16% yields. In contrast, electron-rich styrenes 2e — 2i
afforded higher yields (3e — 3i: 75 — 80%), especially in the case
of o- or p-methoxy substituted styrenes, where the dimer
formation was minimized as expected (see ESI). To investigate
the scope of electron-rich alkenes further, we selected n-
propyl vinyl ether (5a) as a candidate for the dipolarophile.
Although additional optimization of reaction conditions was
required to suppress the production of dimer 4 (see ESI for
details), the optimal yield (6a: 71%, endo only) was obtained
using 0.2 equiv of i-Pr,NEt at a concentration of 0.13 M at 35
OC (Scheme 1b). Ethyl, cyclohexyl, and t-butyl vinyl ethers 5b —
5d also provided only endo-cycloadducts 6b — 6d in good yields
(60 — 76%, Scheme 1b) under the same conditions. On the
other hand, the Pd-catalyzed reactions with electron-deficient
alkenes such as acrylic acid derivatives 7a and 7b and N-
phenylmaleimide (7c) proceeded smoothly to give

cycloadducts 8a — 8c in moderate yields (62 — 65%, Scheme 1c).

It is noteworthy that the employment of exo-methylene cyclic
compounds 9a — 9e as dipolarophiles in the cycloaddition
reactions resulted in mostly good to high vyields of
cycloadducts (10a — 10e: 61 — 88%), probably due to their
relatively high reactivity as dipolarophiles on the basis of the
exo-methylene structure (Scheme 2).

Conversion of cycloadduct 10c to polygalolide intermediate
11 was accomplished according to the modified Snider’s
method (Scheme 3).1° Treatment of 10c with Cs,CO;3 in a 1:1
mixture of THF/H,0 solvents at 35 °C for 14 h, followed by
acidification with 10% hydrochloric acid to pH 1 furnished 11 in
76% vyield over the two steps. The synthetic method of

(o)
o [¢]
o ~ J
OAc

10c (979 €X0) 11: 76%

1.CsCO;5 (5.0 equIV)
THE/H,0 (1: 1)
35 C 14 h

ref 20

—=5 Polygalolides
2.10% HCl (pH 1) 8

25C3h

Scheme 3 Conversion of cycloadduct 10c to polygalolide intermediate 11
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1 + 2a - 3a 4+ 4 + /
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2 Determined by 1H NMR analysis using 1,1,2,2-tetrachloroethane @s an internal standard.

Scheme 4 Mechanistic studies: control experiments using Pd,(dba)s in the
absence and presence of i-Pr,NEt

polygalolides A and B from 11 has already been reported by
Nakamura and Hashimoto.2° The overall yield from 1 to 11
(54%) was improved by the sequence of Pd-catalyzed [5+2]
cycloaddition, hydrolysis, and intramolecular cyclization.
Finally, to gain insight into the mechanism of Pd catalysis
for the generation of the oxidopyrylium vylide, control
experiments using Pd,(dba)s (10 mol%) in the absence and
presence of i-Pr,NEt (1.0 equiv) were conducted and
compared with conditions of the non-catalytic reaction shown
in entry 2 of Table 1 (Scheme 4).21 In the presence of Pd,(dba)s
and i-Pr,NEt, cycloadducts 3a (24%) and dimer 4 (29%) were
obtained along with 2-pyranone 12 (6%), whereas only 2-
pyranone 12 (72%) was afforded with the use of Pd,(dba)s in
the absence of i-Pr,NEt, albeit with 100% conversion of 1a in
both cases. Based on these results, we propose a plausible
mechanism for this [5+2] cycloaddition as follows. (a) The
initial reaction of 2H-pyran-3(6H)-one 1 with the Pd(0) species,
which could also be generated from [Pd(n3-CsHs)Cl], and /-
Pr,NEt, produces the w-allyl palladium intermediate.'>22 (b) In
the presence of i-Pr,NEt, the oxidopyrylium ylide is generated
by deprotonation of the carbonyl a-proton of the m-allyl
intermediate, wherein the Pd(0) species is regenerated along
with formation of j-Pr,NEt-HOAc. (c) The oxidopyrylium ylide
reacts not only with dipolarophiles to afford cycloadducts but
itself to afford a certain amount of dimer 4
depending on the reaction conditions. Since only -elimination

also with

proceeds in the absence of i-Pr,NEt and the combined use of a
Pd catalyst and base obviously accelerates the cycloaddition,
the transient m-allyl species seems to undergo deprotonation
by i-Pr,NEt more effectively than starting material 1.

In conclusion, we have demonstrated the productive
generation of an oxidopyrylium vylide from 6-acetoxy-6-
acetoxymethyl-2H-pyran-3(6H)-one (1) by Pd catalysis. A
variety of dipolarophiles, including styrenes, vinyl ethers, and
exo-methylene cyclic compounds, were tolerated to afford the
cycloadducts in good to high yields. Conversion of the a-
methylene-y-butyrolactone cycloadduct to the polygalolide
intermediate was also accomplished in an acceptable total
yield (54%). Further studies for efficient generation methods
synthetic  applications of oxidopyrylium vylide
cycloadditions are currently underway in our laboratory.
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At the outset of our studies, several bases such as tertiary
amines, secondary amines, inorganic bases have been tested.
However, the reactions using most of them led to 3-
elimination or decomposition of starting material 1.

Dimer 4 was obtained in 73% (NMR yield) in the absence of
styrene using 5 mol% of Pd,(dba)s; and 1.5 equiv of i-PrNEt

at 25 °C for 3 h in CH,Cl, (0.063 M).

S. Nakamura, Y. Sugano, F. Kikuchi, and S. Hashimoto, Angew.
Chem. Int. Ed., 2006, 45, 6532—6535.

The use of [Pd(n3-C3Hs)Cl]; (10 mol%) without i-Pr,NEt under
similar conditions (35 °C, 72 h) resulted in 97% recovery of 1
(by IH NMR).

For the reaction of 2H-pyran-3(6H)-one 1 with Pd,(dba); in
methanol-d,, see ESI.
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