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Abstract

This thesis contains two topics regarding weighted Bergman spaces on
the unit ball B, of C”. One is the complete determination of pointwise mul-
tipliers between two usual weighted Bergman spaces on B,,. The other is the
isomorphism theorem between two generalized weighted Bergman spaces
on B,,.

In 2004, R. Zhao [9] determined the pointwise multipliers between two
usual weighted Bergman spaces on the unit disc B;. We prove that his result
still holds for higher dimensional cases n > 2. '

In 2008, R. Zhao and K. Zhu [10] proved that two generalized weighted
Bergman spaces &% (B,) and ﬂ%ﬁq (B,) are isomorphic when p = q. Their
proof, however, includes some approximation theorem which is difficult for
us to understand. We give a different proof of the isomorphism theorem by
using our recent result [3] about the fractional integral operators Zy,,.

This thesis consists of three parts. In Chapter 1, we investigate pointwise
multipliers between two usual weighted Bergman spaces. In Chapter 2, we

.Investigate the fractional differential and integral operators. In Chapter 3,
we describe the precise definition of generalized weighted Bergman spaces
and prove the isomorphism theorem mentioned above.
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Introduction

Let n be a fixed positive integer. Let B, and S, = dB,, denote the unit ball and
the unit sphere of the n-dimensional complex Euclidian space C”, respectively.
Let v denote the normalized Lebesgue measure on B, so that v(B,) = 1. Let o
denote the normalized surface measure on S;,.

Forany ¢t € {t € C:Ret > —1} U (—o0, —1], we define a weighted Lebesgue
measure Vo on B, by

dve(z) =cq _(1 —12?) “dv(z), zEB,,

where cq = 1 for o < —1 and ¢q = M%l—) if Reor > —1, which is a nor-

malizing constant so that vy (B,) = 1. The space of all holomorphic functions in
B, denoted by H(B,,).
For f € H(B,), @ € R and p € Ry, we define

1Az m,) = </IBn |f|pdva>% = [l /1o (v

where R is the set of all positive real numbers. The weighted Bergman space
AL (By,) is defined by

n

A (Bn) = {7 € BB < 1 ey < =)

We note that the collection {45,(B,) : & € (—1,), p € R, } are the usual weighted
Bergman spaces on B,. When o = 0 we simply write 47 (B,) for 4 (B,).
As usual, we define

/B,y = sup |7(z)] (f € H(Bn))

z€B,
and -
H*(B) = {f€HBy) : |/ |g=(m,) <=}
For o € R and f € H(B,), we define
11| ey = 17O+ sup (1—|2%) | () (),

z€B,

where 7/ is the holomorphic gradient of f. The o — Bloch space By (B,) is
defined by

Bo(By) ={f €HBY) : |7l zeqm,) < -
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Suppose {o, B} C (—1,0) and {p g} CRy. Then a function g € H(]B
called a pointwise multiplier from 4%,(B,) into Aq )if {fg: fEAp } -

A% (By). The set of all pointwise multipliers fromA (]B ) into A% (B,) is denoted
by (ZA) (45 (B,) ,A% (Bp)). In 2004, R. Zhao [9] determined the pointwise mul-
tipliers between two usual weighted Bergman spaces on the unit disc B;. In Chap-
ter 1, we exactly determine the set (Z.#) (45, (]Bn),A% (By)) that his result still
holds for higher dimensional cases n > 2 as follows.

Theorem 1. Let {o, B} C (—1,%0) and {p,q} C Ry. Put y= n+1+ﬁ _ntlta

p
() Ifp < g and'y> 0, then (Ptl) (A2 (By), 45 (Bn)) = Bsy(Ba).
(i) Ifp < g and y="0, then (P.)(A%(By), 4% (Bn)) = H"(B,).
(i) Ifp < g and 'y <0, then (P.) (45(B,), 45 (By)) = {0}.

(v) Ifp>q, then (P M) (45, (]Ban)',A'g (By)) = A5(B,), where s = LLZ and § =

(8-9)

According to custom we denote the set of all positive integers and that of all
nonnegative integers by N and Z4 = NU {0}, respectively. For any two complex
numbers 5,7 with n+s ¢ (—N) and n+s+¢ ¢ (—N), we define two invertible
linear operators

B H(By) — H(By)

and
PRsy - H(Bp) — H(B,)

as follows. If f = 2 /¢ is the homogeneous expansion of £ € H(B,,) at the origin

k=0
of C”, then
Fn+1+s)Cn+1+k+s+1)

T(n+14+s+6)T(n+1+k+s)

%Stf Z fL

and

I'n+14+s+6)l'(n+1+k+s

Fn+1+s)Tn+1+k+s+1)



For f = 0 in B,, we put

17(0) = minfk € Z - /i # 0.

We call ir(0) the zero multiplicity of f at the origin of C”.

It is evident that the inverse of %' is %y, and %y, = Z°+5~". According to
[12, Proposition 1.14], %' and % are continuous operators of H(B,,) onto itself
with respect to the topology of uniform convergence on compact subsets of B,.

For f € H(By), p € Ry and r € [0,1), we define

) ={ [ 0P o)’

and

Ma(rf) = sup | £(-0).

{eS,

In 2009, Y. Matsugu and T. Yamada [2] proved the following two theorems ([2,
Theorems 1 and 27).

Theorem A . Let f € H{B,), p € (0,], g€ Ry, a €R, se R and t € R.
Suppose that n+s ¢ (—N) and n+s+t ¢ (—N). Then

/01(1 ~1’)a+thg(r,%s’tf) dr < C/Ol(l —r)aMZ(r?f) dr,

where C is a positive constant depending only on p,q, ., s,t and n.

Theorem B. Let f € H(B,), p € (0,00, g e Ry, o0 € (—1,), s€ Randt € Ry.
Suppose that n+s > —1. Then

fu-nge e <c [a-neage .,

where C is a positive constant depending only on p,q, 0.,s,t and n.

The aim of Chapter 2 is to show that Theorem B still holds even if we weaken
the assumption # s > —1. Thus the main results in Chapter 2 are the following
two theorems.

Theorem 2. Let f € HB,), p € (0,00, g€ Ry, 0 €R, 5€C, tcCandf=
Ret € Ry. Suppose that n+s ¢ (—N) andn+s+t ¢ (—N). Then

1 " 1 .
| @=neriagin @ par<c [ (1-nemg, far
where C is a positive constant depending only on p,q, ¢,s,t and n .
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Theorem 3. Let f € H(B,), p € (0,], g e Ry, @ € (—1,00), s€ C, t € C and
f=Ret € Ry. Suppose thatn+s ¢ (—N) andn+s+1t ¢ (—N). Then

1 1 .
[ a=nagnanar<c [ 0-n=iamge, s
where C is a positive constant depending onljz onp,q,0,s,tandn.

The proof of Theorem 2 is almost the same as that of Theorem A. To prove
Theorem 3, we need to consider the zero multiplicity tLr(0) of the holomorphic
function f at the origin of C”. Take a nonnegative integer ky with kg > —n —
Res—1. Then we can decompose f such as f'= g+ & where g is a polynomial of
degree kg at most and / is a holomorphic function with (1, (0) > k. So it suffices
to prove Theorm 3 for g and /4, separately.

In Chapter 3, we investigate the generalized weighted Bergman spaces on 1B,,.

Let f € H(B,) and f = Z J;j be the homogeneous expansion of f at the origin of
=0 .
C". We then define the radial derivative of f by

Rf=2,Jf;
j=1
Moreover, for each k € Z. we define an operator

Z*: H(B,) — H(B,)
as follows: N ~
RBf=F=fn Zf=2f=3 il

7=0 7=l

and for £ > 2,
B =R <%k—1f> _ Ejkfj'
j=1
Let p € Ry and o € R. We define the set /4, and the integer Ky, as follows:

o+1
]a’p:{kEZ_;. tpk+o > —1}=Z+ﬂ (——p—};—,w> R

Ko,p = Minly p.
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It is clear that the three conditions
Tap30,%yp="0and o € (—1,00)

are mutually equivalent. For each k € I , and f € H(B,), we define the quantity
I/ ||Jzﬂ ) as follows.

L
p .
oy = {FOP IR, ) itkeEN,
”f”,czfof'k‘(B,,) = ”f”Aﬁ(Bn). ifk=0.
For each k € Iy p, we define the subspace MO}: k(IB%n) of H(B,) as follows.

ol (By) = {f € H(B,): Bf e P, (B )}
For any f € H(B,), we define '
[z ) = 1/1] o2

aKa

The generalized weighted Bergman space <74 (B,,) on B, is defined by

2 = {F € HB) | lupey <=}
‘We can show that the following facts hold:
(1) Forany k € Iy p and f € H(B,),
Coll A1l e ) < 1Lz ) < Coll ANz ey
where C; and G, are positive constants depending only on », p, & and %.

(i) Forany k € Iy p,
Moik(IB%n) = % (B,).

(iii) If o > —1, then
Ay (By) = A5 (By).

(iv) If 1 < p < o, then & (B,) is a Banach space with respect to the norm
|-z, If0<p<1,then @f(B,) is an F-space with the metric
Do) (/8) = | — &l yp(w,) Tor {128} C 2 (By).
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In 2008, R. Zhao and K. Zhu [10] proved that two generalized weighted
Bergman spaces &4 (B,,) and .Qf'ﬁq (B,) are isomorphic when p = g. The goal of
Chapter 3 is to give a new proof of the following isomorphism theorem, by using
Theorems 2 and 3.

Theorem 4. Let ot €R, B e Rand p e Ry. Putt = afﬁ. Supposes €C, n+s ¢
(—N) and n+s+1t ¢ (—N). Then %s; is an invertible bounded linear operator

from ZE (B,) onto szflf (B).



Chapter 1 : Pointwise multipliers from one usual weighted
Bergman space 44, (B,) into another A% (B,)

1.1 Preliminaries

Proposition 1. Suppose {0, B} C (—1,%),{p,q} CRy and g € H(By). Then the
following two conditions are equivalent:

() g € (PM)(AL(By), 45 (By)).

B “fg”A%(]Bn) ?
(i) sup e, :feAa(]B%n)\{O} < oo,

Proof. Since all the weighted Bergman spaces are F-spaces, by using the closed
graph theorem (Theorem 2.15 of [5]) we can prove the proposition easily. O

Proposition 2. Suppose s € (n,o0), ¢ =s—(n+1)andp €Ry. Then ax € (—1,0)

and
w)[P{1 — | (w)[*}* 1
B, If( )([1 EllwlL?nil)l ! dv(w) = ca”fo @z“fﬁ(m)

Jor f € C(B,) and z € B, where @, is the involutive biholomorphic map of B,
that exchanges 0 and z.

| Proof Itis clear that o € (—1,e0). By Lemma 1.2 and Proposition 1.13 of [12],
for f € C(B,) and z € B,,, we have

S0P = letnPY

B (-pp )
_ [P [O-ERO -
= h o ()
(1 _ IZ|2>n+1+o¢

]1 _ <W’Z>[2(n+1+oc)

1

Ca

[ 17oap

n

dvy(w)

1
= E;”fo (lelfp(va)‘

o

' The next lemma is Exercise 7.7 of [12]. The one dimensional case is the same
proof as Proposition 7 of [11]. For the completeness, we prove it here.
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Lemma 3. For any o € (1,0) it holds that

z€B,

PBo(By) = {fEH(Bn) ssup (1— |27 f(z)] < °°} :
Proof. For f € H(B,) and z € B,,, we have |

@)= f 0|=Vl (V) (t2),5)de

< sup {1 = RV | =l

WE n

205 1
(1=l sup{(1~|Wl) [(VA)Yw)[}-

_oc 1 weB,

Hence we obtain

oa—1

) 2.0,y )

sup {(1— |2P)* A (@)} < (1+

zeB,
Conversely, suppose f € H(B,,) and sup {(1 — |z|*)* 7|/ (z)|} < o. Then f €
z€B,

Al _(B,). For any z € By, the Bergman integral formula (Theorem 2.2 of [12])
thus gives
Sf(w)

)= /IB, dea—l(@-

Differentiating inside the integral sign, we have for j € {1,...,n} andz € B,

O = [, e avecs ().

B, (1— (z,w))rtot]

Hence we have

_ d
((NE] <nlo+lecs sup (NI Py} [ =Pt @
By Proposition 1.4.10 of [6], we obtain
) CeB) ®

B, |1 — (z,w)|met! = (1—[z?)
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where C is a positive constant-depending only on ¢ and n. By (2) and (3), we
obtain

sup{(1— %)%/ (VA @)} < nln+ o)ea-1C sup {|/(w)] (1 w]*)*'}.

z€By weB,

Hence we have

Al @@ < {1+ 7+ @)ea—1CY sup {|F(w)](1 = w)* '} )

weB,

Inqualities (1) and (4) show that

zeB,

Bo(Bn) = {fEHOB ) sup {(1 =) * 7M@)} < w}-

1.2 Proof of Theorem 1 in cése p<g

First of all, we consider some lemmas and propositons to prove Theorem 1 in
case p < g. Let M, (B,,) denote the set of all positive Borel measures on B,,.

Lemmad. Let ¢ € (—1,0),{p,q} CRy and 1L € My (By,). Suppose p < q. Then
the following two conditions are equivalent: '

® SUP{H%”M(”) fEAL(B n)\{O}} <

. ( IZ|) n+1+d)
. 555{/1%11—@ PR

Proof. See Theorem 50 of [10]. O

Proposition 5. Let {o,f} C (—1,) and {p,q} C Ry. Puty= n+;+[3 _ ntlta
Suppose p < q. Then for any g € H(B,) the following inequalities hold:

(1—lz L(n+1+c)
G sup {(1- Y1g(2) |}q<sup{ [ Ak l(w)lqdvﬁ(w)}

—‘ln
z€B, . zeB, nl1_< >l (n+1+40)

< G sup {(1-|P)lg2) [},

z€IB,

where Cy and Cy are positive constants depending only on o, 3, p,q and n.
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Proof. Put
=%(n+1+o&) and op =  — 3.

Then, by the assumptions, we see that
§ € (n,00) and o =5 — (n+1).
Fix g € H(B,). For any z € B,, put
Glz) = (1~ I=*)g(2)]. @
Then G € C(B,), and Proposition 2 imply that

L sup ||Go o,

CXOZE/

=sup{< — [t (1= PPy’ |<w>lwv<w>}

“L‘I(v%)

zeB, B, 11— (z, W)I F(n+l+a)
B i ( |Z] ) ntl4o)
_%iﬁ{éu~@wMWHwﬂ“m”WW>' @

By (1) and Theorem 1.12 of [12], we obtain

sup [Go g4l ) < ceaCh 51 |G = ccoC sup {(1— Y)Y, B)

zEB, weB, weB,

where C| is a positive constant depending only on o, 3, p,q and n. By (2) and (3),
we have

— |52\ B 1+a)
sup { L <w>|qdvﬁ<w>} < epCh sup{(1~P) g1

rety | B0 |1 — s, ) [FrH14) - @

Conversely, choose any R € R.. By using Lemama 2.24 of [12], for any z € B,,,
there is a positive constant C} depending only on 3, R and » such that

Cl
lg(z)|? < W/ lgl?dvg, ()
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where D(z, R) is the Bergman metric ball with center at z and radius R (cf.[12]).

C/
2;§{O——hﬁ)ﬂg@ﬂ}qf£;§i{( i o Y

= su Idv
261%3,7 { (1 . |Z[2 n-i-1+oc) / I ﬁ}

/ ( IZIZ) n+1+a) ' ;
=, su / wl9dva(w) > . 6
Zze]él D(Z,R ( . |Zl2> 2 n+1+a) I ( )l ﬁ( ) )
By Lemma 2.20 of [12], for any z € B, and w € D(z,R), we see
4 1+o)
11— e\ 3
< 1— |22 <G, 0

where C3 is a positive constant depending only on p,q, ¢, R and n. By (6) and (7),
we have

sup {(1—[2[*)"g(z)[}¢

z€B,

22 n+1+Ot)
sq@@mm{/ ) |omwmw%

z€B, |1 —{(z, W>| Ln+l+a)
‘ac A=
< GG su / Mdva (o) b .
1~2 326][}; B”]l—(z W)l (n+1+05)| ( )l ﬁ( ) ( )
The assertion of the proposition follows from (4) and (8). -

Proposition 6. Let {c, B} C (—1,%°), {p,q} CR4 andg € H(By,). Suppose p <

q. Puty= ﬂ%ﬂz — "H%. Then the following three conditions are equivalent:

() g € (P M) (AL(B,), AL (By)).

_lz %n+l+a)
(i) sup {/B Sl e (W)lqdvﬂ(w)}<°°~

z€B, . ]1 _ <Z W>|7(n+1+a

(i) sup {(1—[2[*)7|g(z)|} < oo

zeB,
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Proof. Define lg € M (By) by ditg = |g|?dVvg. Then
”f”m(ug) ||fg“,49  for all S E€H(By).

Hence, the present proposition follows from Proposition 1, Lemma 4 and Propo-
sition 5. , g

Proof of Theorem 1 in case p < q. When y > 0, by Lemma 3,

B1+y(Bn) = {g € H(By) : sup(1- l21)"lg(2)] < W} : D

By Proposition 6 and (1), we obtain
(P M) (45(Br), 45 (Br)) = B11y(Bn)-
When y = 0, by Proposition 6, we obtain

(P M) (A5(Bn), 45 (By)) = {g € H(By) : sup [g(z)| < oo} = H™(B,).

z€B,

When y < 0, it is easily shown that

{g€ H(By): seup(1~|2| Ve(@)] <}

={g € H(Bx): s lg(2)| =0} = {0}. @
By Proposition 6 and (2), we obtain
(P ) (45(B,), 45 (By)) = {0}.

The proof of Theorem 1 in case p < g is now complete. 0J

1.3 Proof of Theorem 1 in case p > g
For 1t € My (B,), o € R and R € R, we define the function flg o on B, by

D(z,R

where D(z, R) is the Bergman metric ball with center at z and radius R.
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Lemma 7. Let & € (—1,),{p,q} CRy and i € My (B,). Suppose p > q. Then
the following two conditions are equivalent: '

() sup{ . ¢ eAﬁ(Bn>\{0}} <o,

1712 (8,)

(i) frg €LFT(vy) for all RER,. |
Proof. See Theorem 54 of [10]. O

Proposition 8. Let {a,f} C (—1,%), {p,q} C R4 and g € H(B,). Define |is €
My (By,) by dug = |gl?dvg. Suppose p > q. Then the following two conditions are
equivalent:

() & & (P (A5 (Br), 45 (B)).
(i) (Hg)pg €L77(vVa) for all RER,.
Proof. The proposition thus follows from Proposition 1 and Lemma 7. O

Proposition 9. Let {0, B} C (—1,) and {p,q} C Ry. Suppose p > q. Put

5= % and 8 =s (%—%). Then for any pair {f,g} C H(By),

1/ ellag ) < Cll iz o) N8 g )

where C is a positive constant depending only on &, B, p,q and n.

Proof. Put
P Po
pPo= and gg = .
p—q 1 po—1
Then 1 1
{po,q0} C (1,0) and — 4+ —=1.
po 4o
By the assumptions, we have
—— =pand <[3—@> S
s )s—q
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Hence, we have
12l m,y = [, felavy
=cp [ 7@~ )7 g1 ~ PR av()

<[ [ {vera-pers) o]

<L {e@ra-pps ) dv(z)} g
= [/]B.lf(Z)l?i%(l—IZIz)(ﬁ":s—qdv } V @ (1 — 2P dv (2 )F
= [ [ 1rapa—sprave)]” [ [ o - eprav)

-4
= Cﬁccxpc5 S ”f”Alé(Bn) ”g”ASS(]B")‘
This completes the proof. d
Proposition 10. Ler. {ct,f} C (=1,) and {r,q,R} CRy. Puts=FLL and

S=s (% - %). Suppose p > q. Then for any g € H(B,),

ngv<c/ L)y | dve,
L ledvs <C | (g ol Fave

where dllg = |g|9dvp, and C is a positive constant depending only on o, 8, p,q, R
and n.

Proof. By the definition of (/ig) R, o> We Obtain

. b 1 =

By Lemma 2.24 of [12], for any z € B,,, we have

C
o L @
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where Cj is a positive constant depending only on 3,R and ». By (1) and (2), we
have

L.
1 — |z|2)nt1+B p—q
[ 105> / {1_,212 e ) |g<z>|Q} e

p(B-)

—cac”/Bn< — 22) 5 (@) [P dvala)

_Ez_q AV s _17571 -1 s
— ol [ (1= P lel)Fav(e) = ol 75" [ letavs.

This completes the proof. O
Proof of Theorem 1 in case p > q. By Propositién 9, we have
gEA(By) = g€ (Pl)(AL(By),45(By).
By Proposition 8 and Proposition 10, we obtain
€ (P M) (AE(By), 45 (Br)) = g€ 43(By).

Hence, we have

(P ) (A5 (Br), 47 (B)) = 45(By).

The proof of Theorem 1 is now finished. : O
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Chapter 2 :The Stoll-Shi’s theorem concerning the
fractional derivatives and integrals of functions in 7 (BB,,)

2.1 .Preliminaries

Proposition 11. (cf Proposition 3 of [2]. ) Lets € C, t € C and 7 = Ret € R,.
Suppose n+s & (—N) andn+-s-+t ¢ (—N). Thenfor any f € H(B,) with j17(0) >
—n—Res—1, anyr € (0,1) and any z € 1B,

Fn+1+s+1 "
(Bus)02) = s [T ™= p) (s}

Proof. Let f=3Y7_, /i be the homogeneous expansion of f at the origin 0 € C”.
Put ky = p17(0), § = Res and 7 = Ret. Since n+§+ky > —1 and 7 > 0, it follows
that

2 Iﬁc |/ pn+s+k t ldp
k—ko

oo

=2 lfk(z)lrwﬁﬂ% pEE(L—pYdp

k=kg

k41
= 2 Zii_ik: 1)+(E~)) felrz)] < e

Hence the integral calculus according to the term gives

[ o= p) L flpz)dp = / ) Y, fulps)dp

k=kg

_ 2/pn+s Y1 fulp2)d z nASH o (17) / prHHE(1 o)1 dp

k=ko

r}1+s+t i n+S+k+1)1" Z‘)

it T(n+s+k+1+1) 1ilr2)

ks T(n+s+k+1IQ)
Z n+S+k+1+t)fk( r2).

16



Thus we have

T(n41+s+7) P 1
rn+s+t1"(n+1+s)1-\( )/0 p * (F—P) f(PZ) dp

B Z In+1+s+6)T(n+s+k+1)
IFn+14+s)T(n+s+k+141)

]’k<rz) = (%5, f)(rz).

O

Proposition 12. (cf Proposition 4 of [2].) Lets € C, t € C and f = Ret € R..
Supposens ¢ (—N) andn+s+t ¢ (—N). Then for any f € H(B,) with [17(0) >
—n—Res—1, anyr € (0,1) and any p € [1,°9],

T(n+14+s+1)
7»71+s+t]j‘(n +1 —]—S)T(f)

%(}’7 ‘%SJ ) S

r . -
A pn+s(7’_p)t—1MP(p)f) dp:

where § = Res.
Proof. By Proposition 11, for { € S,,, we have

F'(n+1+s+1)
phs+HT n+1+s

(%5 /) (rE)] <

Bl PR el

In the case p = oo, we get

Mp(rw%s,tf) (7 %s tf Sup | stf C)I

. Ces,

Tn+1+s+1)

< n+s t 1

= T 140010 | { / p If(pC)Idp}
Tn+1+s54+1) . .

< n+§¢. -1

= | HD(n+ 1 4-5)0() g:g,{/o P (r—p) T Ma(p, f) dP}

. I(n+14s+1) T sl =

T (n 4 145)T(2) /op (r=p)= Mp(p, f)dp

17



In the case 1 < p < oo, the continuous form of Minkowski’s inequality, we have
My(r,Zs 1 f) = {/ l Zs 1 f)(r lpdo' C)}’T
T(n41+s+1 T . P 7
e IR A SORILCIIEA RG]
T(n+ 145+t r s s 5
rn+s+tr(n+1+s))r(r) J U {p =y A0l d"@J i

. r(n+1+S+t) n+s t 1
TP+ 145D / p M, (P, f)dp

IA

IA

For fe H (By,) and { € S, we define
(Mraaf)(8) = sup |f(rE)].
0<r<l

For p € (0,e0], we define

I e B,) = sup Mp(r, 1)
0<r<1

The Hardy space on By, is

HP(Bn) = {f € H(By) : | flgr(B,) <o}
Lemma 13. For any f € H(B,) and p € R4, |

/S (Miaaf)? dc<cnanp B,

where C is a positive constant depending only on n.
Proof. See Theorem 5.6.5. of [6]. O

Let 77 denote the set of all multi-index of nonnegative integers. For f €
H(B,) and m = (my,- - -,my) € Z} we will employ the notation

omf B glml

oz"  Jzy' - Iz’

Dlnf:

where |m| =m; + - -my.

18



Lemma 14. For any f € H(B,), r € (0,1), m € Z7 and p € (0,),

empois (1) CHmE (2) " 00

(n—1)! r
Proof. By Theorem 3.2.4 of [6], for any R € (0,1) éndz_ € B,
f&(8) _ f(RE)
7R = £l = [ Lo @)= [ gt o ©)

Hence we have

lel(Dmf) (RZ) _ /n n(n+ 1) (1 T;}lgl);_lln)fmf(]aé) dG(é).

Since r € (0,1), we have

lm] n : m|— : I8 )
o< (2) SR [ G otde).

By Theorem 4.17 of [12], for € € S,, \,Ne' have
Fovi ool ey _ (4 )
GEI=1rG0l < T (5) w0

Hence we obtain

O

Proposition 15. (cf Proposition 6 of [2].) Lets € C, t € C and f = Ret € R,..
Suppose n+s ¢ (—N) andn+s+t ¢ (—N). Then for any f € H(B,) with tLr(0) >

—n—Res—1, anyr € (0,1) and any p € (0,1],

. 1
C r 2 "‘_1 Z;
Mo ecf) < | [ 979 00,11 |
where § = Res and C is a positive constant depending only on s,t, p and n.
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Proof. By Proposition 11, forz € %IB%,?, we have

— r(n—l—l—I—S-}—l‘) n+s 1—
i) = e [ (1 =) s}

Fix { € S,. Hence we have

1
(@Ol < |fEE S [Tt - e Dlap. )
Put )
pi=1-5 (k€Zs). @)
* Then we have
p0:0<4in<%=p1<p2<..., ]}i_rilopk=1. 3)
We put 1
10)= [ o™ =p)fp0)]dp, @
/ P =p) NS rp )l dp, )
/ P (1= Y f(rp )l dp (6)
and ) |
k+1
=3 [ e pi el m
By (3)-(7), ;
1(8) = Zﬁ(«:» @®)
T
Put
1y (0)

By the assumption, we have

‘ kg >-—-n—5§—1. ' ' )



Let f > reo J% be the homogeneos expansmn of f at the origin of C". For p €
(0 ,4n) by Lemma 14, we have

Feo) =1 'S, Al =

k=ko

k=ky | meZh |m|=k

Si{ ) E%Q@%mw}
k=ky . meZl,|m|=k )

e o) (4NF (SN (b lml - 1)t 4
Skg/’;o{meZ'}rz,rnq:k m! <3> <27’> (n—1)! Mp(5’)

_ @47 > <5np>k(n+k—1)1

(n=1)1 S\ 2 o (10) -

By (5) and (10), we get

5 (L5 )

)7 Mp(% < n\" (n _
[1(C)S%L§ <57> (__f_]]zl_l)‘/o pn+s+k(1 p)[_l dp
GFME.N) & (50\F k=1 [d o dn
SBTfl)il_kzzk()(z) (‘T)“/O prst = dp

7’1(';1 %'HMP 55’—') ) > (7’l+k—1)! <5>k
n ’

)
Y (= 1)1 frar (n+5+k+ k! 8

and

= n(d)st! i (n+k—1)1 (5 k<
1= (4n)n+s+1 n—l —%o n—[—S+k+1)k| 8
Hence we obtain

Q) < () an
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By (6) and Theorem 4.17 of [12], we have

/ o (1= E L g ap

—/ P31~ p) 7 2 0) dp

; s 1 Vel
S/l P (1~p) lawdp

_/ pn+s f— %(ésl> )

_—nd
1-CepyE

64 4r 3 « -
< n+8r1 _ V-1
<39> Mp( 5 ,f)/z%p (1=p)~ dp.

Put

64 ;
Cy = <39> /1 P (1 —p)~ldp < oo,
i

"

Hence we have A
-
L) < Cz%(”s—,f)~
For k € Z., put

Ne(€)= sup |f(rpC)l.

PE<P<Pi41

Hence, we have

I3(§) < iNL(C) /pk+1 pn+§(1 ~p)7"1dp.
k=1 Pk

For any £ € N, put
Pr+1 o F_1.
Sy = / P (1—p) = dp.
Pt
Fix any k € N. By considering each of four cases

(12)

(13)

(14)

n+§>0,f—1>0; n+5§>0F—-1<0; n+8§<0,7—1<0; n+5<0,7—1>0,
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we now estimate Jy. In the first case that n+§> 0 and 7 — 1 > 0, we have

Pr+1 - . o T,
0<Jp < /p (1) (1 — pr)tdp = (prat)™™ (1 — )N ors1 — P2)
%

g 1\
=2 (1) <W> : (15)

In the second case that n+§ > 0 and 7 —1 < 0, we get

Pl g —1 msl 1Y
(Pr+1)" (1 = prg1) ™ dp = (Pret1) ) (16)

O<Jk§/
Pk

In the third case that n+§ < 0 and 7 — 1 < 0, we obtain

Pr41 - -
0<i < [ (P (1= ey dp

Pk )
1—L \" 1\

. 2k +§

It follows that
1T\

0 < Jp < C5(pps1)™™ <W> (17)

where
1— 1 n+-§
Cs =sup ? < oo,
leN - 2/—1—

In the fourth case that n+§ < 0 and 7 — 1 > 0, we have

Pi+1 ~ » . ~ -
0< < ()™ (1= pe) =" dp = (o)™ (1 = p) " (Prs1 — pi)

Pr
. 1 f—l 1 p' n+§ . 2 7—1 1
_ n+§{ * _ k +
= (px) <2k> e+l <Pk__+1> (Prg1)"™ <§k+—1> SFFT
. ‘ /1 \!
<271Cs(ppr)" <§L+_1> : (18)

By (15)-(18), for k € N, we get

0<J< C4(Pk+1)n+§2(k—+1)7, (19
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where i )
Cy =max{271,1,C3,271G3 ).

Hence (14) and (19) imply that

- s 1
5 (g) < C4]Z,1Nk(g) (pk+1)n+s2(k+1)f' (20)

By (8), (11), (13) and (20), we obtain

4 - s
10) < (GO (L N +C SN et sy @D

Since 0 < p < 1, (21) gives

1
S T)pt
(22)

U0 < G+ P N+ SOV (o)

On the other hand, we have

Sr

/ pPE ) (r— )P M (p, f)dp > |, ¢ pp(r) —p)YP M (p, £)dp
5
> MY (ﬂ’f) /j pP ) (r — p)P 1 dp. 23)
5
Since % <r—p< % forp € (%,%),

7 5,-
(r—p)P~1 > 57IP=1pP=1 for any p e (4? é) (24)
By‘(24), ifn+5+7+#0, we get
A pp(n+s)(7,_p)pz—1 dp > 5—|pt—1|/ist pp(n+s)+pt—l dp
5
(%) p(n4-5+7) _ ( 4ryp pln+s+d)

p(n+5+1)
(% )P pln+s+f) _ (5) p(n+5+)

prn+5+7)

— 5-lpi-1]

pPOHS+E) : (25)
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Ifn+§+7=0, (24) gives

5r

5r
3 . - iy [T _
. PP —p)Pldp > 5Pl A p~ldp
£ 5
¥ Sr 4r 5 25
— 5—lpf-1] 2 log = | = 5~lpt-1] =
5 <log 3 log s ) 5 log 7
. 25 "
_ s—|pi-1] <2 p(n+8+7)
5 log " .
By (23), (25) and (26), we have
( "7 _W/ pPrH) (r— )P ME (p, £) dp,
where Cs is a positive constant depending only on s,7, p and ». Put
/ PP (1 — p Y (Mo (£ ()} dp-

By (3) and (28), we have

K(E) = i /Pk+l pp(n+§)(1 _p)ptll{Mad(ﬁp)(C)}pdp

k=1" Pk

Z.i{Mrad(ﬁpk)( )}p/p"+ P48 (1 p)P=1 g,
=1

For k € Z., we have

Ne(§) < sup [f(rpd)| = S | Frpear (06 = {Mraa (frppa )} (£)-

0<p<pPrt1
For k € N, put
Li= / P par ) (1 p)oi=1 gp,
I

k
By some calculation about J;, we show that

g 1\
Ly > Cr(py)P0r+9) <§>

25

(26)

@7

28)

(29

(30)

GD.

(32)



where C7 is a positive constant depending only on s,, p and n. By (29)—(32), we
have

0> ;{Mm(ﬁpk)(c)}m > ];1 (Nt (O

< nts) | . 1
> C7]§,1{Nk—l )}pPp( +~)2Apt >Cy Z{Nk )Y (Dr1)P ) I - (33)

By (21) and (33), for £ € S, we obtain
HOP < @+ a7+ L) ()
By (1), (4) and (34), we have
462 P = [ (@)D do(0)
<[ttt D0 [ oo Dlap | da()
[ aeneas

‘T(n+1+s+t
4y
<GME(Z.A)+Cs | K(§)do(0), G5)

I(n+1+s)I

where

n+1 +..S‘+f) P
Tn+1+s)I@)|

4T(n+ 1 +s+f) r
I'(n+145)T(t)

Cy

_ P
Cs=(C1+G) c,

and Cg =

By (28), we have
. 1 N -
JLK@do(@)= [ do(@) [, 01 =p) T sl )07 dp
1 - .
= [ pPr (1= p) ™ dp | {Maalip) (§)} o (£). (36)
2 n
By Lemma 13, for g € H(B,) and ¢ € R, we obtain
., (s 870 < ol G37)
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where Cjg is a positive constant depending only on #. By (36) and (37), we have
i . .
AK@MdQ<adﬁﬂ”Wth”MM%%ﬂp

C
< oy [ PP ) My, 132 dp. (38)

By (35), (27) and (38), we get

Cs 1
{Mp(r, %1 1)} < <C +C9Cw> e}

/wﬂﬂ Y My (p, 1)) dp.

This means

C r . z_ p
Mp(n%,tf)ﬁm{ /0 PPy —p)¥t 1Mﬁ(p,f)dp} ,

where

Cg P
C=|—=+GCC
<C5+ 9 10)
' O

Lemma 16. Suppose s € (—1,%0),t € Ry and o € (—1,). Then for any p €
[0,1),

1 (1-x) C
dx <
/0 (1 — pax) Lttt &= 1—-p)
where C is a positive constant depending only on s,t and o.

Proof. See Lemma 7 of [2]. O
Lemma 17. Suppose oo € C and & = Re ot € (—1,%0). Then for any f € AL (B,)

and any z € B,
| 10 = [ e dvato)

(1= (z,w))rtl+e

Proof. The same proof as that of Theorem 2.2 of [12] (where the parameter o is

real) also holds in this complex case. Here we make use of the Lemma 16 in place
of Proposition 1.13 of [12]. 1
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Lemma 18. Lets € C, t € Cand N € N. Suppose n+s ¢ (—N) andn+s+1t ¢
(—=N). Then there exists a holomorphic polynomial h in C of degree N such that
Jor any w € By,

5yt 1 h((,w
%z ((1_<.7w>)n+l+s+N> - (1._'<.,1,(V<>>n+>1)+s+N+t'

Proof. The just same proof as that of Theorem 2.18 of [12] (where the parameters
s and 7 are real) also holds in this complex case. O

Proposition 19. (cf Proposition 8 of [2].) Lets € C, t € C and T = Ret € R,
Suppose n+s ¢ (—N) and n+s+t ¢ (—=N). Then for any f € H(B,), any pair
{r,p} c(0,1) and any p € (0,°],

C

My(rp, 22 f) < A=py Mp(r, f),

where C is a positive constant depending only on s,t, p and n.

Proof. Put §=Res. Choose an N € N as follows.
Incase 1l < p <oo:

l~5—1 <N. (D
p
Incase 0 < p < 1:
max{ﬁ—n,—fq, -5—1} <N. @)
P
Put 5
B=s+N and f =Ref. 3)
By (1)-(3), .
—1< B <o 4

Since the dilation f is holomorphic in a neighborhood of B,, by (4) and the
Bergman integral formula (Lemma 17), for any z € B, we have

50 = [ Ty du o). ©

Since %' is a continuous operator on H(B,) with respect to the topology of
uniform convergence on compact subsets of B, by (5), for z € B,,, we have

1
5t — 5,1
(Z* f;)(z) = /an,(w) <’% ((1 _ <-,W>)”+1+B>> (z)dvg (). (6)
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Since N € N, Lemma 18 gives for any w € B,

1 h((z,w
(‘%m <(1 — (.’W>>n+1+s+N>> (2) = - (Z,i)())ngllﬁml (zeB,) ()

where / is a holomorphic polynomial in C. By (3),(6) and (7), for z € B, we have

@ p@i<a [ — Iy, ®

B, 1 — (z,w)[r+1 B+ P
where
Cy =sup{|r(A)]|: 4 € C,|A| < 1}.

By (1),(2) and (7), C; is a positive constant depending only on s,7, p and n. Since
0<p<1,by(8),for{ €S,

(EROISC [, P g ™) o)

From now on, we consider the case 1 < p < . By Héldér’s inequality, (9)
gives

(2% 1) (p €

£ ()P N
= {/B,, 1= (g B M}‘

for { € S, where

=

0 g
Bnll—(pé’,w)|”+1+ﬁ+7 ’

__P
q'—p_l'

Since —1 < B < o and 7 € Ry, forz € By, Proposition 1.4.10 of [6] gives

dvi (W) C
B 2
/]B,, |1 — (z,w)[rH1+B+ < (1—22)7 (10)

where C; is a positive constant depending only on s,#,p and n. For { € S, we
obtain ’

(2 ) (PO < (1_;}@_1) /B To ()l dvg(w),  (11)

pC,w)|"+1+B+7
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1. .. .
where C3 = CYCI™" is a positive constant depending only on s, 7, p and n. Hence
we have

D00, 29N = | (@ Np0)P o) = [ (@ R(p0Pdo(d)

s /()P
= (1—p2)r=1) /gn da(g)/B” 11— <pC’W>|n.+1+B+t“ dvg(w)

__ G ] do(§)
= U= p2) 1) /B“ ()P dv(w) /Sn [ (pw, O) i | (12).
Since 0 < 1++f 47 <o, forz € By, Proposition 1.4.10 of [6] gives
/ doh) o G (13)
Su |1 — (z, §) [rt1HB+ ™ (1 — |z]2) 145+

where Cy is a positive constant depending only on 5,7, p and »n. By (12) and (13),
we have

(My(rp, B )}P < Gy /B( |- (w)l? v (w)

(1 ~p2)f(}7—1) 1— |PW[2)1+ﬁ+7 B
C3C'405. I y2n=1(] _u;z)/;
—_ 0 . ’
(1—p2)ie-1) 77/0 a —p2u2)1+ﬁ+f {My(ru, )} du

(1 —x)B
(1 — p2x) 1B+

C3C4C’“

1
< U—T}’Né‘l).{%(r’f)}p'n/o (14)

Since —1 < f < oo and 7€ R, Lemma 16 gives

1 =171 — )P
n/ X1 x)~ e < Cs ] (15)
0 (1_p2x)l+ﬁ+t (1—p2Y

where Cs is a positive constant depending only on s,7, p and n. By (14) and (15),
we obtain '

. 5y Mp(r:f)
MP(IPJ"% tf) S C (1 _pz)fa

1
where C = {C3C405C'5}5 is a positive constant depending only on s,#, p and 7.
Secondly, we consider case 0 < p < 1. Put

a=p(+n+1)—(n+1) and & =Rea. (16)

30



By (2) and (16), we have .
—l <& <o

and

By (8), for z € B, we get

. W —wl? ”"“}7"'5‘—(;7+1)
[(%s,lfr> (Z)[ < Clcﬁ L |f;( I)ll(_l <Z‘|W>lln>+1+ﬁ+f dv(w), a7

Forw € B,, we put

(1 _ (W’Z>)n+l—l-ﬁ+t'

Then F, is holomorphic in a neighborhood of B,,. Since 0 < p<land—-1< &<
oo, the embedding lemma (Lemma 2.15 of [12]) gives

1

. /B ”|Fz(w)[(1—lez)n+}z+&_(”+1)dv(w)Sglaz< /B ”|lepdva>;. (18)

By (17) and (20), for z € B,,, we have

(@ )P < C S0Py ), 19)

B, |1 — (z,w)|plrt14B+D) ~ %

Ciez\? . .. .
where Cg = < ;;) is a positive constant depending only on s,¢, p and n.Hence,
we obtain

{0, 211} = | (@ F) 0P do ()
<Cs [ do(0) | DA dvs(w)

Sn B, I]. — (pé/,W> Ip(n+l+ﬁ~+f) o

_ . do ()
=Cs [ Vrtm)lPavate) | TRz

Hence, Proposition 1.4.10 of [6] gives

ot _ __ G
Sy |1—(z, g)lp(n+1+[§+f) = (1= [2]2) &+

a7
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where (7 is a positive constant depending only on s,7, p and n. Hence we get

(00, B4 1)) <O | l“fvﬁlwi -

1 uzn‘lca(l _UZ)&

=CiCran || o @ [, ()P do ()
1 7/1277—1(1 _u2>6c

= C6C7055 2”/0 (1 _pzuz)&+1+pt‘ {%(Fu,f)}p du

X1 —x)®

] — p)otieat

1
< CeCrea (5117 [
Since —1 < & < oo and pf € Ry, Lemma 16 gives

/1 X1 —x)® 4 Cg
n A (

1 — pla)otltpl = (1 payel

(14)
where Cg is a positive constant depending only on 5,7, p and n. Hence we obtain

5,1 /Mp(raf)
Mp(?'p,,% f) SC (l_pz);x

where C' = {C6C7C5¢C8}% is a positive constant depending only on s,#, p and .
In the third case p = oo, we can derive the conclusion easily. Indeed, by (9)
and (10), we get

My (rp, 2 f) = Mua(rp, B> f) = su (2% 1) (p )

|/ (w)] _
=Gz {/B,, 1= (LB P (W)}
’ dVﬁ (w)
< ClMN(“f) g:g,, {/Bn Il _ (pC)W>ln+l+B+f
_ G
(1-p)

< Ci Me(r, f)

By (31), we obtain
My(r, f)
- o I 7PN )
where C" = C;C; is a positive constant depending only on s,¢, p and 7. O
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Lemma 20. Let k € [1,00), 4 € Ry and 6 € Ry. Suppose h: (0,1) — [0, is
measurable. Then

/ol (Lt {/ r(r—f>5—1h<r>d2}kdr <C /01 (1= r)y#= 0 ) ar

0
where C is a positive constant depending only on k, [L and §.
Proof- See Lemma 1 of [7]. O

Lemma 21. Let B € Ry,p € Ry,qg € Ry and s € (0,1). Suppose p < g and
h:(0,1) — [0,00] is nondecreasing. Then

1

{/01(1 —r)ﬁq—lhq(rs)dr}a < (Bp)%_% {/01(1 ~r)ﬁp—1hp(rs)dr}ﬁ.
Proof. See Lemma 5 of [7]. ]

Proposition 22. Lets € C, t € C andi =Ret € R.. Then for any | € H(B,) with
pr(0) > —n—Res—1,7€(0,1) and any p € (0,°),

/Or (EYH(F—P)’N‘I%(P,J‘) dp < C/Or(r—p)?‘lMp(p,f) dp,

-
where § = Res and C is a positive constant depending only on s,t, p and n.

Proof. We define

'I(r) = /Or (Byﬁ(r-mf‘l%(p,f) dp,

r

L) = /0 i (3>"” (r—p)Y "' My(p, f) dp

"
and roe n-+§
50)= [ (B)7 =Y by 0, 1) dp.
Hence, we have
I(r) =L(r) +L(r), )

h@) =7 [T o (1= p) T My rp, f) dp @
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and

) < (4n) / M, (p, £ dp 3)
Similarly to (10) in the proof of Proposition 15, we have
BMp (2, 1) & [sup\F (n+k—1)!
- < = A = R
e Ol < =7 k:zko > k! “)

for p € (0,2) and { €S, where ko = uf(O). By (2) and (4), we obtain

(i)PM( ) - Sn nt+k—1 n+§ 7—
Il(f”)Sri(n—ngo <7> (_kl_)/o pHTE(1—p) N dp
:(3)

s My(%, >< 4n >""-” < <s> (n+k—1)! / s
n-=s d

(n—1)!  \dn—1 k§ko 2 m b PP

:

(n—

My (4, )< 4n >'f‘”

N \4n—1

= /SN /1IN (k- 1) ]
X ¥ |z — (n+ ) _ .
Kok \ 8 4n k! n+5+k+1

Hence, we have

<r

e

a6 <cra(Z 7, ©)

(%)% 4n N\ 1 n+s~+1i 5k(nJrk_l)! | |
(n—1)1 \4n—1 4n =7, \8 k! n+§+k+1

On the other hand, we get

where

Ci=

L=V "m0, 10 2 [ = pY (5 1) L @
& 4 577 5
By (5) and (6), we have

R SG [, (=P My (0, 7)o, NG
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where" 5
Cy = Cy5'%.

By (1), (3) and (7) , we have

10)<C [ (r=p) M5lp. 1) dp,

where i
C = (4n)"l 1 c,.

This completes the proof. O

Proposition 23. Supposes € C, t€ C, T =Ret € Ry and p € (0,1]. Then for any
f €H(B,) with iy(0) > —n—Res—1 and any r € (0,1), ;

r/p NPt

/ (g) (r—p)IME(p, f)dp <C/ PP IME(p, £)dp,
0

where § = Res and C is a positive constant depending only on s,t,p and n.

Proof. The proof is similar to that of Pfoposition 22. O

Proposition 24. Let f € HB,), p € (0,], g€R,4, a € (—1,0),5€C, r€C
and f =Ret € Ry. Suppose that n+s ¢ (—N), n+s+t € (—N) and [1r(0) >
—n—Res—1. Then

/01(1—r) M, s, f) dr<C/ PV, £) d

“where C is a positive constant depending only on p,q, 0.,s,t and n.

Proof. By Proposition 22, for any r € (0,1), we have

L&) r-pi a0, 0d0 <6 [ - p (o, 1), (1)

7

where § = Res and C; is a positive constant depending only on s, ¢, p and n. Since
gf € Ry, for any x € (0, 1),

(g7 + 1)1 —xT)* < Gy (1 —x), @)
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where C, is a positive constant depending only on #,q and o.
By a change of variables and (2),

1 1 . . o
[ Q= agn By dr = [ (1= EM 6 By ) (g 17

1 1 .
<G [ =R MY ) dx < Gy [ (1= MY, s )

®3)
Suppose
1< p<ee.
By Proposition 12, for » € (0,1), we get
G [T s 7
My (1, s, f) < W/o P (r—p) My (p, f)dp (4)
where
Cr I(n+1+s+1)
P TT+ 14970 |

By (3) and (4), we have
/0 (1= )M, B )
1 . q
<G /O (1 —7) “{WW / P (r—p)i= lMp(p,f)dp} dr
n+s - q
—od | <1—r>°‘{ %) * (w—p)"lMp(p,ﬂdp} dr. ()

By (1) and (5), we obtain

[a-nageanase [ a-nt{ [ 0.1 dp o

(6)
where
Cy =CICy(CE.
In the first case 1 < p <eoand 1 < g < oo, put
1+
—q .
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Since 1 < g < oo, 4 € Ry and 7 € Ry, Lemma 20 shows that

1 r . q
[a-nw{ [o=pf 100100} ar
<Cs /0 1 (1 =)= (7, £) dr, @)

where Cs is a positive constant depending only on #,q and ¢. By (6) and (7), we
obtain ' '

[ a-nmmgnar<c [ a-n=amg par

where C = C4Cs. ,
In the second case 1 < p <ecand 0 < ¢ < 1, by Lemma 21, for » € (0,1), we have

r . . 1 ~
[ e=p " 4lp, 1) dp =" [ (1=p) by, ) dp
(! . i
<7 @ H [ 0-p)agrp. )b |

— ) { [r-pTiagonap | ®
By (6) and (8), we obtain
1 .
| =)0 2y
1 r ) _
<a [[a-ne{ [c-p)igo.ndpfan  ©

Put
L=14a.

Since i € Ry and ¢f € R, Lemma 20 shows that

[a-n={ [o=pago. a0} ar

1 .
<Cs | (=PI Mg f) | (10

37



where Cg is a positive constant depending only on #,q and . By (9) and (10), we
obtain

1
0 0
where C' = Cy(7q)'~9Cs.
From now on, we suppose

[ 0r st 2aprar <C [ (1 =n= a1

O<p<l.
By Proposition 15, for r € (0,1), we have

1
C r 7 E 7 ;
Wr,%s,ff)sm;;{ /O pPts) (r— p)# IM};(p,f)dp} , @y

where C7 is a positive constant depending only on s,#, p and n. Hence we obtain

IR
| (=M B )

g
P

1 1 . ) _
ch/o rqt(l—r)“_rq(nﬁ#) {/0 pp(n—i-s)(r_p)pt IM}Z(p,f)dp} g

—a [la-ne{ [ (&) e-pragou) dp}’i’ a2

r

By Proposition 23, for r € (0, 1), we get

rrp\p(td) ; ]
/0 <£>p i (r—P)”"lMﬁ(p,f)dpscs/ (r—p)Y'ME(p, f)dp, (13)

»
r 0

where Cg is a positive constant depending only on s,#, p and . Hence we have

1
| Q=03 20,

1 . r - z
<o [-n#{ [o-pr g nap} ar a9
0 0
where .
Co = CyCICE.
In the third case 0 < p <1 and p < g, put

p(1+ )
Y
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Since 1< % < oo, il € Ry and pf € Ry, Lemma 20 shows that

1 r . 111
[a-npt{ [o-pyago o} ar

1 .
< Cio /0 (=) 0 (1)) (15)

where Cy is a positive constant depending only on ¢, p,q and c.. By (14) and (15),

we obtain
1 1 7 )
| a=neago g ar < | @=n+iag s an

where C’= C9C10 .
In the forth case 0 < p < 1 and p > g, by (11) and (13), for r € (0,1), we get

Cr [ 7 /P \POH) : 5
) < H{ [ () - g(p. 110 |

7

1
c.CE r - ?
< 7},;8 {/0 (r—p)” 1M£(p,f)dp}

1 1 - 7
—arct{ [[a-pragien. e | (16)

Since 0 <g<p <oeoand? € Ry, Lemma 21 shows that

q

{[a-piagie.s) W}
(17)

1
F)

{/01(1 —P)pi—lMg(rp,f) dp} < (fq)%*

wl—

By (14) and (15), for r € (0,1), we have

1 - | C r .
MY ) SCu [ (1=p)T M3(rp, S dp = 2t [ =)= 145 0, 1) dlp,

ad
where .
Ci =CiC§ (Fq)' 5.
Hence we obtain
1
/ P (1= )M (1, P f)
0
1 r .
<cu | (1—r>“{ / (7’~P)""1J\4Z(P)f)dp} dr as)
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By (3) and (18), we have

1 ’ . ’
i a-naagegnar<con [[a-n={ [v-pTage.0d0 | o

0
(19)
This is the same as the inequality (9) except the constant multiple of the integral
in the right-hand side. By (19) and (10), we obtain

1 y

/ (1= 1) MG ooy f) r < cm/ (1 =)0 (r, £)
where Ciy = (5C11Cg. This completes the proof. ' O
2.2 Proof of Theorem 2

By Proposition 19, for any r € (0,1),
C1

My (P, 25 ) < Tyl )
where C] is a positive constant depending only on s,#, p and n. Hence, we have
1 " Ci q
/ (1- >a+thq(7, T f) dr </ (1—r)ote { i );Mp(\/F,f)} dr
0 —r

_C'q/ —r)*ME(\r, f)dr = C'q/ 1—7%) VEME(r, f) - 2rdr
<2l+elcy /0 (1—r) M, £) i

This completes the proof.

2.3 Proof of Theorem 3
Let be

o
Il
o



the homogeneous expansion of f € H(B,) at the origin of C”, then

In+14+s+6)T(n+14+k+s
stf 2 ) ( )

I'(n+14+8)T(n+1+k+s+1) Jie

Put
ko :min{kEZ+ tk>—-n—§—1},

ngk:h-—ka

k=ko+1
Then g is a holomorphic polynomial in C” with deg(g) < kp and

he HB,), wm0)>k>-n—5-1. e
By Proposition 24, we have

1 1 .
| a=nagezmar<a [ Q-n=iagn d, @)

where Cj is a positive constant depending only on p,q, ¢,s,¢ and n. By Lemma
14, for z € B,,, we obtain

D" £)(0
le@l=| Y OO
meZl,|m|<ky m: meZL ,|m|<ky

1 (4N\F (|| =101 1
< 2 7(5) s <n|_|1>z)4' Wo(5.5):

mez fm|<ky "

ml!

M’

Hence, for r € (0,1), we have

A/Ip(”:g)SCZMp(%, ), 3)
where
_ (4 Al pm — 1)1 (4)F & (@mt(nt 1))
\C2—<§> mEZ’_’EIInKI»O (n—1)!m! _<§> ka CEnZ I

Similarly to (3), for » € (0,1), we have
' 1
Mp(raf%s,tg) < C3Mp(_2‘>f)) (4)
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where

(NP B () k= 1) [T+ 1 +s+0)T(n 4+ 1+ k+s)
C3~< ) 2, ‘F(n+1+s)T(n+1+k+s+z‘) )

3) & (-1

Hence we get

1
| =g By

1 1
<cy /0 (1= )M (r, B 1) dr +Ci /0 (1= )M, B 1) b,

®)

where Cy 1s a positive constant depending only on p and g. Similarly we have

1 _ 1 .
= agnar= [ Q=r s —g)dr

1 . 1 .
<cy /0 (1= 1)1 (7, £) dr + Cy /0 (1= 1)+ 1 (1, )

Since o > —1, (4) gives

[ 0= gaar< [ 0=, 0y

:C_g (>)

o+1

Similarly, (3) gives

AYL¢WW%@m@w@Q[u—w“ﬁxugéjw%ﬁ
a
=2 G
By (2) and (5)—(8), we have

/(1—7»)°‘Mq(r%”f)dr<C5Mq( ,f)+C5/ (1 =) M (r, f) dr

Cc  _GCc
a+1  o+gi+1

1 1 -
|a- )“Mﬁ«ﬁwz[u~a“M4mﬁm

’ 1\ e+gf+1
‘aoneigd nar= 2 gl g,

where Cs = and Cg = C C%. On the other hand,

v
M\

a+qt+1 M
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By (9) and (10), we have
1 1 -
[ a-noagemndr<c [ a-n=iage

where C = 20+97+1 (o + ¢f 4 1)Cs + Cs. This completes the proof.

43



Chapter 3 : The isomorphisms between generalized
weighted Bergman spaces

3.1 Preliminaries
Proposition 25. Suppose o € (—1,0) and p € Ry. Then for any f € H(B,)

2—la 22n+oc+|oc]

1
o 1 Woamy < [ (-0 ) € 5 f g

Proof. Using Lemma 1.8 of [12], we have

11515y = 1T eva =200 / A=) [ |f(g)Pdo(g)

On the other hand,
1 } 1
/ (1_,,)aM§(r’f)dr:/i(1—r)“Mf;(r,f)dr-}—/l (1—r)*ME(r, f) dr
0 0 3
1
gz@ﬂrl/1 (11D (r, f) dr
2

2211+OC+|05|
—— /1%
Hence we have
1 02n+0r+|ot]
NS, < | ("M ) < =,
21+|°‘| 0 P —  2ncy AG(Br)

For any o € R and any p € Ry, we define
Ioc,p = {k €Z+:pk+o> —1}, Ko,p = mm]a,p

Itis clear that the three conditions Iy 5 3 0, Ky, = 0 and o € (—1, ) are mutually
equivalent.
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For any k € Iy, and any f € H(B,), we define the quantity ||f[]_@£k(]3n) as
follows. : ’

1

g = { O+ 17y g} i kEN,

1t oy = Ly 3 E=0.
For any k € Iy p, We define the subspace M(f’ +(By) of H(B,,) as follows.

o2 (B, {feH : Bf € AB, o (By )}.

Proposition 26. Suppose ot €R, p € Ry, k€ Iy, f € H(By), g € H(B,) and
¢ € C. Then the followings hold.

® 0=z, m, <
@ S az,m,) =0 =0 on By
@) lefllaz,@,) = lel 1oz,
@) N +ellog @ < oz @y T lelazm) ¥ 1sp<e
) “f_i—g“i{‘fk(]ﬂgn) < ||f”§¢5k(]gn) + ||g||§¢£,k(]3n) if 0<p<l
Proof. All of these can be easily shown. O

Proposition 27. Suppose a€R peRy andk € Iy y. Then thefollowzngs hold.
D

oLk

(By,) is a linear subspace of H(By,).
YR ”d[f,k(Bn) is a norm on the linear space &fof’k(lﬁin) ifl1 <p<eo

(i) d 72 (Bn) is a translation invariant metric on the linear space MOIZ «(By)
if0 < p <1, where for any f € H(By) and any g € H(By,)

— | £— o|I?
dogp ) (32) = |/~ £ll o (B’
" Proof. This is an immeadiate consequence of Proposition 26. O
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Lemma 28. Let o €Ry, p € Ry ands € C. Suppose n+s ¢ (—N) andn-i—s—}—% ¢
(—N). Then %S’% is an invertible bounded linear operator from A5(B,) onto
AP (B,,).

Proof. Since % € Ry, it follows from Theorem 2.19 of [12] that for any f € H (B,)

Ul W, < / | =@ NG| v <Gl g, O

where C; and C; are both positive constants depending only on «, p,s and n.
By (1), Z2%7 is an invertible bounded linear operator from 4P (B,) onto 4%, (B,).
Since (%’ ’%)_1 :'%S,% on H(Bp), it implies that Z, g is an invertible bounded
linear operator from 4% (B,) onto 47 (B,,). a

Lemma 29. Let o € (—1,0), p € Ry and s € C. Suppose n+s ¢ (—N) and n+
s+% ¢ (—N). Then Q?S,% is an invertible bounded linear operator from A5(B,)

onto AP (B,,).
Proof- By Lemma 1 of [10],

R = Z°T57F on H(By). 1)
Since o € (—1,0) and —% € Ry, it follows from Theorem 2.19 of [12] that for
any f € H(B,)
a a_ga p
Gl < J, |0 -ERF @ EENG] dvald) <Gl @

where Cj and C, are both positive constants depending only on «, p,s and n. By
o o

(2), Z°F7""? is an invertible bounded linear operator from 44 (BB,,) onto A7 (B,,)..

This fact and (1) imply that Z; ¥ is an invertible bounded linear operator from

A5, (B,) onto 47 (B,,). O

Proposition 30. Let o € (—1,00), p € Ry and s € C. Suppose n+s ¢ (—N)
and n+s+ 5 & (—N). Then %s,% is an invertible bounded linear operator from

AL,(By,) onto 4P (By,).

Proof. If o0 =0, then Z, 2= %0 is the identity operator on H (B,,) and 45 (B,,) =
AP (B,). Hence %, g is an invertible bounded linear operator from 45 (IB% ) onto
AP (B,).
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If o # 0, then o € Ry or @ € (—1,0). And so, it follows from Lemma 28 or
Lemma 29 that 925’% is an invertible bounded linear operator from 4%,(B,) onto

AP(By,). : O
Lemma 31. Suppose f € H(B,), p €Ry, g Ry, & € (—1,0) and k € N. Then

[ a=regnna

SC{ DI (CLIOIEDY / “““M"’(w"’f)}

meZl |m|<k eZ1,|m|_k
where C is a positive constant depending only on p,q, 0., k and n.
Proof. See §3 “The proof of Theorem 2” of [&]. O
Lemma 32. Suppose o € (—1,0) and p € Ry.. Then for any f € H(B,),

[, [ =rOPdve<C [ {1 -EPI@NEIY dval2)

where C is a positive constant depending only on o, p and n.

Proof. Put
f=/Bn{(l—[212)|(%f)(2)l}pd\’a(z) |
= 2ncy /0 1 P =P ME (r, ) . (1)
By §6.4.4(2) of [6], forany { € S, and A € By, we have

(1)) =AU) (), | @

where fy(A) = f(A{) is a slice function of f. By Lemma 1.10 of [12] and the
above (2), for r € (0,1), we have

27 .
W0 20) = [ 1@ eOPas() = [ do()- o [T 1 @n e pas
27T X ; X
= [ 400 5 || e 0 pae
2T ; R ;
= [ do(@)- 52 [T10) eePde = [ a2 (7o) @
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By (1) and (3), we obtain

| |
I=2neq [ PrI(1=2)*ar [ g0 (7))o (0)

> 2neq [ do(?) [ 2D (1 2PN, (f) ) dr

3

> 2iea / do / =P ()

On the other hand, for { € S, we get

[Fa=rrragear< [F0-npreagi, () ar

1 i1 protl
ZW(E,UE))#

1, o L= (et pigpg g1
= MP(= 2 _\pta g

< (2p+oc+1 —1) /11(1 _,,)p+aM5(r, (fg)')dr
2

Hence we have

1 f 1 !
Jy Qe () yr <2 | 0= ng ()

for { € S,. By (4) and (5), we get
ana 7
= 2211+2p+a+1 / do (¢ / -r )prf; (rn,(fr) ) dr.
By Lemma 31, for any g € H(B1)

[ 0-rsts g0 <6 [ (1-ragng)ar

)

®)

(6)

9

where Cj is a positive constant depending only on « and p. By (6) and (7), we -

have

126 [ do(©) [ 1-A0n 7p - )l
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where
2ncy

G = C22n+2ptat]’

On the other hand, for { € S, we obtain
. 1 ol
| a=n g fy = () ar 2 /7 (=M fy = F (0))
S /11 },271—12—105](1 _72>aM£(r:fC _fC(O)) dr
3
=27l [l ) £ (0)) ©)
3

Moreover, we get

SN =) M, £y — i (0))
Aiﬂ*u—ﬁWMyiﬁ—ﬁw»w
M =) [0 ear

1
— Mgy = 7500 [ A=)

<

IA

g@[ﬁw*uﬂ%%ﬁmﬁ—ﬁm»w

where

p2r=l 1—r dr

Hence we have

[P 020 7 o)
1

S(+G) [, A =AM fo — £3(0) dr (10)
2
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for { € Sy,. By (8)—(10), we obtain

G2l ol o
12T e | do(©) [P =P f = (0 ar

c 2—|0¢[ 1 » 1 27 ,
=g [ 4o [ =R [T 176 - sroypao

C22“|05]
o 2ncy (14 C3) Jm,

By (11) and (1), we have

|/ = £(0)|Pdve. (1)

21+|a|nca(

[ = ropave < 220X O | g ppyi@n@) avete)

This completes the proof. O
Lemma 33. Suppose 0. € C and & =Re o € (—1,0). Thenfor any f € L' (B,,dvs)
(1 _ |aI2)n+1+a

fo Fovdva= [ SO el

where @ is any automorphism of B, and a = ¢(0).

Proof. The same proof as that of Proposition 1.13 of [12] (where the parameter o
is real) also holds in this complex case. 0

For f € H(B,), we write V£(z) = V(o ¢,)(0), where @, is the biholomorphic
mapping of B, that interchanges 0 and z.

Lemma 34. Suppose & € (—1,) and p € Ry. Then for any f € H(B,),

L Favasc [ fFave,
]BI'I IBI’I

where C is a positive constant depending only on o, p and n.

Proof- (cf Theorem 2.16 of [12].)
Fix f € H(B,). Pick B € (@, ). By Proposition 2.4 of [12], for any g € H(B,)
we have

(V&))< Cillel m,) ®
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where C| is a positive constant depending only on 3, p and »n. For any z € B,,, (1)
and Lemma 33 give

(TNEF =1V (o) OF <Nl =CF [ Ifootavs

1 — |z|2\nt+1+B
= [, VO )

Hence we have

(1 _ 12[2);7+1+ﬁ
— (w,z) Plo+1+B

LIENEFdva@ < [ dvale) || 170

— |z[2)n+1+B
=t [ 17o0Pavate) [, Tt

) d\/ﬁ (W)

By Proposition 1.4.10 of [6], for any w € BB,,, we get
(1 _ IZIZ)n+1+I3
B, |1 — <W72>|2(n+1+/3)

caC
(1—[w[?)p-o’

dvg(z) <
where C; is a positive constant depending only on ¢, B and n. Hence we obtain

/B VP dve < CPCycp /B P dva.

This completes the proof. O
Lemma 35. Suppose & € (—1,00) and p € Ry. Then for any f € H(By,)

G [ 1 =rOPaves [ {1~ EIENEN dval2)
< [{0-EPITA@Y dvel@) < | VP dva<C [ 7= FO) dve,

where Cy and Cy are both positive constants depending only on o, p and n.

Proof. (cf Theorem 2.16 of [12].) o
By Proposition 2.14 of [12], for any f € H(B,) and any z € B,,

(1= ePNZNE)] < A= PIVAHGI V()

Hence the present lemma follows from Lemma 32 and Lemma 34. O
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Lemma 36. Suppose o € (—1,%0), p € Ry and k € N. Then for any f € H(B,)
G [ 1~ FOPdves [ {1~ EPAE NG dvela
<G, [ If~fO)F dve,

where Cy and C, are both positive constants depending only on o, p,k and n.
Proof. (cf Theorem 2.16 of [12].)

When k= 1, the lemma is true by Lemma 35. Assume that k£ > 2 and the assertion
is true for k— 1. Then for any /' € H(B,),
i [ 17 =FOP dvpra < [ 0= IR NG dvprel?)
<c /B |f = FOP Ve M

where Cy and C, are both positive constants depending only on o, p,k and ».
Moreover, Lemma 35 gives for any f € H(B,),

G [ [f=FOPava< [ {01~ P @A@Y dval2)
<Gy [ 1f =0 dve, @

where C3 and Cy are both positive constants depending only on o, p and n.
Let f € H(B,). Then Zf € H(B,) and (Zf)(0) = 0. It follows from (1) that

G / (=A@ dvele) = 2 [ 12F ~ (@HOF dvpic

g 11—l )"‘1I(%k"lr%f)(Z)l}pdva(Z)

Cp-l—oc
< e / 121~ (RO i
Cp+a
=G [ {1=EPI@N N dval2). ®
Since
(A= EPY # 2NN dprale)
cp+a B,

= [ {0 =P @) dvale),
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by (2) and (3) we obtain
Cl@/m =7 O dva < /IB {1= 1Y UZ* N @I dvalz)
< GGy /B 1f — F(0)P dva.

This completes the proof. O

Lemma 37. Let ot € (—1,00), p €Ry, k €Iy, NN and s € C. Suppose n+s ¢
(—N) and n+s+ % ¢ (—N). Then e%s’% is an invertible bounded linear operator

Sfrom .do};k(Bn) onto AP(B,).
Proof. By Proposition 30, for any f € H(B,), we have
Cl“f”AP(B ) < “'%s af”AP ]Bn < Czl[fIIAP(B (1)

where C; and C, are both positive constants depending only on «, p,s and ».
Moreover, Lemma 36 gives for f € H(B,), we obtain

G [ 1 =7OF dve < | (0 - D@ NG dval2)
SC‘*/B = FO)P dva,

where C3 and Cy4 are both positive constants dependmg only on o, p,k and n.
Hence we get

“f”‘;;k(ﬁn) = |7 (0)P + H%kf“pp v e(B)

Cacrpta
> |£(0)P+ =222 £ p(0)) g(m,,>2%1f||im,,y @
p

where Cs = min{1, —C—s’%} and ¥, = max{1,2P~!}. On the other hand, for f €
H(B,), we get

“f”i{ofzk(lgn) =|f(0)[P + H%kfllpp a(Ba)

Caclpta
< (1l >nanp<mn ®
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By (1)—(3), we have

p P
CGHf”"Z{oik(B ) = < “52 “fHAp (B,) < C7||f”-‘27£,k(13n)’ 4
C C
where Cg = 1 and Gy = Yi—z. Hence %, « is an invertible bounded
linear operator from &2 . (B,) onto 47 (B,). O

Lemma 38. Let o € (—°,0), p€ Ry, k€ Iy, NN and s € C. Suppose n+s ¢
(—=N) andn+s+< ¢ (-N). Then ,%’S,% is an invertible bounded linear operator

Sfrom Mozk(IBn) onto AP (B,).
Proof. By Lemma 1 of [10], we get

a

A =57 on H(B,).

Since kp+ o € (—1,00) and —% € R, it follows from Theorem 2.19 of [12] that
for any f € H(B,)

ClAly my < L |0~ F @ ENE] diprale)
S C2”f||Ap (Bn)’

where C) and C, are both positive constants dependlng only on «,p,s and n.
Hence we have

CillfI% , (g, < core /B ’(1 ~ PV @] dvi)
< CZHf”‘ngJra(B")'
Moreover, Lemma 36 gives for f € H(B,),
G [ lr=1OFavs [ (- EPHE@NENavE)
<a [ IF-sO)Pav,

where C3 and Cy4 are both posiﬁve constants depending only on p,k and n. It
follows that for f € H(B,),

~ C
115 g,y = 1FOF + 1% 1 llﬁipw(gn) 2 éll«%s,%f I,y
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CsCipta
G

where Cs = min{1,
f e H(B,), wehave

1110, 3y = O+ 1271y

YpC4Ckp+a o P ')/pc4ckp+oc P
< (14 25020 ) i, g O + EEC A B 1

. 2%,Cack
< (15 20 1y g

} and ¥, = max{1,2P71}. On the other hand, for

Hence we obtain

CGHfH‘Z{oZk(B") < ”L%s,%f”f;}?(]ﬂgn) < C7“f”§{£’k(]gn)a

C1 Yo e o o . )
where Cg = and C7 = —=. This implies that Z. « is an invertible
bounded linear operator from 27, (B,) onto 47(B,). ‘ O

Proposition 39. Let x € R, p e Ry, k€ Iy p and s € C. Suppose n+s ¢ (—N)
and n+s+< & (—=N). Then Z;, g s an invertible bounded linear operator from

»Qf(f,k(Bn) onto AP (B,).

Proof. 1f k=0, then & € (—1,) and &}, (B,) = 45(By). Hence the assertion
follows from Proposition 30. In the case k£ € N, the assertion follows from Lemma
37 and Lemma 38. O

Corollary 40. Suppose & €R, p € Ry, k € Iy p and ¥ € I, p. Then o] (By) =
.Qf’p’k, (By,) and for any f € H(By,)

o
Cill Nz @) < ez, @) < ClS ez, @,):

where C1 and C; are both positive constants depending only on o, p,k, kK and n.

Proof. It follows from Proposition 39. O

From Corollary 40, we understand that M(f’ +(B,) does not depend on how to
get k as space for any o € R, p € Ry, k € I,,. We can define the generalised
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weighted Bergman space on B,. By Corollary 40 and the definition of & (B,),
forax € R, p € Ry and k € Iy p, we have

MP

ok

(]Bn) = Mo‘? (Bn)
and for ' € H(B,)

CillMag,y < 1oz, @) < Coll Nz,
where C; and C, are both positive constants depending only on o, p,k and n.

Proposition 41. (cf Theorem 10 of [10].) Let & € R, p € R and s € C. Suppose
n+s ¢ (—N) andn+s+% ¢ (—N). Then 553,% is an invertible bounded linear

operator from AL (B,) onto AP(B,).

Proof. By the above definition of the space &/ (B,,), this proposition is just only
a restatement of Proposition 39. O

Corollary 42. Let oo € R and p € Ry. Then the followings hold.
() ZE(B,) = (ZE B, || 72(8,)) is @ Banach space if 1 < p < ee.
(i) &£ (B,) = (%of(Bn)adﬂg(Bn)) is an F-space if 0 < p < 1.

Proof. This is clear from Proposition 27 and Proposition 41. O

3.2 Proof of Theorem 4

Proof of Theorem 4. Ift =0, then % = %0 is the identity operator on H (B,)
and & (B,) = .;zfl,f (B,). Hence Zs, is an invertible bounded linear operator from
2Z (B,) onto JZKIf (B,,).

Choose ak € NNl N1p , . Then 27 (By) = o, (By), sz; (B,) = ,!zfﬁ}ik(]Bﬁn)
and for any /' € H(B,)

Cillf ] 2w,y < “f”ﬂ;k(ma,,) < Gl ) (D

C3||f||,af;(1a;,,) < ”f”g/l{k(mn) < C4||f||a{,§’(]3,,), @

where C; and C; are both positive constants depending only on o, p,k and n.
Similarly, Cs3 and Cy are both positive constants depending only on 3, p,k and n.
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We now consider the case # > 0. Since kp+ 8 > —land kp+ S +tp=kp+a,
Theorem 2 and Theorem 3 give for f € H(B,)

1 1
| a=rreageas par<cs [ Q-netagend, @)
1
0
where Cs and Cg are both positive constants depending only on «, 3, p,s and n.
Moreover, Proposition 25 gives for ' € H(B,)

/ 1= s ) < Co | a-ngena, @

2l £ : kp+otym
2nckp+oc ”f”A/fp—f-(x(IBn) = /O (1=r) Mp(”uf)dr
2 2n-+lkp+o|+kp+o ,
2nCkpta 171 AR o (Br) (5)
and
o —lkp+B]

1
y < _ W Ner+B e, i
chkp—{-ﬁ ”f”A;:pﬂi (Bn) — A (1 7) Mp (77f)d7

92n+kp+Bl+kp+p

p
. (6
2”Ckp+ﬁ . lf”AipHS (B,) ( )

It follows from (5),(4) and (6) that for /' € H(B,)
Hf”i(é’,k(]}g") = lf(o) |p + l[‘%kfllii"p+a(]3n)

' 2NChpta : kp+ot k
> |F(0)1F + 22n+|kp+a|+kp+a/0 (1=r)™ Mﬁ(i’,% fdr

2nCpta 1! kp+ k
> |f(0)]F + y2n+lkp+ol+kp+a C_6/0 (L=r)¥F ﬁMg(”:%s,t«% f)dr

2NChp+a e kp+ 3
=|f(0)[F + S2n+lkp+al+kpta 0_6/0 (1—m) ﬁM,’;’(l‘,e@ Py f )dr

2NChpo, 1 2~ lkp+B) '
> P D 2 k p
= [f(O)[ + 22n+|kp+al+kpta Cs znckp-l—ﬁ “% %S’tfll-‘ifp+ﬁ (Bn)

27’le 1 2_|kp+ﬁ| .
_ » pto o k P
(Foi VO + riprainirra G anogyey 1 2o My (o0

Z C7 ”%s,tf”;ﬁk(]ﬂgn): (7)
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where

. 2MChpta 1 2~ kpthl
Cr=mind L v atipra G '

On the other hand, it follows from (5),(3) and (6) that for /€ H(B,)
125112 p 5,y = (B NNOF+ |21

A£p+a(B")
' 27’lep+a ! k k gps,
<@ N O + 52 [ —rfrreng o @ia far

2nCpra (1 kp+ ! ook
:|f(0)]P+2_|kp+a| A (L =r)PTOME (r, B 2" f ) dr

2nc
<O + 28y [0y itag 2 i

2nc 22n+|kp+ﬁl+kp+l3
VO + gt N o

2 NCiptB 2 osl
< p |
> CB”f”Jyé”k(]Bn)z (8)

where
Cg —=max< 1 CSCkp+a22n+]kP+ﬁ]+kp+ﬁ_|.|kp+al
Ckp+$

By (2),(7) and (1), for f € H(B,), we have

G [ 1\?
1% g = 2 (&) Wity ®
By (1),(8) and (2), for any f € H(B,), we have
C
1% Fl g,y < C 2 (Co)7 ”f“.df’ (B,)" (10)

(9) implies that %, is a bounded linear operator from &/ (B,,) into ,Qfg (B,).
By (10) Z2** is a bounded linear operator from 7§ (B,) into 2/ (B,). Since
(251 = ZBs s onH (Bn), these two facts show that % is an invertible bounded

linear operator from 2% (B,,) onto &f}f (By).

Next we consider the case ¢ < 0. Since 2 pa = —t > 0, the previous case gives
that %s.4s— is an invertible bounded linear operator from szép (B,,) onto &Z (B,).
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By Lemma 1 of [10], it holds that s, = R+ (0),~(=1) = gpsit — (%sp) ™}
on H(B,). Hence %y, is an invertible bounded linear operator from 274 (B,,) onto

A (3,). | 0
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