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Efficient generation of an oxidopyrylium ylide using a Pd catalyst 
and its [5+2] cycloadditions with several dipolarophiles 
Hiroyuki Suga,* Taichi Iwai, Masahiro Shimizu, Kie Takahashi, and Yasunori Toda

An efficient method for the generation of an oxidopyrylium ylide 
from 6-acetoxy-6-acetoxymethyl-2H-pyran-3(6H)-one using a Pd 
catalyst and [5+2] cycloadditions of the resulting ylide are 
described. Among substituted styrene derivatives as 
dipolarophiles, electron-rich styrenes showed higher yield (up to 
80%). The [5+2] cycloaddition reactions can also be applied to exo-
methylene cyclic compounds, and an improved method for the 
synthesis of polygalolide intermediate has been demonstrated.  

 A number of natural products containing an 8-
oxabicyclo[3.2.1]octane skeleton, such as englerins,1 
intricarene,2 anthecularin,3 polygalolides,4 descurainin,5 and 
cartorimine,6 are biologically and medicinally important 
compounds (Figure 1). In addition to being a common 
structural motif in numerous natural products, the 
[3.2.1]oxabicyclic ring system has also been shown to be a 
versatile intermediate for transformation to functionalized 
seven-membered carbon skeletons.7 The [5+2] cycloaddition 
between oxidopyrylium ylides and alkenes is one of the best 
synthetic approaches to the 8-oxabicyclo[3.2.1]octane 
scaffold.8 In fact, these [5+2] cycloadditions were used for the 
construction of [3.2.1]oxabicyclic rings as the key step in the 
syntheses of englerins A and B,9 polygalolides A and B,10 
descurainin,11 and cartorimine11 (Figure 1).12 Typically, 
oxidopyrylium ylides are generated from 2H-pyran-3(6H)-one 
derivatives by thermal, base-promoted, or acid-mediated 
elimination (Figure 2, classical method).8,13,14 However, 
depending on the substitution pattern of the precursors such 
as 6-acetoxy-6-acetoxymethyl-2H-pyran-3(6H)-one (1), low 
yields of the cycloadducts can be problematic for the practical 
synthesis of the [3.2.1]oxabicyclic core. To overcome this issue, 
we hypothesized that Pd catalysis would enable efficient 
generation of the oxidopyrylium ylides through formation of a 
π-allyl palladium species15 followed by deprotonation with a 
base (Figure 2, novel Pd-catalyzed method). Indeed, it has 

been known that [3+2] trimethylenemethane cycloaddition 
reactions are catalyzed by Pd(0) species effectively, in which 3-
acetoxy-2-trimethylsilylmethyl-1-propene undergoes oxidative 
addition to form the π-allyl intermediate.16,17 Thus, we 
expected that π-allyl formation by a Pd catalyst may facilitate 
deprotonation by enhancing the acidity of the carbonyl α-
proton. Furthermore, the catalytic generation under mild 
conditions would enable evaluation of the reactivity of 
dipolarophiles toward oxidopyrylium ylides based on their 
electronic properties. Herein, we report that the addition of a 
catalytic amount of [Pd(η3-C3H5)Cl]2 in the presence of i-Pr2NEt 
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Fig. 1  The oxidopyrylium ylide [5+2] cycloadditions for syntheses of selected 
natural products containing an 8-oxabicyclo[3.2.1]octane skeleton 
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was found to be effective for the efficient generation of an 
oxidopyrylium ylide from 2H-pyran-3(6H)-one 1. 

Initially, the reaction of 2H-pyran-3(6H)-one 1 with styrene 
(2a: 2.0 or 5.0 equiv) as a model reaction was carried out in 
the presence of i-Pr2NEt (1.0 equiv) in CH2Cl2 (Table 1).18 In the 
absence of a Pd catalyst, low conversion (10 – 41%) of starting 
material 1 was observed even at 100 ºC in toluene (entries 1 – 
3). Addition of PdCl2 (10 mol%) in CH2Cl2 (0.063 M) at 25 ºC 
using 2.0 equiv of 2a resulted in 100% conversion of 1 in 16 h, 

and [5+2] cycloadducts 3a were obtained in 24% NMR yield 
(endo/exo = 80 : 20) along with 15% NMR yield of by-product 4, 
which corresponds to the dimer of the oxidopyrylium ylide 
(entry 4). PdCl2/PPh3 or Pd(PPh3)4 did not show satisfactory 
results in terms of the yield of the desired cycloaddition 
products (entries 5 and 6). The use of Pd2(dba)3 (5 mol%) 
shortened the reaction time to 5 h for 100% conversion, 
affording 16% (NMR yield) of cycloadducts 3a, albeit with 33% 
(NMR yield) of dimer 4 (entry 7). The Pd2(dba)3-catalyzed 
reaction in the presence of 5.0 equiv of 2a resulted in 26% 
yield of 3a and 29% yield of 4 (entry 8). Finally, [Pd(η3-C3H5)Cl]2 
was found to be the most suitable catalyst to obtain the 
highest yield of 3a among the Pd catalysts tested (entries 9 – 
12). After investigation of catalyst loading and reaction 
temperature, the conditions shown in entry 12 (10 mol% 
[Pd(η3-C3H5)Cl]2 at 35 ºC) led to the best result [3a: 71% 
(isolated); 4: 13% yield], which indicates that at least 84% of 
the corresponding oxidopyrylium ylide was generated.19 
 With the optimized conditions in hand, the substrate scope 
of several electron-deficient and electron-rich styrene 
derivatives was investigated (Scheme 1a). The reactions with 
styrenes 2b – 2d possessing electron-withdrawing substituents 
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Fig. 2  Our novel Pd-catalyzed method vs. classical method 

 

Table 1  Optimization of reactions of 2H-pyran-3(6H)-one 1 with styrene (2a)a 
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Entry 

Pd-catalyst 
(mol%) 

Temp 
(ºC) 

Time 
(h) 

Conv 
(%) 

Yield (%) of 3a 
(endo/exo)b,f 

1 none 25 16 10 8 (81 : 19) 
2 none 35 16 25 16c (82 : 18) 
3 none 100 16 41 36c (78 : 22) 
4d PdCl2 (10) 25 16 100 24c (80 : 20) 
5d PdCl2/PPh3 (10) 25 16 100 27c (79 : 21) 
6d Pd(PPh3)4 (10) 25 16 100 0c 
7d Pd2(dba)3 (5) 25 5 100 16c (84 : 16) 
8 Pd2(dba)3 (5) 25 3 100 26 (81 : 19) 
9 [Pd(al)Cl]2e (5) 25 72 100 68 (79 : 21) 

10 [Pd(al)Cl]2e (10) 25 42 100 65 (80 : 20) 
11 [Pd(al)Cl]2e (5) 35 24 100 60 (82 : 18) 
12 [Pd(al)Cl]2e (10) 35 20 100 71 (81 : 19) 

a The reaction of 2H-pyran-3(6H)-one 1 (0.063 M) with styrene (5.0 equiv) 
was carried out in the presence of i-Pr2NEt (1.0 equiv) in CH2Cl2. b Combined 
yield (isolated). The selectivity (endo/exo) was determined by 1H NMR 
analysis. c Determined by 1H NMR using 1,1,2,2-tetrachloroethane as an 
internal standard. d 2.0 equiv of 2a. e [Pd(η3-C3H5)Cl]2. f Yield of 4 (%); Entry 
2: trace, Entry 4: 15%, Entry 5: 25%, Entry 7: 33%, Entry 8: 29%, Entry 9: 
trace, Entry 10: 10%, Entry 11: 8%, Entry 12: 13%. 
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Scheme 1  Pd-catalyzed [5 + 2] cycloadditions of styrenes, vinyl ethers, and 
electron-deficient alkenes with the oxidopyrylium ylide generated from 2H-
pyran-3(6H)-one 1 
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at the para-position showed lower yields (3b – 3d: 53 – 69%) 
compared with that of styrene (71%), with formation of dimer 
4 in 12 – 16% yields. In contrast, electron-rich styrenes 2e – 2i 
afforded higher yields (3e – 3i: 75 – 80%), especially in the case 
of o- or p-methoxy substituted styrenes, where the dimer 
formation was minimized as expected (see ESI). To investigate 
the scope of electron-rich alkenes further, we selected n-
propyl vinyl ether (5a) as a candidate for the dipolarophile. 
Although additional optimization of reaction conditions was 
required to suppress the production of dimer 4 (see ESI for 
details), the optimal yield (6a: 71%, endo only) was obtained 
using 0.2 equiv of i-Pr2NEt at a concentration of 0.13 M at 35 
ºC (Scheme 1b). Ethyl, cyclohexyl, and t-butyl vinyl ethers 5b – 
5d also provided only endo-cycloadducts 6b – 6d in good yields 
(60 – 76%, Scheme 1b) under the same conditions. On the 
other hand, the Pd-catalyzed reactions with electron-deficient 
alkenes such as acrylic acid derivatives 7a and 7b and N-
phenylmaleimide (7c) proceeded smoothly to give 
cycloadducts 8a – 8c in moderate yields (62 – 65%, Scheme 1c). 
It is noteworthy that the employment of exo-methylene cyclic 
compounds 9a – 9e as dipolarophiles in the cycloaddition 
reactions resulted in mostly good to high yields of 
cycloadducts (10a – 10e: 61 – 88%), probably due to their 
relatively high reactivity as dipolarophiles on the basis of the 
exo-methylene structure (Scheme 2). 
 Conversion of cycloadduct 10c to polygalolide intermediate 
11 was accomplished according to the modified Snider’s 
method (Scheme 3).10 Treatment of 10c with Cs2CO3 in a 1:1 
mixture of THF/H2O solvents at 35 ºC for 14 h, followed by 
acidification with 10% hydrochloric acid to pH 1 furnished 11 in 
76% yield over the two steps. The synthetic method of 

polygalolides A and B from 11 has already been reported by 
Nakamura and Hashimoto.20 The overall yield from 1 to 11 
(54%) was improved by the sequence of Pd-catalyzed [5+2] 
cycloaddition, hydrolysis, and intramolecular cyclization. 
 Finally, to gain insight into the mechanism of Pd catalysis 
for the generation of the oxidopyrylium ylide, control 
experiments using Pd2(dba)3 (10 mol%) in the absence and 
presence of i-Pr2NEt (1.0 equiv) were conducted and 
compared with conditions of the non-catalytic reaction shown 
in entry 2 of Table 1 (Scheme 4).21 In the presence of Pd2(dba)3 
and i-Pr2NEt, cycloadducts 3a (24%) and dimer 4 (29%) were 
obtained along with 2-pyranone 12 (6%), whereas only 2-
pyranone 12 (72%) was afforded with the use of Pd2(dba)3 in 
the absence of i-Pr2NEt, albeit with 100% conversion of 1a in 
both cases. Based on these results, we propose a plausible 
mechanism for this [5+2] cycloaddition as follows. (a) The 
initial reaction of 2H-pyran-3(6H)-one 1 with the Pd(0) species, 
which could also be generated from [Pd(η3-C3H5)Cl]2 and i-
Pr2NEt, produces the π-allyl palladium intermediate.15,22 (b) In 
the presence of i-Pr2NEt, the oxidopyrylium ylide is generated 
by deprotonation of the carbonyl α-proton of the π-allyl 
intermediate, wherein the Pd(0) species is regenerated along 
with formation of i-Pr2NEt·HOAc. (c) The oxidopyrylium ylide 
reacts not only with dipolarophiles to afford cycloadducts but 
also with itself to afford a certain amount of dimer 4 
depending on the reaction conditions. Since only β-elimination 
proceeds in the absence of i-Pr2NEt and the combined use of a 
Pd catalyst and base obviously accelerates the cycloaddition, 
the transient π-allyl species seems to undergo deprotonation 
by i-Pr2NEt more effectively than starting material 1. 
 In conclusion, we have demonstrated the productive 
generation of an oxidopyrylium ylide from 6-acetoxy-6-
acetoxymethyl-2H-pyran-3(6H)-one (1) by Pd catalysis. A 
variety of dipolarophiles, including styrenes, vinyl ethers, and 
exo-methylene cyclic compounds, were tolerated to afford the 
cycloadducts in good to high yields. Conversion of the α-
methylene-γ-butyrolactone cycloadduct to the polygalolide 
intermediate was also accomplished in an acceptable total 
yield (54%). Further studies for efficient generation methods 
and synthetic applications of oxidopyrylium ylide 
cycloadditions are currently underway in our laboratory. 
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