Cutaneous sarcoidosis in a chronic hepatitis C patient receiving Peg-IFN and ribavirin therapy

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Hepatology Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>HEPRES-12-0539.R3</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Case Report</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Complete List of Authors:
Joshita, Satoru; Shinshu University School of Medicine, Department of Medicine Division of Gastroenterology and Hepatology; Iida Municipal Hospital, Department of Gastroenterology
Shirahata, Kumiko; Iida Municipal Hospital, Department of General Medicine
Yazaki, Yoshikazu; National Hospital Organization, Matsumoto Medical Center, Matsumoto Hospital, Department of Cardiology
Okaniwa, Shinji; Iida Municipal Hospital, Department of Gastroenterology
Nakamura, Yoshiyuki; Iida Municipal Hospital, Department of Gastroenterology
Kimura, Takefumi; Shinshu University School of Medicine, Department of Medicine Division of Gastroenterology and Hepatology; Iida Municipal Hospital, Department of Gastroenterology
Noami, Sugiko; Iida Municipal Hospital, Department of Dermatology
Yagi, Hikaru; Iida Municipal Hospital, Department of Respiratory Medicine
Ito, Nobuo; Iida Municipal Hospital, Department of Pathology
Yamazaki, Asami; Shinshu University School of Medicine, Department of Medicine Division of Gastroenterology and Hepatology
Akahane, Yuki; Shinshu University School of Medicine, Department of Medicine Division of Gastroenterology and Hepatology
Umemura, Takeji; Shinshu University School of Medicine, Department of Medicine Division of Gastroenterology and Hepatology
Yoshizawa, Kaname; Shinshu University School of Medicine, Department of Medicine Division of Gastroenterology and Hepatology; National Hospital Organization, Shinshu Ueda Medical Center, Department of Gastroenterology
Tanaka, Eiji; Shinshu University School of Medicine, Department of Medicine Division of Gastroenterology and Hepatology
Ota, Masao; Shinshu University School of Medicine, Department of Legal Medicine

Category: 7. Viral hepatitis, 4. Immunology
Title

Cutaneous sarcoidosis in a chronic hepatitis C patient receiving Peg-IFN and ribavirin therapy

Satoru Joshita 1), 2), Kumiko Shirahata 3), Yoshikazu Yazaki 4), Shinji Okaniwa 1), Yoshiyuki Nakamura 1), Takefumi Kimura 1), 2), Sugiko Noami 5), Reiko Horigome 5), Hikaru Yagi 6), Nobuo Ito 7), Asami Yamazaki 2), Yuki Akahane 2), Takeji Umemura 2), Kaname Yoshizawa 2), 8), Eiji Tanaka 2), Masao Ota 9)

1) Department of Gastroenterology, Iida Municipal Hospital, Iida, Japan
2) Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
3) Department of General Medicine, Iida Municipal Hospital, Iida, Japan
4) Department of Cardiology, National Hospital Organization, Matsumoto Medical Center, Matsumoto Hospital, Matsumoto, Japan
5) Department of Dermatology, Iida Municipal Hospital, Iida, Japan
6) Department of Respiratory Medicine, Iida Municipal Hospital, Iida, Japan
7) Department of Pathology, Iida Municipal Hospital, Iida, Japan
8) Department of Gastroenterology, National Hospital Organization, Shinshu Ueda Medical Center, Ueda, Japan
9) Department of Legal Medicine, Shinshu University School of Medicine, Matsumoto, Japan

Running Title: Sarcoidosis associated with Peg-IFN and RBV

Corresponding author: Satoru Joshita M.D., Ph.D., Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan

E-mail: joshita@shinshu-u.ac.jp

Tel.: +81-263-37-2634

Fax: +81-263-32-9412
Abstract

A 61-year-old Japanese woman suffered from a small, painful, subcutaneous nodule on the sole of her foot that was 10mm across in diameter during pegylated interferon (Peg-IFN) and ribavirin (RBV) combination therapy for chronic hepatitis C. Skin biopsy revealed multiple noncaseating granulomas composed of epithelioid histiocytes with multinucleate giant cells, which was consistent with sarcoidosis. Ophthalmologic examination revealed uveitis. Thoracic computed tomography (CT) showed multiple bilateral hilar lymphadenopathies and a diffuse micronodular interstitial pattern of the lungs. Genetic analysis indicated a probable homozygous haplotype of A*02:01-C*15:02-B*51:01-DRB1*16:02-DQB1*05:02 in human leukocyte antigen regions. The patient was observed carefully without any additional medication since no significant systemic symptoms were noted. Combination therapy was continued for 2 months afterwards. She was asymptomatic for over three years of follow up, and repeated hematological and biological investigations and chest CT showed improvement. In conclusion, clinicians should bear sarcoidosis in mind as a complication during Peg-IFN and RBV combination therapy. They should also be aware of the usually good prognosis of Peg-IFN-induced cutaneous sarcoidosis in order not to prematurely
discontinue a treatment necessary for liver disease; maintenance of Peg-IFN treatment may be advised with careful follow-up.

Keywords: pegylated interferon, ribavirin, sarcoidosis, human leukocyte antigen
Introduction

Pegylated interferon (Peg-IFN) in combination with ribavirin (RBV) is the current standard of care for patients with chronic hepatitis C genotype 2, with the addition of a protease inhibitor for the treatment of genotype 1 \(^1,2\). Side effects are observed in almost 80 percent of patients treated with combination therapy \(^1\) over the course of treatment, and the appearance of various skin conditions, such as eczematous and lichenoid eruptions and psoriasis, have been reported \(^3\). Cutaneous sarcoidosis in varying manifestations has also been reported to develop due to Peg-IFN and RBV combination therapy \(^4-11\).

Sarcoidosis is a multisystem granulomatous disorder characterized by the presence of noncaseating granulomas in tissues. It typically appears in young to middle-aged women, but can affect both sexes and all age groups \(^12\). Although the etiology of sarcoidosis remains uncertain, it is known that highly-polarized type 1 helper T (Th1) cells differentiated from activated CD4+ cells produce excessive interleukin-2 and interferon-\(\gamma\), thus activating macrophages and leading to the formation of granulomas \(^13\). The disease is currently thought to be triggered by various genetic and environmental factors, and evidence of familial and ethnic clustering suggests the existence of a genetic predisposition to sarcoidosis \(^14\). Attempts to identify sarcoidosis...
susceptibility genes have focused on those residing in the major histocompatibility complex (MHC), and particularly the human leukocyte antigen (HLA) genes.13

We herein describe a patient with an extremely rare homozygous HLA genotype who became complicated with cutaneous sarcoidosis during Peg-IFN and RBV therapy.

Case report

A 61-year-old Japanese woman was referred to our hospital by her primary care physician for treatment of hepatitis C virus (HCV) infection. She was suspected to have contracted HCV (genotype 1b) by a blood transfusion during childbirth 24 years prior. Serum HCV RNA was 5.2 log IU/mL, and serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) had both been consistently greater than 30 IU/L. Chronic hepatitis was histologically proven by liver tissue biopsy, which indicated scores of 3 for portal-portal bridging necrosis, portal inflammation, and fibrosis and scores of 1 for intralobular degeneration and focal necrosis, according to Knodell hepatitis activity index (HAI) classification.15 Her single nucleotide polymorphism (SNP)
of interleukin 28B at rs809991716 was T/T. She neither smoked nor habitually consumed alcohol. No history or findings of dermatological, pulmonary, or autoimmune diseases were noted. A chest X-ray before treatment showed no abnormal findings (Figure 1a).

Combination therapy was started with regular doses of Peg-IFN α2b at 80µg s.c. once weekly and RBV at 600 mg/day p.o. (MSD. KK, Tokyo, Japan). Serum HCV RNA became undetectable in a TaqMan assay 12 weeks after the initiation of therapy. She showed occasional mild hematopenia without dose reductions of Peg-IFN or RBV. Ten months after treatment commencement, the patient complained of a small, painful subcutaneous nodule on the sole of her foot that was 10mm across in diameter (Figure 2). Combination therapy was continued for 2 months afterwards as no systemic symptoms were detected under close monitoring.

Skin biopsy of the nodule revealed multiple noncaseating granulomas composed of a compact aggregate of irregularly epithelioid histiocytes with multinucleated giant cells (Figure 3). Specific stains showed no evidence of bacterial, fungal, or mycobacterial organisms. Biopsy findings were interpreted as consistent with sarcoidosis, although the skin lesion disappeared around the
time of biopsy. Further examination was performed to evaluate systemic involvement. Laboratory studies demonstrated moderate leukocytopenia (2,800/µL), elevated lysozyme (10.5 µg/mL; normal range: 5.0 to 10.2 µg/mL), and normal angiotensin-converting enzyme (16.9 U/mL; normal range: 8.3 to 21.4 U/mL) and serum calcium (9.1 mEq/L). Her tuberculin skin test was negative, but ophthalmologic examination revealed uveitis. A chest X-ray (Figure 1b) and thoracic CT taken 2 months after combination therapy showed multiple bilateral, paratracheal, subcarinal, and hilar adenopathies (Figure 1d) and a diffuse micronodular interstitial pattern of the lungs (Figure 1e). Transbronchial lung biopsy revealed the presence of multiple noncaseating granulomas with multinucleated giant cells (Figure 4). The bronchoalveolar lavage fluid level of lymphocytes was elevated at 38.7% compared with macrophages (56.3%) and neutrocytes (5.0%) in a total cell density of 1.67×10^5/mm3. An increased ratio of CD4/CD8 cells of 2.33 was noted. Based on these findings, the patient was diagnosed as having sarcoidosis. She was observed carefully without any additional medication since no significant systemic symptoms were noted. A chest CT taken 20 months after combination therapy showed improvement (Figure 1f and 1g). She was also asymptomatic for over 3 years of follow-up, and
repeated hematological and biological investigations showed no exacerbation. A chest X-ray taken 40 months after combination therapy depicted no bilateral hilar lymphadenopathies (Figure 1c). She also achieved a sustained virological response.

Genotyping of the HLA and microsatellite markers in the HLA region

After obtaining informed consent, genomic DNA was extracted from peripheral blood using either the QuickGene-800 kit (FUJIFILM, Tokyo, Japan) or a standard phenol-chloroform method. HLA genotypes were determined by a Luminex multi-analyzer profiling system with a LAB type® SSO One Lambda typing kit (One Lambda, Inc. Canoga Park, CA). Additional polymerase chain reaction sequence-specific primers for SBT reactions were employed to determine high-resolution alleles. Determination of the number of repeat units in the 23 microsatellites (D6S210, D6S265, C5-2-7, C3-2-11, C4-2-7, C2-4-4, C2-2-2, C1-3-1, C1-2-5, C1-4-1, MIB, MICA, C1-2A, TNFA, TNFD, D6S273, D6S2924, D6S2919, D6S2888, D6S2886, DQCAR, D6S2445, and M2-2-22) in the HLA region was performed as described in a previous report \(^{17,18}\).

The patient’s HLA genotype was A*02:01/02:01, B*51:01/51:01,
C*15:02/15:02, DRB1*16:02/16:02, and DQB1*05:02/05:02. As such, she was considered to be homozygous for the haplotype A*02:01-C*15:02-B*51:01-DRB1*16:02-DQB1*05:02. The frequency of this haplotype is 0.012% and very rare in a Japanese population. The alleles in all microsatellite loci were homozygous.

Genotyping of the IL-28B SNP (rs8099917) and BTNL2- SNP (rs2076530)

The patient was genotyped for IL-28 (rs8099917) and BTNL2 (rs2076530) polymorphisms using an SNP Genotyping Kit (Applied Biosystems, Tokyo, Japan), as previously reported. The polymerase chain reaction was performed with a TaqMan Assay for Real-Time PCR (7500 Real Time PCR System; Applied Biosystems) following the manufacturer’s instructions.

The patient’s IL-28 (rs8099917) allele was T/T and her BTNL2 (rs2076530) allele was A/A.

Discussion

Peg-IFN and RBV therapy has numerous reported side effects that include hematologic disorders, flu-like symptoms, neuropsychiatric disturbances,
ophthalmologic disorders, glucose metabolism disruption, autoimmune disease exacerbation, dermatologic complications, hair loss, thyroid dysfunction, and even interstitial pneumonia in rare instances, almost all of which can be managed with supportive care. Sarcoidosis induced by combination therapy is also considered to be a comparatively rare complication, for which the highest annual incidence has been observed in northern European countries (5 to 40 cases per 100,000 people). The annual incidence in Japan ranges from 1 to 2 cases per 100,000 people. The mechanism of Peg-IFN/RBV-related sarcoidosis remains elusive, but is believed to be related to pathophysiological and immunomodulatory causes. One possible mechanism is that interferon promotes cytokine synthesis by macrophage activation and the development and enhancement of Th1-mediated responses. Persistent HCV infection induces chronic liver damage through a Th1 immune type of response, and the antigenicity and viral persistence seen in chronic HCV infection may serve as a trigger for the development of clinical sarcoidosis in susceptible individuals, which is exacerbated by the exogenous use of INF-alpha. In addition, RBV has the ability to inhibit viral RNA replication, and might contribute to the pathogenesis of sarcoidosis by inhibiting the production of Th2 type cytokines by...
shifting the balance towards a Th1 response24. However, RBV may act solely as a facilitator in Peg-IFN/RBV-related sarcoidosis induction because no such cases have been reported for RBV monotherapy9, 25.

A total of 8 known cases complicated with cutaneous sarcoidosis during Peg-IFN and RBV combination therapy have been reported to date4-11, but with no definite associations made with regards to age, gender, onset of sarcoidosis, or type of Peg-IFN (Table 1). Six cases5-8, 11 were described as cutaneous sarcoidosis without systemic lesions. Pulmonary disease accounts for the majority of the morbidity and mortality associated with primary sarcoidosis26. Three cases, including ours, were of cutaneous lesions with pulmonary disease4, 9. Since cutaneous sarcoidosis leads to physical impairment in only a minority of patients and is not life threatening, additional treatment is generally only indicated by considering the risks and benefits of treatment for patients with symptomatic, ulcerating, or progressively worsening skin disease. All reported sarcoidosis cases, along with ours, showed an improvement in disease activity within several months of finishing or discontinuing Peg-IFN and RBV therapy without immune-modulation therapy.

It is well established that sarcoidosis is associated with HLA class II
genes, especially HLA-DRB1 and HLA-DQB1, in several ethnic groups. In Japanese sarcoidosis patients, a strong association with the HLA-DRB1*08 allele has been reported. This is the first study to investigate HLA genotype in a patient with cutaneous sarcoidosis induced by Peg-IFN and RBV combination therapy. Interestingly, our patient showed no previously reported susceptibility HLA genotypes or haplotypes. However, she had an extremely rare HLA haplotype (A*02:01-MC*15:02-B*51:01-DRB1*16:02-MDRB1*05:02) present in only 0.012% of the Japanese population. Moreover, she appeared to have a homogeneous HLA haplotype from the results of microsatellite and HLA genotyping, which is estimated to exist at a frequency of 1.4×10^−6% in Japan.

Recently, a single nucleotide polymorphism within the butyrophilin-like 2 gene (BTNL2) at rs2076530 has been implicated as a risk factor for sarcoidosis. Located only 170 kb from the HLA-DRB1 gene telomerically on chromosome 6, BTNL2 is a member of the immunoglobulin superfamily with suspected costimulatory activities in T-cell activation on the basis of its amino acid homology with B7 molecules. The G/A transition of rs2076530 causes premature truncation of the protein, which disrupts membrane localization and downregulation of activated T cells (Th1). As our analysis revealed the A/A
homozygote of the \textit{BTNL2} rs2076530 polymorphism, the truncated protein caused by the rs2076530A allele may have led to an increased risk of sarcoidosis in this patient.

In conclusion, clinicians should bear sarcoidosis in mind as a complication during Peg-IFN and RBV combination therapy. They should also be aware of the usually good prognosis of Peg-IFN-induced cutaneous sarcoidosis in order not to prematurely discontinue a necessary treatment for liver disease. Maintenance of Peg-IFN treatment in such patients may be advised with careful follow-up.

\textbf{Acknowledgements}

We thank Trevor Ralph for his English editorial assistance.

\textbf{Authors' disclosures of potential conflicts of interest}

The authors indicated no potential conflicts of interest.
Table 1: Published cases of complicating cutaneous sarcoidosis in Peg-IFN and ribavirin combination therapy in English literature

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (yrs)</th>
<th>Gender</th>
<th>Genotype</th>
<th>Type of Peg-IFN</th>
<th>Peg-IFN (μg/week)</th>
<th>Ribavirin (mg/day)</th>
<th>Duration (weeks)</th>
<th>Onset (weeks)</th>
<th>Other sites of involvement</th>
<th>Therapy</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>63</td>
<td>Male</td>
<td>2</td>
<td>α2a</td>
<td>135</td>
<td>800</td>
<td>48</td>
<td>45</td>
<td>lung</td>
<td>observation</td>
<td>resolved</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>Male</td>
<td>1b</td>
<td>α2a</td>
<td>150</td>
<td>1,200</td>
<td>48</td>
<td>40</td>
<td>-</td>
<td>observation</td>
<td>resolved</td>
</tr>
<tr>
<td>3</td>
<td>44</td>
<td>Male</td>
<td>1a</td>
<td>α2b</td>
<td>1.5 µg/kg</td>
<td>1,000</td>
<td>48</td>
<td>40</td>
<td>-</td>
<td>observation</td>
<td>resolved</td>
</tr>
<tr>
<td>4</td>
<td>59</td>
<td>Female</td>
<td>2 and 4</td>
<td>α2a</td>
<td>180</td>
<td>800</td>
<td>48</td>
<td>52 *</td>
<td>-</td>
<td>topical steroids</td>
<td>resolved</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>Female</td>
<td>1</td>
<td>α2a</td>
<td>180</td>
<td>800</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>discontinuation</td>
<td>resolved</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>Female</td>
<td>N.D.</td>
<td>α</td>
<td>N.D.</td>
<td>N.D.</td>
<td>48</td>
<td>40</td>
<td>-</td>
<td>observation</td>
<td>resolved</td>
</tr>
<tr>
<td>7</td>
<td>53</td>
<td>Female</td>
<td>N.D.</td>
<td>α</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>-</td>
<td>observation</td>
<td>resolved</td>
</tr>
<tr>
<td>8</td>
<td>54</td>
<td>Female</td>
<td>N.D.</td>
<td>α</td>
<td>1.4 µg/kg</td>
<td>1,000</td>
<td>N.D.</td>
<td>16</td>
<td>lung</td>
<td>observation</td>
<td>resolved</td>
</tr>
<tr>
<td>Our case</td>
<td>61</td>
<td>Female</td>
<td>1b</td>
<td>α2b</td>
<td>80</td>
<td>600</td>
<td>48</td>
<td>40</td>
<td>lung, uveitis</td>
<td>observation</td>
<td>resolved</td>
</tr>
</tbody>
</table>

Abbreviations: N.D., not described; *, onset after Peg-IFN and RBV combination therapy
References

12 Baughman RP, Lower EE, du Bois RM. Sarcoidosis. *Lancet* 2003; 361:

17 Ota M, Katsuyama Y, Hamano H *et al.* Two critical genes (HLA-DRB1 and ABCF1) in the HLA region are associated with the susceptibility to autoimmune pancreatitis. *Immunogenetics* 2007; 59: 45-52.

19 Joshita S, Umemura T, Katsuyama Y *et al.* Association of IL28B gene

24 Ning Q, Brown D, Parodo J et al. Ribavirin inhibits viral-induced macrophage production of TNF, IL-1, the procoagulant fgl2 prothrombinase and preserves Th1 cytokine production but inhibits Th2 cytokine response. *J Immunol* 1998; 160: 3487-93.
25 Cogrel O, Doutre MS, Marliere V, Beylot-Barry M, Couzigou P, Beylot C.

31 Naruse TK, Matsuzawa Y, Ota M *et al.* HLA-DQB1*0601* is primarily associated with the susceptibility to cardiac sarcoidosis. *Tissue Antigens*
Valentonyte R, Hampe J, Huse K et al. Sarcoidosis is associated with a truncating splice site mutation in BTNL2. *Nat Genet* 2005; **37**: 357-64.

Figure Legends

Figure 1. Chest X-ray before combination therapy showed no abnormal findings (a). Chest X-ray taken 2 months after combination therapy showed bilateral hilar lymphadenopathies (white arrowheads) (b). Thoracic computed tomography (CT) taken at the same time clearly showed multiple bilateral, paratracheal, subcarinal, and hilar adenopathies (d) and a diffuse micronodular interstitial pattern of the lungs (e). Thoracic CT taken 20 months after combination therapy indicated improvement of bilateral hilar (f) and interstitial (g) lymphadenopathies. Chest X-ray taken 40 months after combination therapy depicted improvement of bilateral hilar lymphadenopathies (c).

Figure 2. The patient developed a small, painful subcutaneous nodule (black circle) on the sole of her foot that was 10mm across in diameter 10 months after the initiation of therapy. The patient had no complaints about the sole of her foot before treatment.

Figure 3. Skin biopsy revealed multiple noncaseating granulomas composed of a compact aggregate of irregularly arranged epithelioid histiocytes
with multinucleated giant cells (Hematoxylin and Eosin staining ×100).

Figure 4. Transbronchial lung biopsy revealed the presence of multiple noncaseating granulomas with multinucleated giant cells (Hematoxylin and Eosin staining ×200).
Chest X-ray before combination therapy showed no abnormal findings (a). Chest X-ray taken 2 months after combination therapy showed bilateral hilar lymphadenopathies (white arrowheads) (b). Thoracic computed tomography (CT) taken at the same time clearly showed multiple bilateral, paratracheal, subcarinal, and hilar adenopathies (d) and a diffuse micronodular interstitial pattern of the lungs (e). Thoracic CT taken 20 months after combination therapy indicated improvement of bilateral hilar (f) and interstitial (g) lymphadenopathies. Chest X-ray taken 40 months after combination therapy depicted improvement of bilateral hilar lymphadenopathies (c).
The patient developed a small, painful subcutaneous nodule (black circle) on the sole of her foot that was 10mm across in diameter 10 months after the initiation of therapy. The patient had no complaints about the sole of her foot before treatment.
Skin biopsy revealed multiple noncaseating granulomas composed of a compact aggregate of irregularly arranged epithelioid histiocytes with multinucleated giant cells (Hematoxylin and Eosin staining ×100).
Transbronchial lung biopsy revealed the presence of multiple noncaseating granulomas with multinucleated giant cells (Hematoxylin and Eosin staining ×200).

112x84mm (150 x 150 DPI)