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Abstract

The linear isometries between function spaces have been studied by many mathematicians.
In this paper, we consider three kinds of linear isometries; linear isometries on spaces of
differentiable functions, backward shifts on uniform algebras and real-linear isometries
between complex function spaces.

In Chapter 1, we consider the linear isometries on spaces of differentiable functions.
We denote by C(™][0,1] the linear space of n-times continuously differentiable functions
on the closed unit interval [0,1]. Each of the following norms makes C(™[0,1] a Banach
space:

I£llo = er““) 0)l+ o ™ ()],

par] (f € C™0,1)).
[ llm =maX{lf(0)|,!f'(0)l,---,If(”‘”(O)lv sup lf(“)(ﬂ?)i}
z€[0,1]
We characterize the surjective linear isometries on (C™]0, 1], ||- |lo) and (C™[0, 1],{ - [lm),

as follows: Let T be a linear operator on (C™[0,1],] - ||ls) or (C™[0,1],]| - lim). Then T
is a surjective isometry if and only if there exist a homeomorphism ¢ of [0, 1] onto itself,
a unimodular continuous function w on [0, 1], a permutation {7(0),7(1),...,7(n — 1)} of
{0,1,...,n — 1} and unimodular constants Ag, A1, ..., Aqp—1 such that

n-l (r(k))
h@ =3 2200 (st Pop)) @ (e 1), £e o),

!
= k!

where (Sg)(z) = f; g(t)dt for all z € [0,1] and g € C([0,1]). Also, we prove that every
finite codimensional hnear isometry on (C(™][0,1],] - |im) is surjective. Moreover, we prove
a similar statement on the space of Lipschitz continuous functions.

In Chapter 2, we prove that an infinite-dimensional uniform algebra does not admit
a backward shift: Also, we introduce a backward quasi-shift as a weak type of backward
shift, and show that a uniform algebra A does not admit it, under the assumption that the
maximal ideal space of A has at most finitely many isolated points. Moreover, we discuss
the existence of shifts on several function spaces.

In Chapter 3, we characterize the surjective real-linear isometries between complex-
linear subspaces of continuous functions: Let X and Y be locally compact Hausdorff
spaces. Let A and B be complex-linear subspaces of Cco(X) and Cc(Y), respectively.
Suppose that for each distinct points z,z’, 2" € X there exists f € A such that |f(z)| #
|f(z')| and f(z") = 0. Also suppose that for each distinct points y,3y’ € Y there exists
g € B such that |g(y)| # lg(v')]- If T is a real-linear isometry of A onto B, then there
exist an open and closed subset E of Ch(B), a homeomorphism ¢ of Ch(B) onto Ch(A)
and a unimodular continuous function w on Ch(B) such that T'f = w(f o ¢) on E and
Tf = w(foy) on Ch(B) \ E for all f € A, where Ch(A) and Ch(B) are the Choquet
boundaries for A and B, respectively. Moreover, we give an example of the space which
indicates the difference between the real-linear case and the complex-linear case.

Acknowledgment. The author would like to thank Professor Hiroyuki Takagi for his
valuable comments and useful suggestions.



Chapter 1

Linear isometries on spaces of
differentiable functions

1.1 Introduction

The source of this paper is the classical Banach-Stone theorem, which characterizes the
surjective linear isometries on C(X); the Banach space of all continuous functions on a
compact Hausdorff space X with the supremum norm. It states that every surjective
linear isometry T on C'(X) has the form: Tf = w(f o ¢) for all f € C(X), where ¢ is a
homeomorphism of X onto itself and w is a unimodular continuous function on X. This
theorem raised a natural problem: Characterize the surjective linear isometries on other
function spaces. In the book [12], we can find the answer to this problem on many function
spaces.

On the other hand, we want to remove the surjectivity of linear isometries in the
results above. It seems to be difficult to deal with a general linear isometry which is not
necessarily surjective. Thus our first step is to investigate the linear isometry which has
a finite codimensional range. Such a linear.isometry is said to be finite codimensional.
The finite codimensional linear isometries on various function spaces have been studied
by Araujo and Font [2, 13] and many other mathematicians (cf. [15, 18, 20, 23, 46, 47]).
Here we note that a surjective linear isometry is finite codimensional, because its range
has codimension O.

As mentioned above, we know much about those isometries on many function spaces.
But it is not all. In this chapter, we take up three spaces consisting of differentiable func-
tions; the space of continuously differentiable functions, the space of Lipschitz continuous
functions and the Wiener algebra. This chapter is based on [26] and [27].

1.2 The space of continuously differentiable functions

Let n be a positive integer. Let K denote the real number field R or the complex number
field C. By C(™]0,1] we denote the linear space of all K-valued n-times continuously
differentiable functions on the closed unit interval [0, 1]. There exist several norms which
make C'(™) [0,1] a Banach space; for example,



wm=mu{zj
k=0
k

17l §:“f‘M,

e = mcll oo 1 e 1Pl

®)(
f m( I e [0,1]}.

(f € ™o, 1]),

n—1
1£le =D 1B O+ 1 oo,

k=0

[ £llm = max{lf (), |7 (O, If"D O, 7™ lleo}
where || - ||oo denotes the supremum norm on [0,1]. These norms are equivalent. In
- particular, (C™[0,1],] - lic) and (C™]0,1],] - ||g) are unital semisimple commutative
Banach algebras.

In [6], Cambern characterized the surjective linear isometries on (CV[0,1], ]| - [lc)-
Later, Pathak [33] extended this result to (C™]0,1],] - |lc). The other extensions may be
found in [7] and [29]. On the other hand, Rao and Roy [39] and Jarosz and Pathak [19]
characterized the surjective linear isometries on (C(1[0,1].| - lg) and (CV[0, 1], - |lm),
respectively. All of those results say that every surjective linear isometry T on the des-
ignated space has the canonical form; T'f = w(f o ¢). In this paper, we show that the
surjective linear isometries on (C™10,1],] - ||o) and (C™]0,1], | - |lm) have the different
form.

To state our theorem, we remark on notations: Put T = {z € K: |z| = 1}. f K=R,
then T = {1,—1}. If K = C, then T denotes the unit circle in C (In Section 1.3 and
Chapters 2 and 3, we shall be restricted to the case of K = C, where T is the unit circle).
A number in T is said to be unimodular. Also, a function f is said to be unimodular if
the range of f is contained in T. Next we introduce an integral operator S: For any
f € C([0,1]), we put (Sf)(z) = f; f(t)dt for all = € [0,1]. Then S is a linear operator
of C([0,1]) onto {f € CV[0,1] : £(0) = 0}, and S™ maps C([0,1]) onto {f € C™[0,1] :
F®(0) =0 for k=0,1,...,n—1}. This shows that {f(® : f € c™0,1]} = C([0,1]).
Moreover we have

(0
f; + (8" M)(@)  (zefo,1), feCMo)).

”MH

Now, let us state our theorem. We characterize the surjective linear isometries on
(C™]0,1],] - |lo) and (C™][0, 1], - |lm), as follows:

Theorem 1.2.1. Let T be a linear operator on (C™[0,1], ||-]l¢) or (C™[0,1], ||-|lm). Then
T is a surjective isometry if and only if there exist a homeomorphism ¢ of [0, 1] onto itself,

a unimodular continuous function w on [0,1], a permutation {7(0),7(1),...,7(n —1)} of
{0,1,...,n — 1} and unimodular constants Ao, A1, ..., An-1 such that
n—1
A £ (0
@) = 3 2200k 1 (57050 0)) @) (1.1)
k=0 ’

for all z € [0,1] and f € C™[0,1].



By the theorem above, the linear operator T} defined by (T1f)(z) = —f(0)+ f3 f'(t) dt
is a surjective isometry on (CN[0,1],| - |lo) and (CM{0,1],]| - ||mm)- But we can easily see
-that 77 is not of the canonical form.

We also prove the following:

Theorem 1.2.2. If T is a finite codimensional linear isometry on (C™[0.1], || - ||m), then
T is surjective.

Theorems 1.2.1 and 1.2.2 characterize the finite codimensional linear isometries on
(C™10,1], | - lm)- We will prove Theorem 1.2.1 in Sections 1.2.2-1.2.4, Theorem 1.2.2 in
Section 1.2.5.

1.2.1 Preliminaries

For a normed linear space B, we put ball B = {£ € B: ||¢|lz < 1} and denote its dual space
by B*. For a bounded linear operator T between two normed linear spaces, we denote by
T* the adjoint operator of T. We use these notations throughout this paper.

For any nonnegative integer ¢, we define :*(z) = zf for z € [0,1). In particular, we
write 1 = 1 and ! = 1. Let f € C™][0,1] and £ =1,2,...,n. Then f = i£ if and only if
fO)=fF(0)=--= f&1(0) =0 and fO(zx) = £ for z € [0,1].

Now, we prove two elementary facts which are used later.

Proposition 1.2.3. Let By, ..., By be normed linear spaces, and let B = By X --- x By be
the product space equipped with the norm

”(ala ce va‘l)“B = max{”al”Bu K ”al“Bz} (((11, v *a’f) € B)

Then (ay,...,a7) ts an extreme point of ball B if and only if ar is an extreme point of
ball By for allk =1....,¢.

Proof. Suppose that ay is an extreme point of ball By for all k. To prove that (ai,...,a)
is an extreme point of ball B, write (a1,...,as) = ((a},...,ap) + (af,....ay))/2, where
(a1,....ap),(af....,a)) € ball B. Then for each k =1,...,¢ we have
a, +aj
-k 7k
ar = 2 .
Also, lldlls, < max{llailis,- - lajls,} = (@, ... a})ls < 1. Similarly, g, < 1.
By hypothesis, ax = aj = af. Hence (a1,...,a7) = (ay,...,ap) = (af,...,a}). Thus
(a1, ...,ap) is an extreme point of ball B.
Conversely, suppose that (ai,...,as) is an extreme point of ballB. Fix k = 1,....¢
and write ax = (aj, + a})/2, where a}, a} € ball By. Then
/ 14
Q1,0 Oy, 0g) +(Q1, ., G, 0,0
(al,...,ak,...,ag)=(‘ ki >2( ? 7k )
Also, we have |[(a1,...,0,...,a7)|ls < max{||(a1....,a0)|5, llaillz.} < 1. Similarly,
((a1,...,a},...,ap)|| < 1. By hypothesis,
(@1, Gy yap) = (a1, .., 0%, . ag) = (@1,...,0%, ..., ap),
and so ax = @, = a}. Thus a; is an extreme point of ball By. a

3



Proposition 1.2.4. Let ¥ and v be injective continuous mappings of [0,1] into [0, 1],
and let o € C. If a(go ) + (g o 1a) is constant on [0,1] for all real-valued continuous
functions g on [0,1], then ¥1 = .

Proof. Assume v; # 2. Then v1(p) # ¥2(p) for some p € [0,1]. Since 9; is continuous,

there exists g € [0,1] such that ¢ # p and ¥1(q) # ¥a2(p). Then v3(g) # ¥2(p) because
19 is injective. Find a real-valued continuous function gg on [0, 1] such that go(v2(p)) =1

and go(¥1(p)) = 90(¥1(9)) = go(¥2(q)) = 0. Then we have ago(1(p)) + go(2(p)) = 1 and
ago(¥1(q)) + go(¥2(q)) = 0. This contradicts the hypothesis that a(gp o ¥1) + (go 0 ¥2) is
constant. Hence 91 = 9. O

When we consider the finite codimensional linear isometries, we will use the following
theorem by Takahasi and Okayasu:

Theorem A (Takahasi and Okayasu [46]). Let T be a finite codimensional linear isometry
on C(X). Then T is surjective if and only if for any continuous mapping ¥ of X onto
itself which is not injective, the set {(z,y) € X x X 1z # y,¢¥(z) =¥(y)} is infinite.

1.2.2 Proof of Theorem 1.2.1; the “if” part

First, we settle an easy part of Theorem 1.2.1.

Proof of the “if” part of Theorem 1.2.1. Suppose T has the form (1.1). Let f € cio,1].
For each £ =0,1,...,n — 1, we have

=1y f(r(k)

T0O(@) = 3 Hp Bt (sl op)(@) (@ e 1),
T k=t ’

and so (TF)D(0) = Af@)(0) because (Sg)(0) = 0 for all ¢ € C[0,1). Moreover

(T£)™ = w(f™ o). Therefore

n—1 n-1
ITflo = S 1THOO) + 1T H Moo = Y Mef T O)] + [l (£ 0 9)lloo
=0

£=0

n—1 n—1
= > 1TENO) + 15 0 plloo = D IFEO)] + 17 lloo = I llo-

£=0 k=0
Similarly, we can show ||Tf||m = || f|lm- Hence T is an isometry.
To see that T is surjective, let g € C™[0,1]. Define f € C™]0,1] by

ikl PR Ca OV} (n) o -1
o =5 e (o (2550 )0 o
k=0 ’

Then f©O(0) = X199 @)(0) for £=0,1,...,n—1and f™ = (¢ 0 p™1)/(wop™?).
Hence (1.1) yields

=1y o (M) o -1
e - AEO (o (25 )
(z € [0,1)).

k=0
=l k)

- Z g kl(o)xk + (Sng(n))(m) — g(x)
k=0 |



Hence T is surjective. O

1.2.3 Proof of Theorem 1.2.1; the “only if” part on (C™]0,1], |l - |l+)

We divide the proof of the “only if” part into two subsections. In this subsection, we deal
with only the space (C(™][0,1], ]| - |ls). The other space (C™][0,1],]| - ||lm) is considered in
the next subsection.

For simplicity, we write C(™ and C for (C™[0,1],] - ||l») and (C([0,1]),] - llec), Te-
spectively. Let K™ denote the product space of n copies of K. The points of K™ are thus
ordered n-tuples @ = (ag, a1, . ..,an-1), where ap,as, ..., an—1 € K. For instance, we write
b= (bg,b1,...,bp—1), 1 =(1,1....,1) and so on.

Definition 1.2.5. For each (a,c,z) € T" x T x [0,1], we define a functional A, ) on
™) by

n—1
Aaca)(f) =D af®0) +cf™(z) (feCc™).
k=0
It is clear that A cq) € ball(C(™)*.

Lemma 1.2.6. Let £ € (C™)*. Then ¢ is an extreme point of ball(C™)* if and only if
there exists (a,c,z) € T" x T x [0,1] such that §{ = A cz)-

Proof. Suppose that the product spaces K" x C' and K" x C* have the norms

(6,9 = i) 641 + llalloc (b,g) €K™ x C),

l(a,n)ll = maX{laol laaf, .- lan—al Inll} ((a,n) € K™ x C7),

respectively. Then (K™ x C')* is linearly isometric to K® x C*. In fact, the linear isometry
Q of K™ x C* onto (K™ x C)* is given by

(Q(a.n))(b,9) Zakbk +n(g) ((@,n) e K" xC% (b,g) €K™ x C).
k=0

Now, define a mapping P of C(® into K" x C by
= ((£(0), £/(0), ..., f™1(0)), ™) (f e Ct™).

Clearly, P is a linear isometry of C™ onto K™ x C. Hence the adjoint operator P* is a
linear isometry of (K™ x C)* onto (C™)*, and so P*Q is a linear isometry of K™ x C* onto
(C™)*. Thus £ is an extreme point of ball(C™)* if and only if there exists an extreme
point (a,n) of ball(K™ x C*) such that £ = P*Q(a.n). Note that the set of all extreme
points of ballK is T. Also, it is known that the set of all extreme points of ballC* is
{cez : c € T,z € [0,1]}, where e, is the evaluation functional at z: ez(g) = g(z) for g€ C
([8, Theorem V.8.4]). By Proposition 1.2.3, (a,n) is an extreme point of ball(K" x C*) if
and only if @ € T" and 7 = ce,, where ¢ € T, z € [0,1]. Hence £ is an extreme point of



ball(C™)* if and only if there exists (a,c,z) € T" x T x [0, 1] such that ¢ = P*Q(a. cez).
Thus the conclusion follows from

(P*Q(a,,cez))(f):(E)l(a,cex))(Pf) (Q(a, cez) (( (0), £/(0), ..., Fn=1(0)), £
=" ar fF(0) + (ces)(F™) Zakf(k) +cf<"><a:>=A(a,c,z)(f)

for all f e C™. O

Let us start the proof of the “only if” part on C™ of Theorem 1.2.1. For this purpose,
let T be a surjective linear isometry on C™). We complete the proof combining several
lemmas.

Lemma 1.2.7. For any (a,c,z) € T" x T x [0,1], there ezists a unique (b,d,y) € T" x
T x [0,1] such that

T*Ma,ca) = Mbdy)-
Proof. Let (a.c,z) € T" x T x [0,1]. By Lemma 1.2.6, A4 .,) is an extreme point of
ball(C™)*. Since T* is a surjective linear isometry on (C™)*, T* Mg cr) is an extreme
point of ball(C(™)*. By Lemma 1.2.6, there exists (b,d,y) € T" x T x [0, 1] such that

T"Aace) = Apay)-
For the uniqueness of (b,d,y), suppose T"A(gcz) = Ay, @) for some (o', d,y) €
T™ x T x [0, 1], where b’ = (by, by, ..., b,_1). Then Ap g, = A(b’,d',y) and so

Zbkf(k) (0) + df ™ (y) Zb’ F®0) + d (y) (f e CM). (1.2)

k=0

Foreach £=0,1,...,n—1, weput f = t!in (1.2) to get by = bj. Hence b = b’. Substituting
™ and "*! for f in (1.2), we obtain d = d’ and y = ¥/, respectively. ]

Definition 1.2.8. By Lemma 1.2.7, for each (a,z) € T™ x [0, 1], there exists a unique
(b,d,y) € T*x T x {0, 1] such that

T*Aaim) = Apay):
Since b = (b, - - .,bn-1), d and y depend on (a,x), we write
b, = ur(a,z) (k=0,1,...,n—1), d=v(a,z) and y=Y(a,z).
Thus 4 and v are unimodular functions on T™ x [0, 1] and ¢ is a mapping of T" x [0, 1]

into [0, 1].
Moreover, for any f € C™) we have

Mano)(TS) = (T"Aa10)(f) = Apay) () = A(uolaiw),itin-1(a,2)) w(az) wlaw)) ()

and so

n—1 n—1
ST a(@HP0) + (T ™ (z) =D wela.z) fO0) +v(a,2)f M (¥(a,z).  (13)
k=0 £=0



For each m=10,1...., n—1, we put f =™ in (1.3) to get
Z ap(T™Y®(0) + (Tv™) ™ (z) = mlupy,(a, z). (1.4)

Also, we substitute (™ and "*! for f in (1.3) to get

7{5 ax(T® () + (Tv™) ™ (z) = nlv(a, z), (1.5)
k=0
n—1
> ap (B (0) + (T )M (2) = (n+ 1)v(a, 2)Y(a, 2). (1.6)
k=0

Here we note that the equations (1.3)—(1.6) hold for all (a,z) € T™ x [0, 1].

Lemma 1.2.9. Fork=0,1,...,n— 1, u; and v are unimodular continuous functions on
T™ x [0,1]. Also, ¥ is a continuous mapping of T" x [0, 1] onto [0, 1].

Proof. Note that the left hand sides of the equations (1.4), (1.5) and (1.6) are continuous
in (a,z) € T" x [0,1]. The first two equations show that uy and v are continuous. Since
v is unimodular, (1.6) implies that ¢ is also continuous.

To see that ¢ : T" x [0,1] — [0, 1] is surjective, pick y € [0,1]. Since T is a surjective
linear isometry on (C(™)*, Lemma 1.2.6 guarantees the existence of (a, ¢, z) € T"xTx[0, 1]
such that T"A(g cz) = A(1,1,4)- Then we have

(T*Atza, 1)) (f) = Aga10)(Tf) = Z H(THE(0) + (T.H) ()
k=0

(Z ax(TH)®(0 +c<Tf><">(w>> = A (a.ca)(TS)
n-1
= E(T*A(a,c,x))(f) = EA(l,l,y) (f) =C <Z f(k) (0) + f(n)(y)>
k=0

n—1
= ef®O) +ef ™M (y) = Az ey (/)

for f € C™. By the definition of ¥, we get ¥(Za,z) = y. Hence 1 is surjective. O
Lemma 1.2.10. For any fized z € [0, 1], ¥(T" x {z}) is a singleton.
We prove this lemma for two cases K =R and K = C.

Proof in case of K=R. Fix a1,...,an_1 € T = {1,-1}. For each ¢t € {1,-1}, we write

= (t,a1,...,0n-1). By Lemma 1.2.9, ux(as, ) and v(a¢, z) are continuous functions in
z € |0,1] and take values within {1,—1}. Since the interval [0, 1] is connected, they are
constant functions. Thus we can write

ug(ar,z) = oy and v(ay,z) = B (z €10,1]),



where a; ) and B; are 1 or —1. Next, for t € {1,—1}, define ¥:(z) = ¥(as.z) for all
z € [0,1]. Putting @ = a; in (1.3), we have

n—1 n—-1
(T 0)+ Y a(THFPO)+ (THM () =D arefD0) + B f M (We(z) (1.7
k=1 £=0
for all z € [0,1] and f € C(™,
Here we check that 1); is continuous and injective. By Lemma 1.2.9, 74 is continuous.

To see that 4 is injective, choose fo € C™ so that Tfy = t"*1/(n + 1)! because T is
surjective. Putting f = fy in (1.7), we have

n-1
2= anefP(0) + BufM (wa(a)).
£=0

Since the left hand side is injective in z € [0, 1], 1; must be injective.
Now the difference of (1.7) with ¢t =1 and (1.7) with t = —1 is

n—1

2TF)(0) = (a1, — a1)fP(0) + Brf™ (W1 (x) — B1f™ (-1 (x))

£=0

for all z € [0,1] and f € C™. If v = —B;/B_1, then the above equation implies that
Y(f™ o4py) + (f™ op_1) is constant on [0,1] for all f € C™. In other words, Y(go 1)+
(go1_1) is constant for all g € C. Hence Proposition 1.2.4 gives ¥ = 1, that is,

P(L,a1,...,0n-1,2) = P(-1,a1,...,0n-1,2) (z€[0,1]).

If we fix z € [0, 1], then the set ¥(T x {a1} x --- x {ap-1} x {z}) is a singleton.
By a similar argunment, we can show the following assertion for each £ = 1,...,n — 1
For fixed ag,...,a¢-1,0¢+1,...,0n—1 € T and z € [0, 1], the set

Pv({ao} x - x{ag-1} x T x {ag1} x -+ x {an-1} x {z})
is a singleton. Thus we conclude that ¥(T™ x {z}) is a singleton. O

Proof in case of K=C. Fix a1,...,an-1 € T and z € (0.1]. Then the set
T x{a1} x - x {an-1} x {z}

is connected and compact. Since 9 is continuous, Y(T x {a1} X --- X {an—1} x {z}) is
connected and compact in [0, 1]. Hence we can write ¢(T x {a1} x - -+ x {an-1} x {z}) =
[s,t], where s,t € [0,1] and s < t. To show that s = ¢, assume the converse; s < t.
Then we easily find three distinct points p,q,r € [s,t] and a function fo € C™ such
that fo(0) = f5(0) = - = f§"V(0) = £ () = £§V(q) = 0 and fV(r) = 1. Since
p,¢,7 € Y(T x {a1} x --- X {ap-1} x {z}), there exist three distinct points b,c,d € T



such that ¥(b,a1,...,an_1,2) = p, ¥(c,a1,...,ap-1,Z) = ¢ and ¥(d,a1,...,ap-1,T) = T.
Putting f = fo and ap = b,¢,d in (1.3), we have

n—1

b(T f0)(0) + > _ ak(Tfo)®(0) + (T fo)™(z) = 0, (1)
k=1
n—1

oT£0)(0) + Y ar(T fo)®(0) + (T fo)™(z) = 0, (1.9)
k=1
n—1

d(Tf0)(0) + Y ak(Tf0)P(0) + (Tfo) ™ (z) = v(d, a1, .-, an-1, 7). (1.10)
k=1

By (1.8) and (1.9), we have (T'fo)(0) = 0 and 372! ax(Tfo)®(0) + (Tfo)™(z) = 0,
because b # c¢. Hence (1.10) becomes 0 = v(d,a;1...,an—1,%), which is a contradiction
because v is unimodular. Thus we obtain s = ¢, and Q/J(’]I‘ x{ai} x - x{an-1} x {z}) is
a singleton {s}.

Repeat the above argument as in the last paragraph of Proof in case of K = R. Then
we conclude that ¢(T™ x {z}) is a singleton. O

Definition 1.2.11. By Lemma 1.2.10, 9(a, z) does not depend on a € T". Hence we can
write

¥la.z) = p(z) ((a,2)€T" x 0,1]).

Since ¥ is a continuous mapping of T" x [0,1] onto [0, 1], ¢ is a continuous mapping of
[0,1] onto [0, 1].
Moreover, for any (a,z) € T" x [0,1} and f € C™, (1.3) becomes

Zak(Tf YB(0) + (T )™ (x Zuz a,z) fO0) + v(a. 2)f™ (p(z)).

k=0

Using (1.4) and (1.5), we remove uy and v as follows:
n—1
> a(TH)P(0) + (T )™ (z)
k=0
n—1 n—1
=33 (Z ar(T1)®(0) + <T#><"><w>> 19(0)

n—1
+.$_! ( ar (T8 (0) + (Tﬁ)"”(w)) F™ ()



Since this holds for all a = (ap, a1,...,an—1) € T", it follows that

n-1 (k) ny (k)

@n®© =3 T2 o) . OO0 s,
2 |
n—1 (1) n\(n)

n™e) =3 T2 o) TOED sy )
2y .

Lemma 1.2.12. For each k =0,1,...,n— 1, (Tt")*)(0) = 0 and

n—-1
i =3 T2 o) (e cm) (113)

{=0
Proof. Fix k=0,1,...,n — 1. Putting f = ("*! in (1.11), we have
(T B ) = (T P(0) (n + e(z) (= € 0,1]).

Note that the left hand side is constant while ¢ maps [0,1] onto [0,1]. We must have
(Tw™)*)(0) = 0. Substituting this into (1.11), we obtain (1.13). O
Definition 1.2.13. Define
Tvn(n)
wlay = TITE o o,y

Clearly, w is a continuous function on [0, 1]. Moreover, for f € C(™, (1.12) becomes

n—1 2\(n)
@) =Y EETD j00) yu@)fWipe) @epa). (1)
=0 ’
Lemma 1.2.14. w is a unimodular continuous function on [0, 1].

Proof. By Lemma 1.2.12 and Equation (1.5), we have

n—1
(T ()] = D (TP (0) + (Te™) ™ (z)| = |nlv(1,z)] = n!
k=0
for all z € [0,1]. Hence |w(z)| =1 for z € [0, 1]. O

Lemma 1.2.15. For each k € {0.1,...,n— 1}, there exist a unique m € {0,1,...,n—1}
and a unique a € C such that T'™ = au® and |of = m!/k!.

Proof. Fix k € {0,1,...,n—1}. I (T$)*)(0) = 0 for all £ € {0,1,...,n — 1}, then (1.13)
shows that (7f)*)(0) = 0 for all f € C™ which is a contradiction if we choose f so that

Tf = ¥ because T is surjective. Therefore there exists m € {0,1,...,n — 1} such that
(Te™)*)(0) # 0. By (1.4), we have
n—1
m! = [mhum(a, )| = > a(T™)O(0) + (Tv™) ™) (z)
=0
n—1
< T O Q)] + (T ™ ()] < | Te™lo = [0 = m!
=0

10



for all (a,z) € T" x [0,1]. Since the equality holds in the first inequality for all @ =
(ag,a1,...,0n-1) € T and since (T:™)®(0) # 0, we must have (T+™)¥(0) = 0 for all
¢ € {0,1,...,n — 1} \ {k} and (Tv™)™(x) = 0 for all z € [0,1]. Moreover, we have
UTe™)®)(0) = m!. Put o = (Tv™)*)(0)/k!. Then |a| = m!/k! and

n-1
7™ (0 T,y (k)
(T () =S T70O) ey (pmyo gy = T Ok k) (@ e o0.1).
pard 2 k!
For the uniqueness, assume T0™ = o/t*, where m’ € {0,1,...,n — 1}, @ € C and
lo/| = m!/k!. Then T(t™/a) = ¥ = T(™ /o). Since T is injective, 1™ /a = 1™ /o/. This
yields a = o’ and m = m/'. ]

Definition 1.2.16. With each k € {0,1,...,n — 1}, we associate m € {0,1,...,n — 1}
and o € C such that 7v™ = a* and |a| = m!/k!, as in Lemma 1.2.15. Since m and o
depend on k, we write

!
m=7(k) and a= %)\k.
Then 7 is a mapping of {0,1,...,n — 1} into itself, and we have

!
TLT(k)‘:T—%l)\klk and |\ = 1. (1.15)

Lemma 1.2.17. {7(0),7(1),...,7(n— 1)} is a permutation of {0,1,...,n — 1}.

Proof. Since T is a mapping of {0,1,...,n — 1} into itself, it suffices to show that 7 is
injective. Suppose that (k) = 7(k’), where k, k¥ € {0.1,...,n — 1}. Then

’ ! ! ! !
l(l_j.c')_‘,\kLk =T,®) =7, Kk) = z(—ki)\kwk .

k'
This implies k = k’. Hence 7 is injective. O
Lemma 1.2.18. (Tf)™(z) = w(z)f™ (p(z)) for z € [0,1] and f € C™]0,1].

Proof. By Lemma 1.2.17, for any £ € {0,1,...,n — 1}, there is k € {0,1,...,n — 1} such
that 7(k) = £. Then

! (n) !
(T a) = () a) = (Dt ) (@) = TREHOE) =0 @ e,
because k < n. Hence the desired equation follows from (1.14). |

Lemma 1.2.19. ¢ is a homeomorphism of [0,1] onto itself.

Proof. Since ¢ is a continuous mapping of [0, 1] onto itself, it suffices to show that ¢ is
injective. Choose fo € C™ so that T'fy = "' /(n + 1)! because T is surjective. Using
Lemmas 1.2.14 and 1.2.18, we have

P e@))] = @) £ @) = (T ™ @) = We) = lel == (= € [0,1]).

Hence, if o(z') = p(z"), then 2’ = lfon)((p(z'))| = Ifon)(go(:c”))l = z”. Therefore ¢ is
injective. O

11



Lemma 1.2.20. T has the form (1.1).

Proof. Let f € C™). By Lemma 1.2.17, {(1.13) is rewritten as

n—1 n—1 (k)
0 @B O) ey L (10 e ((8))
TH®0) = EZ; o 00 =5 i (T @700

_ Z )\e(b )( T(l))(()) = )\kf(T(k))(O)

for k =0,1,...,n — 1. This equation and Lemma 1.2.18 yield

1 p a8 Q)
@) =Y, T sty (s70p)®) (@)
' k=0 (z €]0,1]).
n-l (r(k))
=S Ok (57w o)) (a)
k=0 ) O

Noting Lemmas 1.2.14, 1.2.17, 1.2.19, 1.2.20 and Equation (1.15), we establish the
“only if” part on (C™]0,1},] - ||») of Theorem 1.2.1.

1.2.4 Proof of Theorem 1.2.1; the “only if” part on (C™][0,1], ] - ||m)

In this section, we deal with the space (C(™[0,1],]| - ||.). We first see that the space
(C™10,1], ]} - lm) is linearly isometric to C(X) for some compact Hausdorff space X.

Definition 1.2.21. We put X; = [0,1] U {po,p1,.-.,Pn-1}, Where po,p1,...,pn-1_are
distinct points in R \ [0.1]. For each f € C™][0,1], we define a continuous function f on
X1 by

s f&®0) fy=p (k=01,...,n—1),
- ™) ifyelon].

Lemma 1.2.22. The mapping P, : f — f is a linear isometry of (C™[0,1],| - lm) onto
C(Xy).

Proof. 1t is clear that P; is linear. For any f € C(™) [0, 1], we have

Il fllm = max{|£(O)[,|FO)l, ..., "D, | f™loc}
= max{| f(po)|, | f(P1)], -, [F®n=1)], [ Flloo}
= sup{|f(¥)| : y € X1}.

Hence P; is an isometry of (C™][0,1],]| - |l) into C(X1).
To see that P; is surjective, pick g € C(X1) arbitrarily. We define f € C(™][0,1] as

Zg(pk) k4 (Smg)(z) (z €[0,1).

=0

12



Using the formulae (Sh)(0) = 0 and (Sh)" = h for all h € C([0, 1]), we have the following
equations:

£(0) = glpo), £(0) = glp1), ..., F*7V(0) = g(pn-1), f™(2)=9(2) (z€[0,1]).
Hence Pif = f: g. Thus P is surjective. O

Proof of the “only if” part on (C™[0,1], | - llm) of Theorem 1.2.1. Let T be a surjective
linear lsometry on (C™]0,1),]| - lm). We associate a linear operator T on C(X;) such
as T = P1TP1 , where P; is the isometry from (C™][0,1], || - ||m) onto C(X1) in Lemma
1.2.22. Then T is a surjective linear isometry on C(X1). By the Banach-Stone theorem,
there exist a homeomorphism p of X; onto X; and a unimodular continuous function u
on X, such that '

(Th)(y) = w(y)h(p(y)) (y € Xy)
for all h € C(X1). Then the restriction ¢ of p to [0, 1] becomes a homeomorphism of [0, 1]
onto (0,1}, and p({po,p1,.--.Pn-1}) = {P0,D1,...,Pn-1}. Foreach k =0,1,...,n—1, let
7(k) be the index £ such that p(px) = pp. Then {7(0),7(1),...,7(n—1)} is a permutation
of {0,1,...,n — 1}. Let w be the restriction of u to [0,1]. Then w is a unimodular
continuous function on [0, 1]. For each k = 0,1,...,n — 1, put Ay = u(pg). Then each A\
is a unimodular constant.
To show (1.1), let f € C™]0.1]. Noting that Tf PTf=TPf= TF, we have

).

(TH®0) = Tf(ok) = (T)(pr) = wlor) Fo(r)) = M f (Priiy) = MeFT®(0),

(TH)™(z) = Tf(z) = (Tf)(z) = ulz)f(p(z)) = w(z) f(p(z)) = w(z) F™ (),
]

(p
N
for k=0,1,...,n—~ 1 and z € [0.1]. Therefore, we have

n-~1 (k
T = ¥ IO e, (S”(Tf)(")> 8

k=0 : (z € [0,1]).
n-l A f®) (0 )
=) —— SMw(f™ o)) (x)
k2=0 Kl + °¢)) 0

1.2.5 Proof of Theorem 1.2.2
We now turn our attention to Theorem 1.2.2.

Proof of Theorem 1.2.2. Suppose that T' is a finite codimensional linear isometry on the
space (C™][0. 1, |l - [lm). Let X1 and Pi be as in Definition 1.2.21 and Lemma 1.2.22,
respectively. Define a linear operator ToasT = PTP . 1. Then T is a finite codimensional
linear isometry on C(X1). To complete the proof, it suffices to show that T is surjective.

For this purpose, we will appeal to Theorem A. Suppose that 1 is a continuous mapping
of X, onto itself which is not injective. Since v is continuous and surjective, we see that
¥([0,1]) = [0,1]. Since 9 is not injective, there are zp,yo € [0, 1] such that zop < yo and
¥(zo) = ¥(yo). Using the intermediate value theorem, we can find infinitely many pairs
(xi,y:) of points in the interval [zg,yo| such that z; # y; and ¥(z;) = ¥(y;). Hence the
set {(z,y) € X1 x X1 :z # y,¥(z) = ¥(y)} is infinite. Thus Theorem A shows that T is
surjective. O
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1.3 The space of Lipschitz continuous functions

We denote by Lip[0, 1] the linear space of all K-valued Lipschitz continuous functions on
[0,1]. For each f € Lip[0,1], f has the derivative f'(z) for almost all z € [0,1]. Then
the set {f' : f € Lip[0,1]} coincides with L*[0,1]; the Banach algebra of all K-valued
essentially bounded functions on [0,1] with the essential supremum norm || - ||g=. There
exist several norms which make Lip[0, 1] a Banach space; for example,

[flle = NFlleo + 11z,
I/ lla = max{|| flloo, | f'll Lo}

: . (f € Lip[0, 1]).
Iflle = 1O + 1 Yz,
£l = max{|f(0)[, |/l ==},
These norms are equivalent. In particular, (Lip[0, 1], || - |lx) is a unital semisimple commu-

tative Banach algebra.

From [19, 20, 39], we know that every surjective linear isometry T on (Lip{0,1],| - =)
or (Lip[0,1], ]| - ||a) has the canonical form; T'f = w(f o ¢). In this paper, we characterize
the surjective linear isometries on (Lip[0,1],] - |l) and (Lip[0,1],] - ||m), as follows:

Theorem 1.3.1. Let T be a linear operator on (Lip[0, 1], |- |lo) or (Lip[0, 1], |- |lm). Then
T is a surjective isometry if and only if there exist an algebra automorphism @ of L*°[0, 1],
a unimodular function w € L*°[0, 1] and a unimodular constant A such that

(Tf)(z) = A (0) + /0 “w(t)(@F) () de (1.16)

for all z € [0,1] and f € Lip[0. 1].

It is known that any algebra automorphism @ of L*°[0, 1] has the form; ®h = ho ¢ for
all h € L®[0, 1], where ¢ is a function in L*[0,1] such that ¢(z) € [0,1] a.e. = € [0,1].
This fact is obtained by the way of the proof of [14, Theorem 1. Indeed, ¢ is given by
@ = ®.. Nevertheless, we easily see that (1.16) is not of the canonical form.

We also prove the following theorem:

Theorem 1.3.2. If T is a finite codimensional linear isometry on (Lip[0,1], || - ||lm), then
T is surjective.

We will prove Theorem 1.3.1 in Sections 1.3.2-1.3.4, Theorem 1.3.2 in Section 1.3.5.

1.3.1 Preliminaries

If we want to indicate the scalar field K, we write L0, 1] instead of L*°[0,1]. Let 9 be
the maximal ideal space of LZ[0,1]. Then 9 is a compact Hausdorff space. We know
that 9 is totally disconnected (|5, Theorem 1.3.4]). This means that every component
of 9 consists of one point. We also know that 901 has no isolated points ([43, Exercise
11.18]). It is easy to see that a totally disconnected compact Hausdorff space is extremally
disconnected, that is, if U is open, so is the closure U.

14



We write Cg(9) or simply C(9M) for the Banach algebra of all K-valued continu-
ous functions on M with the supremum norm | - ||qn. For any g € L0, 1], § denotes the
Gelfand representation of g. The Gelfand-Naimark theorem says that the Gelfand transfor-
mation I' : g + g'is an algebra *-isomorphism of L¥[0, 1] onto C¢ (M) and ||g||lz= = ||g]lm-
Also T' maps Lg[0, 1] onto Cr(9M), and {7 : f € Lip} = C(M).

1.3.2 Proof of Theorem 1.3.1; the “if” part

Proof of the “if” part of Theorem 1.8.1. Suppose T has the form (1.16). Put ¥ = ['@~L.
Then ¥ is an algebra automorphism of C'(9). By [21, Theorem 3.4.3], ¥ has the form
Uh = h o ¢ for some homeomorphism ¢ of M onto itself. Hence ¥ is a surjective linear
isometry on C(90), and so @ is a surjective isometry on L*[0,1]. Also, for f € Lip{0, 1],
we have (Tf)(0) = Af(0) and (T'f) = w(®f’). Therefore

17 fllo = I(TF)O) + I(Tf) || zeo
= FO]+ W@z = [FO) + 12 Lo = [F (O + [ | zee = I fllo-

Similarly, |Tf||m = || f|jm. Hence T is an isometry.
Next we will see that T is surjective. For any g € Lip{0, 1}, we define f € Lip|0, 1] by

f@) =30 + [ @ @O & (@0,
Then f(0) = Ag(0) and f' = & 1(@g'), and so (1.16) implies that

(T1)(z) = XRg(0) + / " () (@31 @d) (1) dt = g(0) + / Yt dt=g(z) (ze01])
0 0 0O
1.3.3 Proof of Theorem 1.3.1; the “only if” part on (Lip[0, 1], || - ||»)

We divide the proof of the “only if” part into two subsections. We deal with only the space
(Lip[0, 1], | - |l¢) in this subsection, and the space (Lip[0, 1], | - ||m) in the next subsection.

For simplicity, we write Lip and L™ for the Banach space (Lip[0,1},| - |lo) and the
Banach algebra (L°°[0,1], || - || ), respectively.

Definition 1.3.3. For each (a,¢,m) € T x T x 9, define a functional A, .., on Lip by

Agem)(f) =af(0) + cf'(m) (f € Lip).
It is clear that A(gcm) € ball(Lip)*.

Lemma 1.3.4. Let £ € (Lip)*. Then £ is an extreme point of ball(Lip)* if and only if
there ezists (a,c,m) € T x T x M such that £ = A c.m)-

Proof. Suppose that the product spaces K x L and K x C(97)* have the norms

B, Nl = 18] + llgllzee  ((b,g) € K x L),
ll(@. Ml = max{lal, [Inll} ((a.n) € K x C(M)*),

15



respectively. Then the next operator @ is a linear isometry of K x C(91)* onto (K x L*™)*:

(Qa,m)(b.g) = ab+n(g) ((a.n) e Kx C(OM)", (b,g) € K x L*).

Define a linear isometry P of Lip onto K x L™ by
Pf=(f(0),f) (f€Lip).

Then P*Q is a linear isometry of K x C(9)* onto (Lip)*. Hence £ is an extreme point
of ball(Lip)* if and only if there exists an extreme point (a,n) of ball(K x C(91)*) such
that £ = P*Q(a,n). By Proposition 1.2.3 and [8, Theorem V.8.4], (a,n) is an extreme
point of ball(K x C(91)*) if and only if a € T and there exist ¢ € T and m € 9 such that
n(9) = cem(g) = cg(m) for g € C(9M). Hence ¢ is an extreme point of ball(Lip)* if and
only if there exists (a,c,m) € T x T x M such that £ = P*Q(a, cen,). Thus the conclusion
follows from

P*(Q(a, cen))(f) = (Q(a, cem))(Pf)
= (Q(a, cen))(f(0), f') = af(0) + cf'(m) = Ag.em)(f)
for f € Lip. O

Let us start the proof of the “only if” part on Lip of Theorem 1.3.1. For this purpose,
let T be a surjective linear isometry on Lip. We complete the proof combining several
lemmas.

Lemma 1.3.5. For any (a,c,m) € T x T x M, there exists a unique (b,d,n) € Tx T x M
‘such that T*A(a,c,m) = A(b,d.n)-

Proof. Let (a,c,m) € TxTxM. Since T* is a surjective linear isometry on (Lip)*, Lemma
1.3.4 shows the existence of (b,d,n) € T x T x 9 such that T A, cm) = Ap,dn)-

For the uniqueness of (b,d,n), suppose T*A(gcm) = A a,n) for some (¥, d',n') €
T x T x 9. Then A(b,d,n) = A(b’,d’,n’)a that is,

b£(0) + df'(n) = b F(0) +d f'(n') (f € Lip). (1.17)

Substituting 1 and ¢ for f in (1.17), we get b = b’ and d = d’, respectively. Hence (1.17)
shows f'(n) = f/(n’) for all f € Lip. In other words, h(n) = h(n') for all h € C(90). This
implies n = n'. O

Definition 1.3.6. By Lemma 1.3.5, for each (a,m) € T x 9, there exists a unique
(b,d,n) € T x T x M such that T*Ag1,m) = Ap,4n)- Since b, d and n depend on (a,m),
we write

b=u(a,m), d=wv(a,m) and n=1Y(a,m).

Thus v and v are unimodular functions on T x 9D and 9 is a mapping of T x 9 into M.
Moreover, for any f € Lip, we have

A(a,l,m) (Tf) = (T*A(a,l,m))(f) = A(b,d,n)(f) = A(u(a,m),v(a,m),w(a,m))(f)-

and so o R
a(T)(0) + (T f)'(m) = u(a, m)f(0) + v(a,m) f'(¥(a, m)). (1.18)
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Substituting 1 and ¢ for f, we have

—

a(T1)(0) + (T1)(m) = u(a,m), (1.19)
a(T0)(0) + (T (m) = v(a, m). (1.20)

Here we note that the equations (1.18)—(1.20) hold for all (a,m) € T x M.
Lemma 1.3.7. ¥ is a continuous mapping of T x M onto M.

Proof. By (1.19) and (1.20), we see that u and v are continuous on T x 9. Since v is
unimodular, (1.18) implies that f’ o % is continuous on T x 9N for all f € Lip. In other
words, h o is continuous on T x M for all h € C(M). To see that ¥ : T x D — M
is continuous, pick (ag,mp) € T x 9, and let V be an open neighborhood of ¥(ag, mo)
in M. By Urysohn’s lemma, there exists hg € C(IM) such that ho(¥(ap, mp)) = 1 and
ho(n) =0 for alln € M\ V. Put U = {(a,m) € T x M : |(ho o ¥)(a,m)| > 0}. Since
hg o ¥ is continuous, U is an open neighborhood of (ag, mg). Moreover we can easily see
that ¥(U) C V. Thus ¢ is continuous.

To see that 9 is surjective, let n € 9. Since T™ is a surjective linear isometry on
(Lip)*, Lemma 1.3.4 gives (a,c,m) € T x T x 9 such that T"A(qcm) = Aq1,1n)- Then

e —

(T*Aga1,m))(f) = Aga,1,m) (T f) = 2a(T £)(0) + (Tf) (m)
= 2(a(T£)(0) + e(TFY(m)) = T (a ) (T) = ET* A (f)
= A1) (f) = 2(f(0) + F'(n) = 2f(0) + 2F'(n) = Az ()
for f € Lip. By the definition of 4, ¥(¢a, m) = n. Hence 9 is surjective. O

Lemma 1.3.8. For any fized m € M, ¢(T x {m}) is a singleton.

Proof in case of K=R. For t € T = {1, -1}, put ¥(m) = ¥(t,m) for all m € 9. The
difference of (1.19) with a = 1 and (1.19) with a = -1 is 2(T1)(0) = u(1,m) — u(—1,m).
While the difference of (1.18) with a = 1 and (1.18) with a = —1 becomes

2(T1)(0) = (u(l,m) - u(~1,m)) f(0)
+o(1,m)f(¥(1,m)) - v(=1,m)f'(¥(-1,m)) (L.21)
= 2(T1)(0)£(0) + v(L,m) F'(¥1(m)) — v(~1,m) f'(p-1(m))

for m € M and f € Lip.

Assume that ¥1(mg) # ¥-1(mg) for some my € M. Then we find disjoint open sets
V1 and V_q in 9N such that ¥y (mg) € V1 and ¥_;(mp) € V_;. Since MM has no isolated
points, there exists n; € Vi \ {¥1(mg)}. Since ¢ : T x 9 — M is surjective, there exists
(t1,m1) € T x 9 such that ¥(t;,m1) = n1. Then we have ¥y, (m1) # ¥1(mp) because
ny1 # ¥1(mg). We also have ¥, (m1) # ¥—1(mo) because ny ¢ V_;.

Here we consider the case when ¢_; (m1) # %—_1(mg). In this case, we can choose
fo € Lip so that fo(¢-1(mo)) = 1 and f5(¥1(ma)) = fo(vu: (ma)) = fo(vb~t, (ma)) = 0,
because of {f’ : f € Lip} = C(9M) and Urysohn’s lemma. Then we have fy(v1(my)) =
fo(ib-1(mq)) = 0. Therefore, if we put f = fo and m = mg, m; in (1.21), then we get

2(T fo)(0) = 2(T1)(0)f(0) — v(~1,mq) and 2(T'fo)(0) = 2(T'1)(0)f(0).
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Hence v(—1,mg) = 0. This is a contradiction because v is unimodular.
On the other hand, if ¥_;,(m1) = ¥_1(mg), then we can choose fo € Lip so that

fo(¥1(me)) = 1 and fo(v-1(mo)) = fo(vr, (m1)) = f'(1h—1,(m1)) = 0. A similar argument
shows that v(1,mg) = 0, a contradiction.

In any case, we reach a contradiction. Hence 91(m) = v¥_1(m), that is, ¥(1,m) =
P(—1,m) for all m € M. If we fix m € M, then the set ¥(T x {m}) is a singleton. =~ O

Proof in case of K= C. Fix m € 9. Then T x {m} is connected. Since 9 is continuous,
Y(T x {m}) is connected in M. Since M is totally disconnected, ¥(T x {m}) is a singleton.
. _ 0

Definition 1.3.9. By Lemma 1.3.8, ¢)(a, m) does not depend on a € T. Hence we can
write
Y(a,m) =p(m) ((a,m) e T x M).

Since 1) is a continuous mapping of T x 9 onto M, ¢ is a continuous mapping of M onto
itself.
Moreover, for any (a,m) € T x M and f € Lip, (1.18) is written as

a(T£)(0) + (T (m) = ula,m)£(0) +v(a,m)F(p(m)).
Use (1.19) and (1.20) to delete v and v in the equation above. The result is
o(T1)(0) + (Tf)(m)
= a (TDO)F(0) + (T F (p(m))) + ([T (m)£(0) + T0) (m) P (e(m) ) .
Since this holds for all a € T, it follows that

(T1)(0) = (T1)(0) £(0) + (T1)(0) F'(o(m)), (1.22)

T 1) (m) = (T1)(m)£(0) + (Te) (m) F'(p(m)). (1.23)

Definition 1.3.10. Define a constant A and a function w € L*™ by
A= (T1)(0) and w=(T:).

Lemma 1.3.11. (a) @(m) = v(1,m) for all m € M.
(b) (T'f)(0) = Af(0) for all f € Lip.

- Proof. Equation (1.22) says that (TL)(O)(f’ o) is constant on M for all f € Lip. In other
words, (7¢)(0)(h o @) is constant for all A € C(9). Since ¢ is surjective, we must have
(Tt)(0) = 0. Thus (a) and (b) follow from (1.20) and (1.22), respectively. O

Lemma 1.3.12. w is unimodular.

Proof. By Lemma 1.3.11(a), |@(m)| = Jv(1,m)| = 1 for all m € 9. This implies that &©
is a unit of C(9M). Since the transformation I" : g — g is a *-isomorphism of L*® onto
C(9M), ww is a unit of L. Hence we conclude that w is unimodular. a
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Lemma 1.3.13. (a) |/\| =1.
(b) (Tf) (m) = w(m)f’(cp( ) for all m € M and f € Lip.

Proof. We first note that A # 0. Indeed, if A = 0, Lemma 1.3.11(b) yields (7°f)(0) = 0 for
all f € Lip, which is a contradiction because T is surjective. Now, we use (1.19) to get

1= [u(a,m)| = [&(T1)(0) + (T1)(m)| = |ax + (T1Y (m)] < |A| + [(T1)(m)|
< L+ 1T lam = [(T1YO)] + [(T1) [l = [Tl = 1]l = 1

for all (a,m) € T x M. Note that the equahty holds in the first inequality for all a € T.
Since A # 0, we must have {A| = 1 and (Tl) (m) = 0. Hence (1.23) becomes (b). 0

Lemma 1.3.14. ¢ is a homeomorphism of 9 onto itself.

Proof. Since p is a continuous mapping of a compact Hausdorff space onto itself, it suffices
to show that ¢ is injective. Assume m' # m" and p(m') = np(m "). Then we can choose
f1 € Lip such that fl( m') =1 and fl( ") = 0, because of {f' : f € Lip} = C(9M) and
Urysohn’s lemma. Since T is surjective, there exists fp € Lip such that Tfy = f;. B
Lemmas 1.3.12 and 1.3.13(b), we have

T (p(m))| = [@(m) fy((m))| = [T fo) (m)| = |1Fi(m)|  (m € M),

and so 1 = |fI(m)| = |fi((m’))] = |fi(e(m")| = |Fl(m")| = 0, a contradiction. There-
fore ¢ is injective. O

Definition 1.3.15. For each h € C(9M), we define a function $h on M by
(Wh)(m) = hlp(m)) (m € M).

Since ¢ is a homeomorphism of 9% onto itself, ¥ is an algebra automorphism of C'(9N).
Put ® = I'"'¥T. Since the Gelfand transformation I' is an algebra isomorphism of L*®
onto C(9M), ® is an algebra automorphism of L.

Lemma 1.3.16. T has the form (1.16).

Proof. Let f € Lip. By Lemma 1.3.13(b), we have
(m)F(p(m)) = &(m)(LF)(m) = Bm)(UTSYm) (o)
(M)(DEF")(m) = D(m)@ ' (m) = w

Hence (T'f) = w - (®f"). Together with Lemma 1.3.11(b), we obtain

Tfy(m) =0
w

(TF)(z) = (TF)(0) + /0 “(TY () dt = AF(0) + /O L)@ dt (z e [0.1]).
O

Noting Lemmas 1.3.12, 1.3.13(a), 1.3.16 and Definition 1.3.15, we establish the “only
if” part on (Lip{0,1], ] - |l¢) of Theorem 1.3.1.
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1.3.4 Proof of Theorem 1.3.1; the “only if” part on (Lip[0,1],] - |[m)

In this subsection, we deal with the space (Lip[0, 1], || - ||m)- We first see that the space
(Lip[0. 1], ]| - |lm) is linearly isometric to C'(X) for some compact Hausdorff space X.

Definition 1.3.17. Put X, = M U {p}, where p is another point. We assume that X»
is equipped with the topology consisting of all open sets of 9 and all sets of the form
(MM \ K) U {p} where K is a compact subset of M. Clearly X, is a compact Hausdorff
space. For each f € Lip[0, 1], we define a continuous function f on X, by

= ) f(0) ify=p,
f(y)"{f'(y) if y € 9

Lemma 1.3.18. The mapping Ps : f — f is a linear isometry of (Lip[0, 1], | - ||m) onto
C(X3).

Proof. For each f € Lip|0, 1], we have

[ £llm = max{|£(O)], [ f'lL=} = max{|£(O)], || 7lon}
= max{|f(p)], | fllon} = sup{|f(®)| : y € Xa}.

Hence P, is an isometry.
To see that P, is surjective, pick g € C(X2) arbitrarily. Then there exists h € L*°[0, 1]
such that h = glgn; the restriction on 9. We define f € Lip[0, 1] by

f(@) = o(p) + /0 “hdt (ze0,1]).

Then f(p) = f(0) = g(p). Also, we have f' = h a.e., and so f(m) = f’(m) = Tz(m) = g(m)
for m € 9. Hence Pof = f = g. Thus P, is surjective. O

Proof of the “only if” part on (Lip[0,1}, || - [lm) of Theorem 1.8.1. Let T be a surjective
linear isometry on (Lip[0.1],|| - |lm). We associate a linear operator 7' on C(X2) such
as T = P;TP; !, where P; is the linear isometry of (Lip[0, 1], |- |}.) onto C'(X2) in Lemma
1.3.18. Then 7 is a surjective linear isometry on C'(X2). By the Banach-Stone theorem,
there exist a homeomorphism p of X3 onto X9 and a unimodular continuous function u
on X9 such that

(Th)(y) = u(@)h(p(y)) (y € Xa)

for all h € C(X2). Then the restriction of p to 90 becomes a homeomorphism of 9 onto
9 and p({p}) = {p}. Therefore, p induces the surjective automorphism ® of C'(?M) in the
following manner: _

(@h)(m) = h(p(m)) (m € M)
for all h € C(9M). Put ® = I'"18T. Then ® is a surjective automorphism of L*>[0,1],
and we have <I/>?; =I'®dg=8lg=>dgforallge L*>[0,1]. On the other hand, since the
restriction ufon belongs to C(), there exists w € L*[0, 1] such that @ = ulsgy. Then

Www = W = vt = 1 on M, it follows that ww = 1 a.e. on [0,1]. Hence we may assume
that w is unimodular. Moreover, we put A = u(p). Of course, A is a unimodular constant.
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To show (1.16), let f € Lip[0,1]. Since ﬂ = PTf=TPf = T, we have

(TF)(0) = (TF)(p) = (THlp) = u®)F(p(p)) = Af(p) = AF(0).

Moreover, if m € 90, then

TFY(m) = (TF)(m) = (TF)(m) = u(m) f(p(m)) = B(m) f'(o(m))

= (
= 0(m)@EF)(m) = B(m)(&F)(m) = w - (&F)(m).

Hence (T'f) = w - (®f"). Therefore, we have

T

(Tf)(z) = (Tf)(0)+/0x(Tf)’(t) dt‘=/\f(0)+/0 wt)(@f)(t)dt (z € [0,1]).
|

1.3.5 Proof of Theorem 1.3.2

Recall from Section 1.3.1 that 9 is a compact Hausdorff space which is extremally dis-
connected and has no isolated points. We first investigate the property of such a space.

Lemma 1.3.19. Suppose that a compact Hausdorff space X is extremally disconnected
and has no isolated points. If ¢ is a continuous mapping of X onto itself which is not
injective, then the set {(z,y) € X x X 1z # y,¥(z) = ¥(y)} is infinite.

Proof. Suppose that 9 is a continuous mapping of X onto itself which is not injective. We
define an equivalence relation ¢ ~ y on X by 9(z) = ¥(y). Consider the quotient space
X/ ~, and denote by g the quotient mapping of X onto X/ ~. Now, define a mapping 7
of X/ ~ to X by m(g(z)) = ¢(z) for all z € M. We easily see that X/ ~ is compact and
7 is bijective and continuous. Hence 7 is a homeomorphism, and so X/ ~ is extremally
disconnected and has no isolated points.

Let Y be the set of all points z € X such that ¥(x) = ¢ (y) for some y € X \ {z}. To
complete the proof, it suffices to show that Y is infinite. Assume, to reach a contradiction,
that Y is finite. Pick two distinct points zo and yo in Y so that ¥(zo) = ¥(yo). Since Y
is finite, we find open sets U and V in X so that

zeU, weV, UNY ={x}, VNY ={yw} and UNV =§.

Then we have
{a(z0)} = q(T) Nq(V). (1.24)

Let us verify that ¢(T7) is open in X/ ~. Since X has no isolated points, U \ {zo} = U.
Since ¢ is continuous and X is compact, we see that ¢(U \ {zo}) = ¢(U \ {z0}). Hence
q(U \ {z0}) = q(U). Noting that U NY = {z¢}, we see that ¢~ (q(U \ {z0})) = U\ {z0}.
This implies that g(U \ {zo}) is open in X/ ~. Since X/ ~ is extremally disconnected,
q(U\ {zo}) is open. Namely, ¢(U) is open. Similarly, we can show that ¢(V) is open.
Hence (1.24) implies that ¢(zo) is an isolated point in X/ ~. This is a contradiction and
the proof is completed. ]

This lemma can be extended as follows:
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Lemma 1.3.20. Suppose that a compact Hausdorff space X is extremally disconnected
and has at most finitely many isolated points. If v is a continuous mapping of X onto
itself which is not injective, then the set {(z,y) € X x X : = # y,¥(z) = ¥(y)} is infinite.

Proof. Let 9 be a continuous mapping ¢ of X onto itself which is not injective. If X
has no isolated points, the conclusion follows at once from Lemma 1.3.19. Suppose that
there exists a isolated point in X, say p1,p2,...,0n. Put Xo = X \ {p1,p2,-..,Pn}-
Then Xy has no isolated points and is a compact Hausdorff space. Since Xy is open
in X, X is extremally disconnected. Since 1 is continuous and surjective, we see that
Y({p1.p2,- -, Pn}) = {P1,P2,...,Pn}, and so ¥(Xg) = Xo. Since ¢ is not injective on Xp,
Lemma 1.3.19 implies that the set {(z,y) € Xo x Xo : = # y,¢¥(z) = ¥(y)} is infinite.
This implies the desired conclusion. O

Together with Theorem A, we obtain the following theorem:

Theorem 1.3.21. Suppose that a compact Hausdorff space X is extremally disconnected
and has at most finitely many isolated points. If T is a finite codimensional linear isometry
on C(X), then T is surjective.

Theorem 1.3.2 is a corollary to Theorem 1.3.21.

Proof of Theorem 1.3.2. Let X2 be as in Definition 1.3.17. We can easily check that
Xo = MU {p} is extremally disconnected and that p is the only isolated point in Xs.
Hence Theorem 1.3.21 implies that if T is a finite codimensional linear isometry on C(X3),
then T is surjective. Recall from Lemma 1.3.18 that (Lip[0, 1], | - ||) is linearly isometric
to C'(X2). The conclusion follows immediately. O

Finally, we apply Theorem 1.3.21 to the L*-spaces. Let (£2,B, u) be a positive mea-
sure space. We denote by Lg2(Q2,B, 1) or simply L*°(Q, B, u) the Banach algebra of all
equivalence classes of K-valued essentially bounded p-measurable functions on €2, equipped
with the essential supremum norm.

Corollary 1.3.22. Let (Q,B, 1) be a positive measure space. Suppose that p has at most
finitely many atoms. If T is a finite codimensional linear isometry on L®°(Q, B, u), then
T is surjective.

Proof. In the same way as Section 1.3.1, we consider the space L>®(2,B,u). Since
LE(Q,%B, 1) is a unital commutative C*-algebra, the Gelfand-Naimark theorem says that
L¥(Q,B. ) is isometrically *-isomorphic to Cg (M), where My is the maximal ideal
space of LF(Q,B, ). Thus we see that L*°(Q,B, u) is linearly isometric to C(Mpeo).
Also, it is known that M is extremally disconnected ([5, Theorem 1.3.4]).

Now, suppose that y has at most finitely many atoms. Then we easily see that Do
has an equal number of isolated points. Thus Theorem 1.3.21 implies that if T is a finite
codimensional linear isometry on C(9M ), then T is surjective. This fact leads to the
corollary. O
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1.4 The Wiener algebra

Let W denote the space of all complex-valued continuous functions on the unit circle T
whose Fourier series is absolutely convergent. For each f € W, we denote by c,(f) the
n-th Fourier coefficient. With respect to the norm

Ifllw = > lealf)l  (FEW),

n=—oo

W is a unital semisimple commutative Banach algebra. The algebra W is sometimes called
the Wiener algebra. We characterize the surjective linear isometries on W, as follows:

Theorem 1.4.1. Let T be a linear operator on W. Then T is a surjective isometry if and
only if there exist a bijection v of Z onto itself and a unimodular function w on Z such
that

[eo}

THE)= Y wn)eum(f)" (1.25)

n=-—00

forallz€ T and f e W.

Proof. Let ¢1(Z) denote the Banach space of all doubly infinite sequences {z,}3_ . of
complex numbers satisfying ||[{zn}||1 := Y e _o || < 00. Define a mapping P of W into
M Z) by Pf = {cn(f)}S2_, for all f € W. Then it is easy to see that P is a surjective
linear isometry of W onto £'(Z) (cf. [22, Example 1.1.5]). Let T be a surjective linear
isometry on W. We associate a linear operator T on ¢1(Z) such as T = PTP~1. Then
T is a surjective linear isometry on ?X(Z). By the characterization of the surjective linear
isometries on ¢*(Z) (cf. [4, Theorem 11.5.2]), there exist a bijection ¢ of Z onto itself and

a unimodular function w on Z such that

T({ea(N}) = {wn)epm)(F) I —oo

for all f € W. Hence we have

o0 [e.e]

(Th)(2)= Y ealTH2"= Y wn)eym(f)z"

n=-—0o0 n=—0o

forall z€ T and f € W. :
Conversely, suppose that 7" has the form (1.25). Then we see that

en(Tf) = w(n)epm)(f)

for all n € Z and f € W. Hence we have

177w = HenTHYL = D lealTF)]

]

= Y wmepmDI= Y lealHl = H{ealH)H = 1l
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and so T is an isometry. To see that T is surjective, let g € W. We put

o= 3 Z@8 s e,

By (1.25), we have
(Tf)(z) = i W) pmy(f) 2" = i () 22D i en(g) 2" = g(2)
e e = (o p(n))) T
for all z € T. Hence T'f = g and this completes the proof. O

The form (1.25) is not of the canonical form. Indeed, let w be the constant 1 and put
©(0) =1, (1) =2 and p(2) = 0 and p(n) =n for n #0,1,2,

The Banach-Stone theorem has been extended to function algebras by Nagasawa [31]
and deLeeuw, Rudin and Wermer [10], that is, every surjective linear isometries on a
function algebra has the canonical form. However, Theorem 1.4.1 suggests to us that this
result does not hold over unital semisimple commutative Banach algebras any longer.

Finally, we note that W admits a finite codimensional linear isometry which is not
surjective.

Example 1.4.2. We define a linear operator T on W by

-1

THE) = D eal)2"+D cna(f)2" (€T, fEW),
n=1

n=—00

Then we see that 7' is a linear isometry and the range of T" has codimension 1.
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Chapter 2

Backward shifts on uniform
algebras

2.1 Introduction

In this chapter, we discuss a special linear isometry; a shift. We take up two types,
isometric shift and backward shift.

The shifts on Hilbert spaces have played an important role in branches of mathematics;
for example, invariant subspaces, isometries, composition operators and so on. They are
defined as follows: Let H be an infinite-dimensional separable Hilbert space and T a
bounded linear operator on H. We call T an isometric shift (or a forward shift) on
H if there is a complete orthonormal system {¢,}52; in H such that T¢, = ¢ny, for
n=12,.... Also, we call T a backward shift on H if there is a complete orthonormal
system {¢,}52; in H such that T¢y =0 and T, = ¢p— for n =2,3,.. ..

In [9], Crownover extended the definition of an isometric shift on H to a Banach space
without using a basis:

Definition. Let B be a Banach space and T a bounded linear operator on B. We call T'
an isometric shift on B if T satisfies the following conditions:

(i) T is an isometry.
(ii) The codimension of the range of T in B is 1.
(iii) Mpzy T(B) = {0}.

We say that T is an isometric quasi-shift (or a codimension 1 linear isometry) on B if T
satisfies (i) and (ii) only. '

In [17], Holub gave a similar extension for a backward shift:

Definition. Let B be a Banach space and T" a bounded linear operator on B. We write
ker T to denote the kernel {f € B: T'f = 0}. We call T' a backward shift on B if T satisfies
the following conditions:

(i) The induced operator T f+kerT + Tf of the quotient space B/ ker T into B is
an isometry.
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(ii)’ The dimension of ker T is 1.
(ii1)" Jp>, ker T™ is dense in B.

According to [36, Proposition 1.2], every backward shift on an infinite-dimensional space
is surjective . We say that T' is a backward quasi-shift if T satisfies (i)’ and (ii)’, and if
T is surjective. Also, we know that the adjoint operator of a backward shift on B is an
isometric shift on B* ([41, 44]).

In [17], Holub posed the problem whether a concrete function space admits an isometric
shift or a backward shift. In other words:

Does there exist an isometric shift or a backward shift on a concrete function space?

The shifts on C(X) have been well studied. Here C(X) denotes the Banach space of
all K-valued continuous functions on a compact Hausdorff space X, equipped with the
supremum norm. In [15], Gutek, Hart, Jamison and Rajagopalan studied isometric shifts
on C(X) and classified them using the Holsztynski theorem [16]. On the other hand,
Rajagopalan and Sundaresan studied backward shifts on C'(X) and proved the following
theorem:

Theorem B (Rajagopalan and Sundaresan [36, 37]). If C(X) is infinite-dimensional,
then C(X) does not admit a backward shift.

This theorem was proved in case of K = R in [36] and in case of K = C in [37]. Later,
Rajagopalan, Rassias and Sundaresan {35] extended this theorem to the Banach space of
E-valued continuous functions on X, where E is a Banach space with E* strictly convex.

In this paper, we are concerned with the case of K = C. We denote by C¢(X) the
Banach algebra of all complez-valued continuous functions on X. As a generalization of
Cc(X), we consider a uniform algebra. A uniform algebra A on X is a closed subalgebra
of Cc(X) which contains the constants and separates the points of X, that is, for each
pair of distinct points z1,z2 € X, there exists f € A such that f(z1) # f(z2).

The main result in this chapter is the following two theorems:
Theorem 2.1.1. An infinite-dimensional uniform algebra does not admit a backward shift.

Theorem 2.1.2. Let A be a uniform algebra. Suppose that the mazimal ideal space of A
kas at most finitely many isolated points. Then A does not admit a backward quasi-shift.

Clearly, Theorem 2.1.1 is a generalization of Theorem B. Hete the adjective “infinite-
dimensional” is crucially necessary because a finite-dimensional space always admits a
backward shift. In Theorem 2.1.2, the same adjective is unnecessary because backward
quasi-shifts on finite-dimensional spaces are not surjective.

The essential part of Theorem 2.1.1 was obtained in the master’s thesis by Ariizumi
[3]. The author refined its proof partly and prove it together with Theorem 2.1.2 (see {45]).
We give their proofs in Section 2.2. After the proof, we discussed the shifts on concrete
function spaces.

2.2 Backward shifts on uniform algebras

In this section, we prove Theorems 2.1.1 and 2.1.2. Throughout this section, X is a
compact Hausdorff space and A is a uniform algebra on X.
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2.2.1 Preliminaries

As a preliminary, we explain some facts concerning a uniform algebra.

For each z € X, the evaluation functional e, on A is defined by e, (f) = f(z) for all
f € A. It is clear that e; € A* and |{lez|| = ez (1) = 1, where A* denotes the dual space of
A. The Choquet boundary Ch(A) for A is defined as

Ch(A) = {z € X : e; is an extreme point of ball A*}.

It is known that Ch(A) is a boundary for A, that is, for any f € A there exists z € Ch(A4)
such that |f(z)| = || f|| ([12, Theorem 2.3.8]). The next fact also seems to be known:

Let £ € ball A*. Then £ is an extreme point of ball A* if and only if
there ezist € Ch(A) and o € T such that £ = ae,.

The “if” part follows immediately from the definition of Ch(A). The proof of the “only
if” part may be found in [12, Corollary 2.3.6].

We here describe the characterizations of the point of Ch(A).

(2.1)

Proposition 2.2.1. Letp e X. Then the following are equivarent:

(1) p € Ch(A4).
(1) ep is an extreme point of the set {£ € A* : ||}l = £(1) = 1}.

(iii) For each neighborhood U of p and for each € > 0, there exists f € ball A such that
fp)>1—¢and|f(z)|<e forallze X\U.

Proof. 1t is easy to see that (i) implies (ii). Let us show the converse. Assume that (ii)
holds. To see (i), it suffices to show that e, is an extreme point of ball A*. For this purpose,
write e, = t{ + (1 — t)n, where {,n € ball A* and 0 < t < 1. Then we have

1= Jep(1)] = [t€(1) + (1 — t)n(1)] < )] + (1 = D)in(1)]
St + A -dfnll <t+(1-t)=1

Hence [i£]| = [£(1)| = 1 and |in|| = n(1)] = 1. Since 1 = ¢,(1) = (1) + (1 — #)n(1), it
follows that 1 = £(1) = n(1). Therefore, (ii) implies that e, = £ = 7. Thus we see that ¢,
is an extreme point of ball A*, that is, p € Ch(A).

The equivalence of (ii) and (iii) is known as the Bishop-delLeeuw theorem [34, page

39]. O

Proposition 2.2.2. Let p and ¢ be distinct points in Ch(A), and let o, € T. Then
for each neighborhood U of {p.q} and each € > 0, there exists f € ballA such that
[f(p) —af <&, |f(g) - Bl <€ and |f(z)| <€ forallz € X\ U.

Proof. Choose disjoint open sets Gy and Gy so that p € G; C U, g € Gy C U. By
Proposition 2.2.1, there exist g, h € ball A such that

glp) >1—¢ and |g(z)|<e forze X\Gi,
h(g) >1—¢€¢ and |h(z)]<e forze X\Gs.
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Then we have

lgll +h(z)| <1+e ifzeGy,

lag(z) + Bh(z)| < {lg($)|+||h|| <e+1 ifre X\G.

Now, we define a function f € ball 4 by f = (ag + Sh)/(1 + €). Then we have

_ |log(p) + Bhp)) —a(i+e)| _ lodlglp) — 1+ |BlIA(p)| +]ole  3e

|f(p) — 1+e¢ l+e¢ 1+¢

Similarly, we obtain |f(g) — 8| < 3¢/(1 + ¢€). Furthermore, if z € X \ U, then |g(z)| < €
and |h(z)] < €, so that |f(z)| < 2¢/(1 + €). Finally, we only have to arrange a positive
number € to find the desired function f. O

Proposition 2.2.3. Let p be an isolated point of Ch(A). Then there erists f € A such
that f(p) =1 and f(z) =0 for all z € Ch(A) \ {p}.

Proof. Since p is an isolated point of Ch(A), we find a neighborhood U of p in X so that
U N Ch(A) = {p}. Then Proposition 2.2.1 gives a sequence of functions {f,} C ball 4
such that f,(p) > 1—1/2" and |fn(z)| < 1/2" for all z € X \ U. This sequence satisfies
sup{|fm(z)— fn(z)| : * € Ch(A)} < 1/2"~! whenever m > n. Since || f| = sup{|f(zx)| : z €
Ch(A)} for all f € A, it follows that { f,} is a Cauchy sequence in A. By the completeness
of A, there exists f € A such that ||fn — f|| = 0. This function f must have the desired
properties. d

Proposition 2.2.4. Let 9 be the mazrimal ideal space of A and let £ € M. Then £ is
an isolated point of M if and only if there exists an isolated point p of Ch(A) such that
§=ep.

Proof. Suppose that £ is an isolated point of 9. Then {gl and 9 \ {{} are disjoint
open subsets of 9. Hence there exists f € A such that f(¢() = 1 and f(n) = 0 for
all n € M\ {¢} by Shilov’s idempotent theorem [22, Proposition 3.5.3], where f is the

Gelfand representation of f. Recalling that Ch(A) is a boundary for A, we can find a
point p € Ch(A) such that |f(p)| = || f||. Then we have

[Flen) =15 @) = 11 = Ifl = 1 #0.

Hence our choice of f implies that e, = {. By hypothesis, e, is an isolated point of 1.
Since z + e is a homeomorphism of X into M, p is an isolated point of Ch(A4).

Conversely, suppose that p is an isolated point of Ch(A). By Proposition 2.2.3, there
exists f € A such that f(p) =1 and f(z) =0 for all z € Ch(4) \ {p}. Put

U={nem: f(n)=1}.
Since f(ep) = f(p) = 1, we have e, € U. Next, note that f2 = f on Ch(A4). This implies
(f)? = f and so f takes values in {0,1} on 9. Hence U is open in M. To see that e, is
an isolated point, let us show that U = {e,}. Assume, to reach a contradiction, that there
exists { € U \ {ep}. Then we can find g € A4 so that G(e,) =1 and g(£) = 2. Define h € 4

by h = fg. Then we have h(p) = f(p)g(p) = 1 = f(p) and h(z) = f(z)g(z) = 0 = f(z)
for all z € Ch(4) \ {p}, and hence h = f. However, h({) = f(£)g(§) =2 # 1 = f({), and
so h # f. This is a contradiction. Thus we see that e, is an isolated point of 9. 0
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Next, we remark on the measure. Let M(X) denote the Banach space of all complex
regular Borel measures on X, with the total variation norm. By the Hahn-Banach theorem
and the Riesz representation theorem, we see the following fact: For each £ € A*, there
exists a measure g € M (X) such that

- /X fap (fed) and |g] = |ul

Such a u is called a representing measure for £&. We should note that a representing
measure for £ is not always determined uniquely.

A simple example of a measure in M (X) is the point mass d; concentrated at z € X.
We know that [ f dé, = f(z) forall f € A and ||6.] = 1. Thus d; is one of the representing
measures for the evaluation functional eg.

2.2.2 Lemmas

For the proofs of Theorems 2.1.1 and 2.1.2, we prepare several lemmas.

Definition 2.2.5. Let u € C(X) and put S(u) = {z € X : u(z) # 0}. For any distinct
points p, ¢ € S(u), we put
u(g)

Fupg = s
" Julp)l + Julg)]
and define a measure A,y on X by

Aupg = KupgOp — Kugply-
Since |kupg| + |kugpl = 1, it follows that
Aupgll < 1Bupg| 19p]l + IKugp| [10¢ll = 1.
We characterize the measure \ypq, as follows:

Lemma 2.2.6. Let p € M(X) and u € C(X). Suppose that p and g are distinct points
in S(u). Then p = Aypg if and only if u satisfies the following conditions:

p({p}) = kupgy  p({g}) = —kugp and [uf| £ 1. (2.2)
Moreover, | Aupgll = 1 and |Aupgl (X \ {p, q}) = 0.

Proof. It is clear that u = Ay satisfies (2.2). For the “if” part, suppose that u satisfies
(2.2). Then we have
0 < (X \{p, ¢}) = [ul(X) — |ul({p}) — Iul({q})
= flul - lu {pD1 = 1Dl = el = Thupg] — 1ugp| = [lull = 1 < 0.
Thus we obtain '

flul =1 and |u/(X \{p.q}) = 0.

Now let us show pu = Ayp,. Let E be an arbitrary Borel set in X. If p,q ¢ E, then
w(E)| < |ul(E) < [pl(X \ {p.q}) = 0, and hence u(E) = 0 = Aypy(E). If p € E and
q ¢ E, then u(E \ {p}) =0, and so

= w(E\ {p}) + u({p}) = kupg = Mupg(E)-
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Ifp ¢ E and q € E, we can see u(E) = Aypg(E) similarly. Finally, if p,q € E, then
u(E\ {p,q}) =0, and so

W(E) = wE\ {p.a}) + u({p}) + n{a}) = kupg = Fugp = Aupa(E)-
In any case, we obtain u(E) = Aupg(E). ]
Definition 2.2.7. For u € C(X), we define a subspace M([u]*) of M(X) by

M([u]") = {u € M(X) : / udy = o} .
be
Lemma 2.2.8. Ifu € C(X), and if p and q are distinct points in S(u), then Aypq is an
eztreme point of ball M ([u]).
Proof. By Lemma 2.2.6, |Aypy|(X \ {p.¢q}) =0, and so

/ udAypg = / udAupg = w(P) Aupg({P}) + w(@) Aupg({9})
X {p.q}

ulp)ulg) _ ul@ulp) _
@)+ lu(@ |l +u@)]

Hence Aypg € M([u]h). Since [|Aupgl < 1, we get Aypg € ball M ([u]t).
Let us show that \,p, is an extreme point of ball M([u]1). Assume that

= u(p)kupq - U(Q)kqu = |u

Aupg =t + (1 - t)y, (2.3)
where p, v € ball M([u}t) and 0 < t < 1. We first observe the equations:

{eD)] + e{aP)| = v{pDI+ lv({aD)| = 1. (2.4)
arg u({p}) = argv({p}) and argu({q}) = argv({q}). (2.5)

Indeed, we have

1 = |Kupg| + |Kugp|

= | Aupg({PH)] + [ Aupg({a})]

= [tu({p}) + @ = thv({p})| + [tu({a}) + Q1 - thv({g})]

< tu({ehl+ @ = )lv{ph] + tle({ehl + (1 - )ir({g})]

= t(lp({p)! + I{aD)]) + O = ) (lw{pDI + Iv({a})])

S tflpll+ (1 =By

<t+(1-t)=1.
Thus all above inequalities become equalities. Note that the inequality in the fourth line
follows from the triangle inequality; |a + 3| < |a| + |8|, where equality holds if and only if
arg o = arg 8 or aff = 0. Hence we obtain (2.5). Moreover the instance of equality in the

last three lines implies (2.4).
Next, we show that

u(p)u({p}) + u(g)u({g}) = up)v({p}) + ulq)v({q}) = 0. (2.6)
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By (2.4), we have [u|{(X \ {p,q}) = [ul(X) — [ul({p}) — I({g}) = lull = 1 <0, and s0
0= /X udp = /{M} udp = uw(p)p({p}) +u(g)u({q}).

Similarly, we get u(p)v({p}) + u(q {q} =0.
By (2.6), u({q}) = —(u(p)/u(g)) u({p}). Inserting this into (2.4) gives

lu(q)]

ln({p})] = OO {Kupgl-

In the same way, we get |[V({p})| = |kupg|- Hence |u({p})| = |v({p})|. Combining with
the first equation in (2.5), we obtain u({p}) = v({p}). Hence (2.3) leads to pu({p}) =

v({p}) = Aupq({p} = kypq- By a similar argument, we can see that u({q}) = v({¢}) =
Aupg({q}) = —kugp. Here we recall that ||u|| < 1 and ||v|| < 1. By Lemma 2.2.6, we obtain
Y=V = Aypg. Thus (2.3) implies A\ypq; = 4 = v, and hence Ay, is an extreme point. (I

Let us consider the functional on A that is represented by the measure Ay,.

Definition 2.2.9. For each u € A and for each pair of distinct points p,¢ € S(u), we
define a bounded linear functional f,,4 on A by

bupg = kupgep — Kugp€y,
where the constants kypg, kugp are defined in Definition 2.2.5.
Lemma 2.2.10. Let u € A, and let p and g be distinct points in S(u) N Ch(A). Then

(i) For each meighborhood U of {p,q} and each € > 0, there exists f € ball A such that
|Oupg(f)| > 1—¢€ and |f(z)| <€ forallz € X \U.

(i) [[Gupqll = 1.

Proof. To see (i), pick a = |u(q)|/u(g) and B = ~|u(p)|/u(p) in Proposition 2.2.2. Then
the resulting function f in ball A satisfies |f(z)| < € for all z € X \U. Moreover, f satisfies
[f(p) — af < eand |f(g) — B] <&, so that

1 — |6upg(f)] < 10upg(f) = 1 = kupgf (P) — kugpf (@) — (|kupg| + [Fugp|)]
= |kupgf (D) = kugpf (@) — Kupge + kugpB|
< lkupgl |f (P) — o + [kugp| | f () — B
< |kupgle + [kugple = €.

Thus (i) is proved.

For (ii), note that [|fupgll < [Kupg lenll + |kugpl llegll = |Kupgl + |kugol = 1. Also,
the function f in (i) satisfies ||6upgll > |Bupe(f)] > 1 — €. Since e is arbitrary, we get
0upqll = 1. 0

Lemma 2.2.11. Let u € A, and let p and g be distinct points in S(u) N Ch(A). Then
Aupg 5 the only representing measure for 0,
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Proof. For any f € A, we have

Bupg(f) = Kupgep(f) — kugpeq(f) = Kupg /;( fdbp — kugp /X fdég = /X fdAupg.

Also, Lemma 2.2.10(ii) and Lemma 2.2.6 yield ||fypq]| = 1 = || Aupg|l. Therefore, Aypq is a
representing measure for fq.

Let us show the uniqueness of Ay,q. Let u be another representing measure for fyp,.
For each neighborhood U of {p, ¢} and each ¢ > 0, Lemma 2.2.10(i) gives a function
f € ball A such that |6,,,(f)] > 1 —¢€ and |f(z)| < e for all z € X \ U. Then we have

1—e<|9upq(f)!=!/deuls‘/den\Jr /X\deu
< IFNHI) + el (X \U) < |l(0) + (1 = (6l 0)) = (1 - )|l ) +e.

so that

1-—-2e
Uy > .
lul( )‘l—e

Letting ¢ — 0, we get [p|(U) > 1, and the regularity of u forces |u|({p,¢}) > 1. Since
|ul(X) = ||l = ||6upgll = 1, it follows that |u|(X \ {p,q}) = 0. Hence, for each f € A, we
have

kupgf (0) — Kugpf (@) = Oupg(f) = /X fdu = { }fdu = f(p)u({p}) + f(@)ul{g}).

n.q

Taking f € A so that f(p) =1 and f(g) = 0, we obtain ky,, = u({p}). While, taking f so
that f(p) =0 and f(q) = 1 yields —kyqp = p({q}). Moreover, we know ||u| = 1. Finally,
we appeal to Lemma 2.2.6 to get p = Aypq. O

We show the functional version of Lemma 2.2.8.
Definition 2.2.12. For u € A, we put
[u] = {ou:a€C} and [u]t={¢e A*:&(u)=0}.

Lemma 2.2.13. Ifu € A, and if p and g are distinct points in S(u) N Ch(A), then Oyp,
is an extreme point of ballju.

Proof. Since

_ _u(qQ)u(p) u(p)ulq)
upa() = upgen(w) = buvea(W) = s~ W@+ )]

it follows yp, € [u)t. Combining with Lemma 2.2.10(ii), we get 8y, € ballfu]t.
Next, we show that fyp, is an extreme point of ballju]*. Assume that

eupq =té+ (1~ t)n,

where £,m € ball[u]* and 0 < ¢ < 1. Let u and v be representing measures for ¢ and 7,
respectively. Put A = tu + (1 — ¢)v. Then for any f € A, we have

0,

[ stn=t [ saur o) [ siv=te(5)+ 1= () = Oupel ).
X X X
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This implies
leupq<f>1={ / fdA'S [ 1A < drn Al
and 50 [upall < M- Also, [lu]l = €]l < 1 and [ = n]l < 1, and hence
DAL < il + (@ = )] < 1= [upall

Therefore, ||fupqll = ||All. As a consequence, A is a representing measure for 6y, and
Lemma 2.2.11 shows that A = Ayp,. Thus we obtain

Aupg =t + (1 —t)v. (2.7)

Since ¢ and 7 belong to [u]+, it follows that
/ udp = &(u) =0 and / udy = n(u) = 0.
X X

Hence p,v € ball M([u]!). Recall from Lemma 2.2.8 that Ay, is an extreme point of
ball M ([u]*). Then (2.7) leads t0 Aypg = 4 = v. Thus we have

Bupaf) = /X Fdupg = /X fdu = €(f)

for all f € A, that is, 8ypq = €. Similarly, we get fyp, = 7. We reach the desired equation
aupq ={=m. |

We investigate the distance ||§ — 7| for ,n € ball A*.

Lemma 2.2.14. If p and q are distinct points in Ch(A) and if o, § € T, then
lae, - Begll = 2.

Proof. 1t is clear that |je, — Beq|| < 2. For the reverse inequality, let € > 0. Proposition
2.2.2 gives a function f € ball A such that |f(p) — @ < € and |f(¢) + 8| < €. Then we
have

2 — laep(f) — Bey(£)] < laep(f) — Bey(f) — 2| = |a(f(p) - @) — B(f(a) + B)|
< lof|f(p) — @l +|Bl1f(@) + Bl < e +e =2

Therefore, |ae, — Beg|l > |aep(f) — Beg(f)| > 2 — 2e. Since € is arbitrary, we obtain
llovep — Begll 2 2. O

Lemma 2.2.15. Letu € A. If the set S(u)NCh(A) contains at least three distinct points,
then there exist extreme points & and 1 of ball[u]* such that

() € =mnll <2, and

(i) € and n are linearly independent.
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Proof. By hypothesis, we find three distinct points p, ¢ and r in S(u) N Ch(A). Then we
may assume that

arg u(p) # arg(-u(q))- (2.8)

For, if there exist no such points p and ¢, then three equations

argu(p) = arg(—u(q)), argu(q) = arg(—u(r)) and argu(r) = arg(—u(p))

hold simulta.neously, which is impossible. Now, put £ = Oypr and n = f,4-. By Lemma
2.2.13, £ and 7 are extreme points of ballfu]*.
Let us show (i). By (2.8),

arg ku'rp 7& a'rg(—‘kurq)~

Therefore, the triangle inequality |kyrp — Kurq] < |kurp| + |Kkurq] holds strictly. Hence we
have

1€ = 1l = 0upr — Bugrll = | (kuprep — Kurper) — (Kugreg — Kurger )|
= [|kuprep — (kurp — kurg)er — Kugrey|l
< ‘kuzn”l + Ikurp - kuqu + \kuqri
< |kupr| + lkurp| + [Kurg| + [kugr| = 2.

To verify (ii), assume af + fn =0 and «, 8 € C. Then, for any f € A, we have

0= aE(f) + 677(f) = a<kupr€p(f) - kurper(f)) + ﬁ(kuqreq(f) - kurqer(f))
= akuprf(p) — (akurp + ﬁkurq)f("') + Bkugr f(q)-

Taking f € A so that f(p) =1 and f(q) = f(r) =0, we have 0 = akyyr. Noting kypr # 0,
we get @ = 0. On the other hand, if we take f € A so that f(gq) =1 and f(p) = f(r) =0,
then we get 8 = 0. Thus ¢ and 5 are linearly independent. |

The preceding two lemmas yield the following lemma:

Lemma 2.2.16. Let u € A. If the set S(u)NCh(A) contains at least three distinct points,
then [ul* is not linearly isometric to A*.

Proof. Assume that [u]* is linearly isometric to A*. Then there is a linear isometry 7" of
[u]* onto A*. Consider extreme points £ and 1 of ballfu]* described in Lemma 2.2.15.
Then T¢ and T'n are extreme points of ball A*. By (2.1), there exist p,¢ € Ch(A) and
a., B € T such that T¢ = ae, and T'n = Bey.

If p # g, Lemma 2.2.14 implies that ||T¢ — Tn|| = ||aep, — Bey|| = 2. Since T is an
isometry, ||£ — n|| = 2, which contradicts Lemma 2.2.15(i).

On the other hand, if p = ¢, then we have

T(BE — an) = BTE — aTn = Bae, — afeg = af(e, — ep) = 0.

Since T is injective, it follows that 8§ — an = 0. Note that o, § # 0. This contradicts the
linear independence of ¢ and 7 from Lemma 2.2.15(ii). Consequently, [u]* is not linearly
isometric to A*. O
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Let us consider a backward quasi-shift on A.

Lemma 2.2.17. Let T be a backward quasi-shift on A. If f € ;. ker T™, then S(f) N
Ch(A) is a finite set. In particular, if ker T = [u], then S(u) N Ch(A) is finite.

Proof. Since ker T is one-dimensional, we can write ker T’ = [u], where u € A and u # 0.
Since the induced operator T : f+[u] — T'f is a linear isometry of A/[u] onto A, the adjoint
operator T* is a linear isometry of A* onto (A/[u])*. Note that (A/[u])* is linearly isometric
to [u]t, via the linear isometry P : (A/[u])* — [u]* defined by (P®)(f) = ®(f + [u]) for
all fe Aand ® € (A/[u])*. Thus we have

(PTE)(f) = (PT*ONS) = (T*E)(f + [u]) = £(T(f + [u)) = &(Tf) = (T*E)(f)

for all f € A and £ € A*. Hence PT* = T*, and so T* is a linear isometry of A* onto [u]+.
Once we have seen that [u]* is linearly isometric to A*, Lemma 2.2.16 says that the
number of elements of S(u) N Ch(A) is less than 2. Of course, S(u) N Ch(A) is finite.
To prove the lemma, we show the following assertion for all n =1,2,...:

If f € kerT™, then S(f) N Ch(A) is a finite set. (2.9)

We adopt an induction on n.
First, consider the case n = 1. If f € kerT' = [u}, then f = au for some a € C. Hence

S(f) N Ch(A) = S(au) N Ch(A) C S(u) N Ch(A).

Since S(u) N Ch(A) is finite, so is S(f) N Ch(A). Thus (2.9) is true when n = 1.

For the inductive step, assume that (2.9) is valid for some n. We must show that
if f € kerT"*!, then S(f) N Ch(A) is finite. Put g = T'f. Then g € ker T", and the
assumption (2.9) implies that S(g) N Ch(A) is finite.

Consider the set Z of all p € Ch(A) such that there exist ¢ € S(g) NCh(A) and 0 € T
satisfying 7™ (ce,) = e,. We know that for each p € Z, the pair (g, ) as above is uniquely
determined, because 7™ is injective. Thus we can define the map 7 : Z — S(g) N Ch(A)
by w(p) = q, wherep € Z, g € S(g) "Ch(A4), o € T and T*(aey) = €p. Let us show that 7
is injective. If not, there exist p,p’ € Z such that 7(p) = 7(p’) (= q). Then T*(ae,) = e,
and T™(a’eq) = ey for some a, ' € T. Choose a function f so that f(p) =1 and f(p') = 0.
Then we have

o , a o, ,
1= 1(0) = ep(f) = (T*(ae))(f) = (T (eleg))(f) = Sre(f) = 51 (8) =0,

which is a contradiction. Hence 7 : Z — S(g) N Ch(A) is injective, and so the number of
the elements of Z is less than that of the elements of S(g) N Ch(A). Since S(g) N Ch(A)
is finite, so is Z.

Next, we show the inclusion:

S(f) N Ch(A4) € (S(u) N Ch(A4)) U Z. (2.10)

For this, it suffices to show that if p € S(f) N Ch(A) and if p ¢ S(u), then p € Z. Since
p ¢ S(u), ep(u) = u(p) = 0, and s0 e, € [u]*. It is easy to see that e, is an extreme point
of ballju]t. Since T* is a linear isometry of A* onto [u]*, we find an extreme point ¢ of
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ball A* such that T*¢ = e,, and (2.1) gives the form { = aegq, where ¢ € Ch(A) and o € T.
Thus T*(ceq) = ep. Also, p € S(f) implies

ag(q) = aey(g) = (ae))(Tf) = (T™(aey))(f) = ep(f) = f(p) # 0,

and so ¢ € S(g). Thus we arrive at p € Z, and the inclusion (2.10) is established.
We now know that both S(u) NCh(A) and Z are finite. Therefore, (2.10) implies that
S(f)NCh(A) is finite. This accomplishes the inductive step and completes the proof. O

2.2.3 Proofs of Theorems 2.1.1 and 2.1.2

We are now in a position to prove Theorems 2.1.1 and 2.1.2.

Proof of Theorem 2.1.1. Let A be an infinite-dimensional uniform algebra on a compact
Hausdorff space X. The linear space {f|cna) : f € A} is isomorphic to 4, and it is also
infinite-dimensional. Hence Ch(A) must have infinitely many points. Thus the compact
set X contains an accumulation point p of Ch(A4). In other words, there exists a net {p;}
consisting of infinitely many points of Ch(A) such that {p;} converges to p.

Now, assume that there exists a backward shift T on A. From the comment in the
definition of backward shift, we know that T is a backward quasi-shift on A. Let f €
Unei kerT™. By Lemma 2.2.17, the set S(f) N Ch(A) is finite. So, we may assume that
{pi} € Ch(A)\ S(f). Then, for each i, we have f(p;) = 0, and the continuity of f shows
that f(p) = 0. Thus we have

1=fll>11-flp)l=1

Since this holds for all f € ;. ker T™, the constant function 1 cannot lie in the closure
of ;2 ker T™. Hence, | J;_, ker T™ is not dense in A. This contradicts the fact that T is
a backward shift, and the theorem is proved. O

Proof of Theorem 2.1.2. Assume that there exists a backward quasi-shift 7' on 4. Since
ker T is one-dimensional, we can write kerT" = [u], where u € A and u # 0. Note that
S(u) is open in X and that S(u)NCh(A) is finite by Lemma 2.2.17. We see that all points
in S(u) N Ch(A) are isolated points of Ch(A). While, u # 0 implies that S(u) N Ch(A)
is non-empty. As a consequence, there exists at least one isolated point of Ch(A). By
Proposition 2.2.4, the maximal ideal space of A has at least one isolated point.

Now, let m be the number of isolated points of the maximal ideal space of A. We show
that the dimension of ker 7% is less than m. By Proposition 2.2.4, the number of isolated
points of Ch(A) is m exactly. Write down all isolated points of Ch(A) as pi....,pm. For
each j = 1,...,m, Proposition 2.2.3 gives us a function f; € A such that f;(p;) = 1 and
fi(z) = 0 for all z € Ch(A) \ {p;}. Pick f € ker7™"! arbitrarily. By Lemma 2.2.17,
S(f) N Ch(A) is finite, and so we again see that all points in S(f) N Ch(A) are isolated
points of Ch(A), that is, S(f) N Ch(4) C {p1,...,pm}. Hence, if we put o = f(p;) for
each j =1,...,m, then

floneay = @rfilena) + - + amfmlon) = (@1fi + -+ + amfm)lcna)s

which implies f = oy fi + - + Qmfm. Thus every f € ker T™*! is written as a linear
combination of fi,..., fm, and we conclude that the dimension of ker 7**! is less than
m.
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Now note that
[u] =kerT C kerT? C --- C ker T™ C ker T™*1.

As a consequence of the preceding paragraph, we must have ker TV = ker TV+1 for some
N € {0,1,...,m}. Since TN, like T, is surjective, we find h € A with TVh = u. Then
TN*'h = T(TVh) = Tu = 0 and so h € ker TN*! = kerTV. Hence v = TNh =0, a
contradiction. 0

2.3 Examples

We examine the existence of isometric (quasi-)shift and backward (quasi-)shift in some
concrete spaces. The first example gives a uniform algebra which admits an isometric
shift and no backward quasi-shifts.

Example 2.3.1. Let A(D) be the disc algebra, that is, the uniform algebra of all contin-
vous functions on the closed unit disc I which are analytic in the open unit disc. The
isometric shifts on A(ID) are characterized by Takayama and Wada [47]. A typical example
of it is the multiplication operator S:

) (5/)(2) =2f(z) (2€D, feAD)).

This example suggests to us that the following operator 7' may be a backward shift on
A(D): '

FO-1O) L2
(TF)(z) = { : 7

) if z=0,

It is easy to see that T is surjective and satisfies the conditions (i)’ and (iii)’ in the
definition of backward shift. However, T does not satisfy (i)’. Indeed, ker T is the subspace
of constant functions, and the function f(z) = 2% + z satisfies that

27

= <2=|Tf|
Hence T is not a backward shift. Moreover, Theorem 2.1.2 implies that A(D) does not
admit a backward quasi-shift, because the maximal ideal space of A(ID) is homeomorphic
to D and it has no isolated points.

(f € AD)).

1
inf{||f +gll:9€kerT} < | f~ 5

The second example gives a uniform algebra which admits neither isometric quasi-shifts
nor backward quasi-shifts.

Example 2.3.2. It is known that C([0,1]) and C(T) admit no isometric quasi-shifts,
where T is the unit circle in C ([15, Theorem 2.2] and [46, Corollary 1]). Hence C([0, 1])
and C(T) admit no isometric shifts. Moreover, Theorem 2.1.2 implies that C([0, 1]) and
C(T) admit no backward quasi-shifts, because [0,1] and T have no isolated points.

Next, we consider the spaces of differentiable functions on [0,1]. Holub proved that
C™][0,1] and Lip[0, 1] admit no isometric shifts if C™[0,1] and Lip|0, 1] consist of real-
valued functions and have the norm | f|| = || fljec + @(f), where « is a semi-norm and
(1) = 0 ([17, Theorem 2.3]). Thus the spaces (C™]0,1], ] - [ix) and (Lip[0,1],] - Iz)
with the real-valued functions admit no isometric shifts. Here we take up the spaces
(C™10,1], ]| - m) and (Lip[0, 1], ]| - Jlm)-
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Example 2.3.3. The Banach spaces (C™[0, 1], || lm) and (Lip[0, 1], || |lm) also admit nei-
ther isometric quasi-shifts nor backward quasi-shifts. Indeed, write B for (C™][0, 1], |- [lm)
or (Lip[0,1],]| - |lm)- By Theorems 1.2.2 and 1.3.2, every finite codimensional linear isom-
etry on B is surjective. Thus there are no isometric quasi-shifts on B. Moreover, by
Lemmas 1.2.22 and 1.3.18, B is linearly isometric to C'(X) for some compact Hausdorff
space X with at most finitely many isolated pomts Hence, by Theorem 2.1.2, B admits
no backward quasi-shifts.

Let (2,8, 1) be a positive measure space. It'is known that if x4 has no atoms, then
LP(9,B, ) admits neither isometric quasi-shifts nor backward shifts, where 1 < p <
00,p # 2 ([15, Corollary 4.1] and [38, Theorems 2.1 and 2.3]). In the next example, we
deal with the space L*(Q, B, u).

Example 2.3.4. Let (2,8, u) be a positive measure space. By Corollary 1.3.22, ev-
ery finite codimensional linear isometry on L>® (£, B, u) is surjective. Thus there are no
isometric quasi-shifts on L*(£2, B, u). Hence there are no isometric shifts on L*(2, B, u).

Recall from the proof of Corollary 1.3.22 that L*®(Q,B, 1) is linearly isometric to
C(Mr=). Applying Theorem B to C(IMre), we see that if L°(Q,B,u) is infinite-
dimensional, then L%°(,B, u) does not admit a backward shift. In particular, if the
measure 4 has at most finitely many atoms, then 9y has at most finitely many iso-
lated points, and so Theorem 2.1.2 shows that L>®(2,B, 1) does not admit a backward
quasi-shift. For example, L*°[0, 1] does not admit a backward quasi-shift.

Next, we consider the sequence spaces £2°(N), ¢, ¢g and ##(N) (1 < p < 00). The space
£°(N) is an example of the case that u has infinitely many atoms in Example 2.3.4. We
will see that £°°(N) and ¢ admit a backward quasi-shift but not a backward shift.

Example 2.3.5. By £*(N), ¢ and ¢y, we denote the space of all sequences that are
bounded, converge and converge to zero, respectively. They are Banach spaces with respect
to the supremum norm. For 1 < p < oo, #P(N) denotes the Banach space of all sequences
¢ = {z,} such that 3°%° | |z,|P < oo, equipped with the norm ||z = (300, |zn|P)/P. We
know that £*°(N), ¢, ¢o and #P(N) admit an isometric shift ([44, Example 4.1]).

Note that £°(N) and c are unital commutative C*-algebras in the complex case. Using
the Gelfand-Naimark theorem, we see that £°(N) and c are linearly isometric to C'(X1)
and C(X3) for some compact Hausdorff spaces X; and Xy, respectively. Since ¢*°(N) and
c are infinite-dimensional, Theorem B implies that £°°(N) and ¢ admit no backward shifts.

Next, consider the operator T : (z1,z3,...) — (z2.23,...). We can easily check that
T is a backward quasi-shift on each space £*°(N), ¢, ¢p and #(N). However, T cannot be
a backward shift on /*(N) and ¢, as we saw above. Indeed, T' does not satisfy (iii)’. On
the other hand, the other spaces ¢y and #/(N) exhibit a different aspect. It is easily seen
that T is a backward shift on ¢y and #°(N) ([44, Example 4.2]). Hence ¢y and #P(N) admit
a backward quasi-shift. '

Here, we ask whether there exists a backward shift on a unital commutative Banach
algebra which is not a uniform algebra. The next example answers “Yes”.
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Example 2.3.6. Recall the Wiener algebra W. It is known that W is a unital commuta-
tive Banach algebra which is not a uniform algebra. As we saw in the proof of Theorem
1.4.1, W is linearly isometric to £*(Z). Consider the operators 7} and T3 on £}(Z):

Ty:(...,2-3,2-2,%T-1,Tg, 21, 22,23,...) = (..., T3,22,21,0,T0,T_1, T2, .. .),
5 0

0
T2 : ( oy T3, T-2,T_1, :1:'\(), x1,X2,%3,-. ) — ( .. ,m4,m3,a:2,:c’\1,a:_1,x_2,m_3 . )
0 0

We see that T} and T5 are an isometric shift and a backward shift on £*(Z), respectively.
Hence W admits an isometric shift and a backward shift.

Finally, we summarize these observations in the following table.

Does there exist an isometric (quasi-)shift or a backward (quasi-)shift on the space ?

Space Isomg:tric Ison‘letr@c Backyva.rd Baclgwar.d

shift quasi-shift shift quasi-shift

Uniform algebra Yes or No Yes or No No Yes or No
Disc algebra Yes Yes No No
C([0,1]),C(T) No No No No
C™[0,1], 1| - flm) No No No No
(Llp[07 1]7 ” i} ”m) No No No No
L*>[0, 1] No No No No
£e° Yes Yes No Yes
c Yes Yes No Yes
co Yes Yes Yes Yes
7 (1<p< o) Yes Yes Yes Yes
Wiener algebra Yes Yes Yes Yes
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Chapter 3

Real-linear isometries between
complex function spaces

3.1 Introduction

Our final purpose is a characterization of general isometries which are not necessarily
linear. For this purpose, the Mazur-Ulam theorem is our good tool. It states: If T ¢s
a surjective isometry between normed linear spaces, then T — T0 is real-linear. Thus we
turn our attention to the real-linear isometries. So far, we have dealt with the K-linear
isometries between K-linear spaces. In this chapter, we consider the real-linear isometries
between complez-linear spaces.

Let X be a locally compact Hausdorff space. We denote by C¢ (X ) the Banach space
of all complex-valued continuous functions on X which vanish at infinity, equipped with the
supremum norm. If X is compact, we write Cc(X) instead of Cco(X). A complez function
space on X means a nonzero complex-linear subspace of C¢ ¢(X), which is understood to
be equipped the supremum norm and need not be closed in its topology.

Let A be a complex function space on X. For each z € X, the evaluation functional
e, is defined by e, (f) = f(z) for all f € A. We define the Choguet boundary Ch(A) for A
as

Ch(A) = {z € X : e, is an extreme point of ball A*}.

By definition, we see that for each z € Ch(A) there exists f € A such that f(z) # 0. Also,
we know that Ch(A) is a boundary for A, that is, given f € A, there exists ¢ € Ch(A)
such that |f(z)] = ||f|| ([12, Theorem 2.3.8]).

We say that A is strongly separating if for each pair of distinct points z,y € X there
exists f € Asuch that |f(z)| # |f(y)|. Also, we introduce a more restricted separation: We
say that A is strongly triple-separating if for each triple of distinct points z,y.z € Ch(A)
there exists f € A such that |f(z)| # |f(y)| and f(z) = 0.

In this chapter, we give a characterization of surjective real-linear isometries between
complex function spaces, as follows:

Theorem 3.1.1. Let A and B be complex function spaces on locally compact Hausdorff
spaces X and Y, respectively. Suppose that A and B are strongly separating and that A
is strongly triple-separating. If T is a real-linear isometry of A onto B, then there exist a
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(possibly empty) open and closed subset E of Ch(B), a homeomorphism v of Ch(B) onto
Ch(A) and a unimodular continuous function w on Ch(B) such that

_Jwflely)  f yeE
1)) = {w(y)f(cp(y) f yeCh(B)\ E,

forall f € A.

In [11], Ellis proved the similar statement on the setting where X and Y are compact
and A is a uniform algebra on X. In general, a closed subalgebra of C¢o(X) which
separates the points of X is called a function algebra on X. In {30}, Miura investigated
the case where A and B are strongly separating function algebras. In any case, we can
verify that A is strongly triple-separating (see Proposition 3.4.2 in §3.4). Thus the above
theorem is a generalization of the theorems in {11] and [30]. (In [30], the definition of
Ch(A) is different, but it agrees with our definition ({40, Theorem 2.1})).

In Section 3.2, we investigate the property of the strongly triple-separating complex
function space. By using it, we give a new statement of Theorem 3.1.1 in order to prove
it conveniently. This is stated in Theorem 3.2.2 and proved in Section 3.3. We will see
from Example 3.4.5 that Theorem 3.2.2 is a refinement of Theorem 3.1.1. In Section
3.4, we obtain many complex function spaces which Theorems 3.1.1 and 3.2.2 are applied
to. In Section 3.5, we use Theorem 3.2.2 to characterize the complex-linear isometries
(Corollary 3.5.1). Unfortunately, our corollary does not lead to the result by Araujo and
Font [1]. This curious situation will be explained in Example 3.5.2. In Section 3.6, we give
a characterization of surjective isometries between complex function spaces.

3.2 General theorem

We begin with the property of the strongly triple-separating complex function space. Put
T={aeC:|a =1}

Proposition 3.2.1. Let A be a strongly triple-separating complex function space on a
locally compact Hausdorff space X. If x,2' € Ch(A), if o, B € T and if (sa)e + (t8)ey is
an ertreme point of ball A* for all s,t € R with s2 +t% = 1, then Bey = tiae,.

For the proof, we need the following known fact:

Let A be a complex function space on a locally compact Housdorff
space X and let £ € A*. Then £ is an extreme point of ball A* if and (3.1)
only if £ = ae; for some z € Ch(A) and o € T.

The “if” part follows immediately from the definition of Ch(A). The proof of the “only
if” part may be found in {12, Corollary 2.3.6].

Proof. Let z,z' € Ch(A) and o, 8 € T. Suppose that (sa)e; + (t5)e, is an extreme point
of ball A* for all s,t € R with s2 +t? = 1. Take s =t = 1/v/2. Since (1/v2)(ces + Bear)
is an extreme point of ball A*, it follows from (3.1) that

aeg + Beg = V2yegn. (3.2)
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for some z” € Ch(A) and vy € T.

Assume that z, 7’ and z* " are distinct. Since A is strongly triple-separating, there exists
f € A such that |f(z)| # |f(z")] and f(z”) = 0. By (3.2), we have

af(z) + Bf(z') = (aez + Bew)(f) = V2yew (f) = V27f(2") = 0

and so
|F(z)| = laf(z)| = |- Bf(z)] = |f(z)],

which is a contradiction. Hence z, =’ and z” are not distinct. Consequently, we have at
least oneof z =1/, z = 2" and ' = . )
Assume that = 2’. Then (3.2) becomes (o + 8)e, = v2ve». Hence

2 = ||[V2ve ||* = (o + Blesll* = la + B* =1 + 2Re(@p) + 1,

and so Re(@B) = 0. Since |@f| = 1, we obtain a@f = =i, namely § = +ic. Hence
Bey = tiaey = Tiae,.
Next, we assume that z = z”. Then (3.2) becomes Bey = (v/27 — @)e,. Hence

1= [iBewr|l? = (V27 — aea]? = [V27 - af? = 2 - 2VZRe(7@) + 1,

and so Re(ya@) = 1/+/2. Since |y@| = 1, we obtain v& = (1£i)/v/2, namely v2y = (1+i)a.
Therefore,
Bey = (V27 — a)e, = +ice,.

For the case of ' = z”, we can show that Se, = +iae, similarly. 0
Remark. In the third paragraph of the above proof, we saw the fact that if ol = |8| =1
and |o + B = V2, then B = tia.

Thus Theorem 3.1.1 becomes a special case of the next general theorem:

Theorem 3.2.2. Let A and B be complex function spaces on locally compact Hausdorff
spaces X and Y, respectively. Suppose that A is strongly separating and satisfies the
following condition:

If z,x' € Ch(A), if a,8 € T and if (sa)ey + (tB)ey is an extreme

point of ball A* for all s,t € R with s? +t2 = 1, then fey = *ice,. (3.3)

If T is a real-linear isometry of A onto B, then there exist a (possibly empty) open and
closed subset E of Ch(B), a continuous mapping ¢ of Ch(B) onto Ch(A) and a unimodular
continuous function w on Ch(B) such that

wy)flely) if yeE,
wy)fley)) if yeCh(B)\E,

for all f € A. If, in addition, B is strongly separating, then the mapping ¢ becomes a
homeomorphism of Ch(B) onto Ch(A).

(THly) = { (34)
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3.3 Proof of Theorem 3.2.2

We begin with the general lemma:

Lemma 3.3.1. Let A and B be complex normed linear spaces with (complez) dual spaces
A* and B*, respectively. If T is a real-linear isometry of A onto B, then there ezists a
real-linear isometry T of B* onto A* such that

Re(Tun)(f) = Ren(Tf) (fe A . ne B*). (3.5)

Proof. When we regard A as a real-linear space, we denote the (real) dual space of 4
by A:. For each £ € A*, Re¢ belongs to Ay. This correspondence induces a real-linear
isometry P4 : £ — Re& of A* onto A} (cf. [42, Proposition 5.17]). For B, we will use the
similar notations B; and Pg.

With each p € B}, we associate a functional T,p € Ay defined by

(Trp)(f) =p(Tf)  (f€A)

Since T is a real-linear isometry of A onto B, it is seen that 7, is a real-linear isometry
of B} onto AY. Now, put T, = PngTPB. Then T, is a real-linear isometry of B* onto A*
and P47, = T, Pg. Hence we have

Re(Tun)(f) = (PaTun)(f) = (T, Pen)(f) = (Pen)(Tf) = Ren(T'f)
for all f € A and n € B*. O

The rest of this section is devoted to the proof of Theorem 3.2.2. Throughout the
proof, A, B, X and Y are as in Theorem 3.2.2. Suppose that T is a real-linear isometry

of A onto B. Let T, be the corresponding real-linear isometry of B* onto A* described in
Lemma 3.3.1.

Lemma 3.3.2. For each y € Ch(B), there ezist a unique z € Ch(A) and a unigue a € T
such that Tye, = ae,

Proof. Let y € Ch(B). Then e, is an extreme point of ball B*. Since T, is a real-linear
isometry of B* onto A*, Tye, is an extreme point of ball A*. By (3.1), there exist € Ch(A)
and o € T such that Tie, = ae,.

Let us show the uniqueness of z and . Suppose that Tye, = o'e, for some 2’ € Ch(A)
and o’ € T. Then for each f € A, we have

af(z) = aez(f) = (Tuey)(f) = dex (f) = o f(a), (3.6)

and so |f(z)| = |f(2)|. Since A is strongly separating, this implies that x = z’. Thus
(3.6) becomes af(z) = o f(z) for all f € A. Taking f € A so that f(x) # 0, we get
a=a. O

Lemma 3.3.3. For each y € Ch(B), Ty(iey) = iTyey or Ti(iey) = —iT,ey.
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Proof. Let y € Ch(B). In Lemma 3.3.2, we have just found z € Ch(A4) and a € T such
that Tie, = ae;. Next, note that ie, is also an extreme point of ball B*. A similar
argument gives =’ € Ch(A) and B € T such that T, (iey) = Be,. Choose s,t € R so that
s2 +t2 = 1. Since T, is real-linear, it follows that

(sa)es + (tB)ey = sTuey + tTi(iey) = Tu((s + it)ey).

Here s + it € T, and so (s + it)e, is an extreme point of ball B*. Therefore we see
that (sa)e; + (tB)ey is an extreme point of ball 4*. By the assumption (3.3), we obtain
Bey = tiae,, that is, Ty (iey) = £iTke,. a

Definition 3.3.4. Put
E = {y € Ch(B) : T.(iey) = iTyey}.
By Lemma 3.3.3, Ch(B) \ E = {y € Ch(B) : T\ (iey) = —iT.ey}.

Lemma 3.3.5. For each x € Ch(A), there exist y € Ch(B) and o € T such that Tvey =
aey.

Proof. Let x € Ch(A). Then e; is an extreme point of ball A*. Since the inverse 7! is
a real-linear isometry of A* onto B*, T, 'e, is an extreme point of ball B*. Hence (3.1)
gives y € Ch(B) and 8 = a +1b € T such that T, e, = Be,. Assume that y € Ch(B)\ E.
Using the real-linearity of T, and the equation T (ie,) = —iT.e,, we see that

er = LT  'ey = Tu(Bey) = Tu(aey + ibe,) = aTie, — ibTue, = BTie,.

Hence Tye, = ae, with o = . For the caseof y € E, we put a = B to get Tiey = ae,. U

Lemma 3.3.6. For each y € Ch(B), let x € Ch(A) and o € T be as in Lemma 3.3.2.
Then

_Jaf(®) i yekE,
(THy) = {————af(x) if veCh(B)\E, (3.7)
foradll f € A.
Proof. Pick f € A. Using (3.5), we have
Re(Tf)(y) = Reey(Tf) = Re(Tvey)(f)-
Im(Tf)(y) = — Rei(Tf)(y) = — Reliey(Tf)) = — Re(Ts(iey))(f)
_ [~ Re(iTue,)(f) = Im(Tue,)(f) ify e E,
| = Re(—iTue,)(f) = — Im(Tye,)(f)  if y € Ch(B)\ E.
Hence
_ (Tuey)(f) ifyeE,
THw) {(T*ey)( 7)  ifyeCh(B)\E.
Since (Tivey)(f) = (ces)(f) = af(z), we arrive at (3.7). O
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Definition 3.3.7. To each y € Ch(B), we associate a unique z € Ch(A) and a unique
a €T, as in Lemma 3.3.2, and write

_ . _ w(y) ifyekF,
z = o(y) and a—{Z@j if y e Ch(B) \ E.

Then ¢ is a mapping of Ch(B) into Ch(4) and w is a unimodular function on Ch(B). By
Lemma 3.3.5, ¢ is surjective. Also, Lemma 3.3.6 says that for each f € A,

_Jw@)flely)) if yekE,
W {w(y)f(so(y)) if ye Ch(B)\E. (3.8)

Hence .
(TH@!=1fe)l (v € Ch(B)). (3.9)
Lemma 3.3.8. E is open and closed in Ch(B).

Proof. We first observe that

E = ({y € Ch(B): (T(if))(w) = «(Tf) W)}, (3.10)
fEA

Ch(B)\ E = [){y € Ch(B) : (T(if))(y) = —i(TF)(w)}. (3.11)
fEA

If y € E, then (3.8) implies (T'(if))(y) = w(y)(@f)(0(y)) = iw(y)f(ely)) =(Tf)(y) for
all f € A. On the other hand, if y € Ch(B) \ E, then (T(if))(y) = w@)(if)(ply)) =
—iw(y)f(p(y)) = —i(Tf)(y) for all f € A. Hence E and Ch(B) \ E are contained in the
sets on the right sides of (3.10) and (3.11), respectively. Moreover, for each y € Ch(B),
there exists f € A such that (T'f)(y) # 0, because T is surjective. This implies that two
intersections in (3.10) and (3.11) are disjoint. Thus we obtain (3.10) and (3.11).

For each f € A, the set {y € Ch(B) : (T(if))(y) = «(Tf)(y)} is closed in Ch(B),
because T'(if) and Tf are continuous on Y. Hence (3.10) implies that E is closed in
Ch(B). Similarly, (3.11) implies that Ch(B) \ £ is closed in Ch(B). Thus £ is open and
closed in Ch(B). O

Lemma 3.3.9. ¢ is continuous on Ch(B).

Proof. Assume, to get a contradiction, that ¢ is not continuous at some y € Ch(B).
Then there exist a net {y,} C Ch(B) and an open neighborhood U of ¢(y) in X such that
yu — y and @(y,) ¢ U for all u. Regard {(y,)} as a net in the one-point compactification
Xoo = X U{zx} of X. Since X, \ U is compact, there exist a subnet {y(y,)} of {¢(y.)}
and z € Xo \ U such that ¢(y,) — z ([24, Theorem 5.2]). Then ©(y) # z. Thus we can
find f € A such that

Flow)] # 1£(2)] (3.12)

For, if z = Z, then there exists f € A such that f(p(y)) # 0 = f(z), while if z € X, then
the strong separation of A gives f € A satisfying (3.12). On the other hand, we use (3.9)
and the continuity of T f and f to see that

(TH @) = [TH W) = Fle@)) and [(Tf)(y)l =1{F(ew)l = [f(2)]
Hence |f(p(y))] = | f(2)], in contradiction to (3.12). Thus ¢ is continuous on Ch(B). O
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Lemma 3.3.10. w is continuous on Ch(B).

Proof. Let y € Ch(B). Choose f € A so that f(p(y)) # 0, and put U = {z € Ch(4) :
f(z) # 0}. We first consider the case of y € E. Since ¢ is continuous and E is open,
the set ="' (U) N E is an open neighborhood of y. By (3.8), we have w = Tf/(f o ¢) on
¢ Y(U)NE. Since Tf, f and ¢ are continuous, w is also continuous on ~1(U) N E, that
is, around the point y. For the case of y € Ch(B) \ E, we can show that w is continuous
on ¢~ 1(U)\ E, that is, around the point y. Thus w is continuous on Ch(B). a

Lemma 3.3.11. If B is strongly separating, then ¢ is a homeomorphism.

Proof. We first observe that ¢ is injective. To do this, suppose that y,y’ € Ch(B) and
©(y) = o(y'). For each g € B, there exists f € A such that Tf = g, because T is
surjective. Using (3.9), we have

lg@)l = (T = 1F @)l =@ = (THW) = lg@)-

Since this holds for all g € B, the strong separation of B implies that y = y'. Hence ¢ is
injective.

Once ¢ is bijective, we have the inverse ¢~ : Ch(A) — Ch(B). To finish this lemma,
it suffices to show that ¢! is continuous on Ch({A). Conversely, assume that o' is
not continuous at some z € Ch(A). As in the proof of Lemma 3.3.9, we find a net
{z,} C Ch(A) and a point z in the one-point compactification Y, =Y U {oc} of Y such
that z, — z, ¢™1(z,) — 2 and p~1(z) # z. Moreover, we use the strong separation of B
to find g € B such that

gt~ (@)] # lg(=)|- (3.13)
If we take f € A so that Tf = g, then (3.9) and the cbntinuity of f and g imply

If (@)l = f @) = f(ele™ (@) = (TH e @) = gl (@),
()] = £ (el (@)l = (THe™ @) = 19l (z))] = lg(2)I.

Hence |g(¢~1(z))| = |g(2)|, which contradicts (3.13). Thus ¢~ is continuous on Ch(A).
O

Noting Lemmas 3.3.8-3.3.11 and Equation (3.8), we establish the theorem.

3.4 Examples

In this section, we exhibit some examples of complex function spaces which Theorem 3.1.1
or 3.2.2 can be applied to.

Let A be a complex function space on a locally compact Hausdorff space X. A point
z € X is called a strong boundary point of A, if for each neighborhood U of z and for each
€ > 0, there exists f € A such that f(z) =||f] =1 and |f(y)|<ecforallye X \U. We
denote by o(A) the set of all strong boundary points of A. We say that A is C-regular if
Ch(A) C o(A) (cf. [12, Definition 2.3.9]). This concept is a sufficient condition for A to
be strongly triple-separating:

Proposition 3.4.1. Every C-regular cémplem function space is strongly triple-separating.
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Proof. Let z,2’ and z” be distinct points in Ch(A). If A is C-regular, we find f € A
such that f(z) = ||f]] = 1, |f(z/)] < 1/2 and |f(2")] < 1/2. We also find g € A such
that g(z”) = |lg|| = 1, |g9(z)| < 1/2 and |g(z’)| < 1/2. Define h € A by h = f — f(z")g.
Then we easily check that |h(z)| > 3/4 > |h(z’)| and h(z”) = 0. Hence A is strongly
triple-separating. O

The next proposition was mentioned in Introduction 3.1:

Proposition 3.4.2. Every function algebra is strongly triple-separating. In particular, a
uniform algebra is strongly triple-separating.

Though we can prove this directly, we here appeal to Proposition 3.4.1.

Proof. For any function algebra A, we have o(A) = Ch(A). (This is well known if A is
a uniform algebra, and the general case is dealt with in [40, Theorem 2.1].) Hence A is
C-regular. Thus the proposition follows from Proposition 3.4.1. O

Here is another example of strongly triple-separating complex function space.

Example 3.4.3. Let K be a compact subset of C and let A be a complex function space
on K. The letter z is also used to denote the identity function on C. If A contains
the polynomials in z of degree 2, then A is strongly triple-separating. In particular, the
complex function space

{feCc(K): f(z) =az’ +bz+c (2 € K),a,bce C}
is strongly triple-separating.

Proof. For any distinct points w,w’,w"” € K, put f(z) = (z — w')(z ~ w”) for all z € K.
Clearly, f € A. Also, we have |f(w)| # 0 = |f(w')| and f(w") = 0. O

Next we consider a complex function space which satisfies (3.3) in Theorem 3.2.2.

Proposition 3.4.4. Let A be a complex function space on a locally compact Housdorff
space X. Suppose that there exists A € T \ {1, %i} satisfying the following condition:

For any pair of distinct points x, ' € Ch(A), there erists f € A such

that f(z) = (| fll =1 and f(z/) = \. (3.14)

Then A satisfies (3.3).

Proof. Let z,z’ € Ch(A) and a, 8 € T. Assume that (sa)e, + (t8)ey is an extreme point
of ball A* for all 5, € R with s? +t? = 1.

To see that £ = z’, we assume the converse; z # z’. Then, by (3.14), we find f € 4
such that f(z) = ||f]l =1 and f(z’) = A\. Hence we have

sa +tBA| = |(sa) f(z) + (tB)f(2')] < lI(se)es + (tB)ex || = 1.
This gives s? + 2st Re(af)) + t? < 1, and so

stRe(afX) < 0.
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Since this holds when st > 0 and when st < 0, we must have Re(afX) = 0. Hence
aBfi = =+, and so A = iaf or A = —iaf. Alternatively, if f € A is chosen so that
f(@') = |Ifll = 1 and f(z) = ), then the similar argument shows that A = i@f or
A = —iaf. Thus we have
X=X or A=)\,

namely Im A = 0 or Re A = 0. This contradicts the hypothesis A\ # +1, +i. Hence z = z’.

Once we have established z = z/, the first assumption says that (sa + tB)e, is an
extreme point of ball A*. Hence |sa+t8| = 1. Taking s =t = 1/v/2, we have |a+8| = /2.

By Remark after the proof of Proposition 3.2.1, we get 8 = +ia. Hence fey = tiae,
and A satisfies (3.3). a

We give an example of a complex function space which satisfies (3.3) but is not strongly
triple-separating.

Example 3.4.5. Let S be an arc in the unit circle T, that is,
S={2ze€T:argo <argz < argt},
where 0,7 € T and 0 < arg 7 — argo < 2. Define a complex function space As on S by
As={feCc(S): f(z) =az+b(z€8),a,beC}. |

Then Ag is strongly separating and satisfies (3.3). But Ag is not strongly triple-separating.
Moreover, T is a real-linear isometry of Ag onto Ag if and only if there exists A € T such
that T has one of four forms:

T(az + b) = Aaz + b), T(az +b) = A(bz + o7 a),

T(az +b) = A(@z + o7 b), T(az +b) = A\(bz + @). (3.15)

Let us determine Ch(Ag): For each w € S, define f € A by f(z) = (Wz+ 1)/2. Then
f(w) = 1 and |f(2)] < 1 for all z € S\ {w}. Since the point z with |f(2)] = |||l is
nothing but z = w and Ch(Ag) is a boundary for Ag, it follows that w € Ch(Ag). Thus
we establish

Ch(As) =S.

Let us prove the statements of Example 3.4.5.

Proof. We first observe that Ag is strongly separating. For any distinct points w,w’ € S,
put f(z) =z —w for z €S. Then f € Ag and |f(w)] = 0 # | f(w)].

Next we show that Ag is not strongly triple-separating. Choose three points w, w’, w” €
S so that |w — w"| = |w’ — w"|. ¥ f(2) = az+ b € Ag satisfies f(w”) = 0, then b = —aw”,
and so

|f(w)] = law + b] = |aw — aw”| = || jw — w"| = |a| jw' — w"| = |f(w)].

Hence there is no f € Ag such that |f(w)| # |f(w')| and f(w”) = 0. In other words, Ag
is not strongly triple-separating.
, Our next task is to show that Ag satisfies (3.3). Let w,w’ € S and a, 8 € T. Suppose
that for each s,t € R with s? +t? = 1, (sa)ey + (t8)ey is an extreme point of ball A. By
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(3.1), there exist ws; € S and v,; € T such that (sa)e, + (tB)ew = Ystew,,. APplying
the identity function 2z and the constant function 1, we have

(sa)w + (tB)w’ = ys4ws; and sa+t8 = sy4, (3.16)
respectively. When s = t = 1/4/2, the first equation implies |ow + fw'| = v/2, and so
Remark after Proposition 3.2.1 shows that fw’ = iaw or fw’ = —iqw. Similarly, the
second equation yields § = ia or § = —ic. Therefore,

w=w or w=-w. (3.17)
Now, assume that w’ = —w. If 8 =iq, (3.16) becomes

(s —it)ow = vspwsy and (s +it)o = sy,

and so wsy = (8 — z't)2'w, for each s,t € R with s> +t2=1. Take (€T \ S and choose s, ¢
so that (s —it)? = (w. Then we have ws; = ( ¢ S, which is a contradiction. On the other
hand, if 8 = —ia, we choose s,t so that (s + it)? = (w, to reach a contradiction. Thus
the latter case in (3.17) is impossible and we get w’ = w. Hence fe,s = *iae,,. Thus we
proved that Ag satisfies (3.3).

Finally, we discuss the real-linear isometries. Let T be a real-linear isometry of Ag
onto Ag. Since Ag is strongly separating and satisfies (3.3), we can apply Theorem 3.2.2.
Note that E =S or E = {§ in Theorem 3.2.2, because S is connected. Hence there exist a
homeomorphism ¢ of S onto S and a unimodular continuous function w on S such that

(Th)(z) =w(2)f(p(z)) (€8, f € As) (3.18)

or

(TF)(z) =w(2)f(e(z)) (2 €S, f € As). (3.19)

Taking f as the constant 1 in (3.18) and (3.19), we have w = T1 € Ag, and so we can
write w(z) = uz + v for some u,v € C. Since w is unimodular on S, we have only two
cases: w(z) = uz where u € T, or w(z) = v where v € T.

Now assume that (3.18) holds and w(z) = uz. Putting f(z) = 2z in (3.18), we have
wep = Tz € As. Hence we write uzp(z) = w(z)p(z) = pz + q for some p,qg € C. So
w(z) = u(p+gZz). Since v is a homeomorphism of S onto S, we must have up = 0, g = o7
and ¢(z) = o7Z. Hence

T(az + b) = w(z)(ap(z) + b) = uz(a(o7z) + b) = u(bz + ora),

which is the second equation in (3.15) with w = X. If (3.18) holds and w(z) = v, then we
similarly obtain the first equation in (3.15). While, if (3.19) holds, the case w(z) = uz and
the case w(z) = v yield the fourth and the third equations in (3.15), respectively.
Conversely, if T' has the form in (3.15), then it is easily shown that T is a real-linear
isometry of As onto As. O

Finally, we consider another function space.
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Example 3.4.6. We denote by (C((Cl) [0,1],] - |lm) the Banach space of complex-valued
continuously differentiable functions on [0, 1], with the norm || f||m = max{|f(0)[, || f'lloc}-
Then T is a real-linear isometry of (Cg)[o, 1], 1l - |ln.) onto itself if and only if there exist
a homeomorphism ¢ of [0,1] onto [0, 1], a unimodular continuous function w on {0.1] and
a unimodular constant A such that T has one of four forms:

(TF)(z) = Af(0) + /0 ") (o) dt, (Tf)(z) = AFO) + /0 ") (1)) dt,
(3.20)

(Tf)(z) = Af(0) + /0 WO F @@ dt, (T)(x) = AT0) + /0 () PR dt

for all z € [0,1] and f € C(l)[O, 1].

Proof. Let T be a real-linear isometry of (C’él)[O INIE ||m) onto itself. Put X; = [0, 1]u{p}.
For each f € C‘(Cl) [0, 1], we define a continuous function f on X; by

Fw) = {f A
flly) ifyel01].

Then Lemma 1.2.22 implies that P : f — f is a complex-linear isometry of (C’él) [0,1],|-llm)
onto Cc(X1). Of course, P is a real-linear isometry. Hence T = PTP~! is a real-linear
isometry of Cc(X1) onto itself. It is clear that Ch(C¢(X1)) = X; and Cc(X1) is strongly
triple-separating. Hence we can apply Theorem 3.1.1. In this case, we have £ = X, E =
[0,1],E = {p} or E = 0 in Theorem 3.1.1. Hence there exist a homeomorphism p of X;
onto Xi, a unimodular continuous function u on X; such that

(Th)(y) = uy)h(ply)) (v € X1), (3.21)

oo [uwhle) ye 1] -

e {()(@)) ity=" o2
u(y)h(ply)) fy=p

Thw = {u@)h(p(y)) ity e (3.23)

Fn)) = vhGE) e X)) (3.24)

for all h € Cg(X1). Then we have p([0,1]) = [0,1] and p(p) = p. Now, put ¢ = p|g,1)s
w = ulj,;) and A = u(p). We easily check that ¢, w and A have the desired properties. It
(3.22) holds, then we have

~

(T£)(0) = f(p) (TF)(p) = u(p)Fp(r)) = u(p)f(p) = AF(0),

(T§)(z) = Tf (=) = (T])(z) = u(z)f(p(x)) = w(z) [ (¢(x)) (= €[0,1]),

for all £ € C[0,1]. Hence (Tf)(z) = AF(0) + Jy w(t)f'(p(t)) dt. Similarly, by (3.21),
(3.23) and (3.24), we obtain the rest of the forms in (3 20)
Conversely, if T has the form in (3.20), then it is easily shown that T is a real-linear

isometry of (Cg)[O, 1,1 - |lm) onto itself. O
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3.5- The complex-linear case

Note that a complex-linear isometry is the real-linear isometry T satisfying T'(if) = i7T'f.
Hence a complex-linear isometry T' does not admit the identity (Tf)(y) = w(y)f(p(y)) in
(3.4) of Theorem 3.2.2. Thus we obtain the next corollary:

Corollary 3.5.1. Let A and B be complex function spaces on locally compact Hausdorff
spaces X andY, respectively. Suppose that A is strongly separating and satisfies the con-
dition (3.3). If T is a complez-linear isometry of A onto B, then there exist a continuous
mapping ¢ of Ch(B) onto Ch(A) and a unimodular continuous function w on Ch(B) such
that

Th)y) =w@ile)  (y<€Ch(B)) (3.25)

for all f € A. If, in addition, B is strongly separating, then the mapping ¢ becomes a
homeomorphism of Ch(B) onto Ch(A).

This corollary is included in Theorems 3.1, 4.1 and Corollaries 3.2, 4.2 in [1]. Moreover,
we know from them that the hypothesis (3.3) on A is unnecessary in Corollary 3.5.1.
However, in Theorem 3.2.2, we cannot remove the condition (3.3). This is seen from the
following example:

Example 3.5.2. Define a complex function space At on T by
A = {fe Ce(T): f(z) =az+b(z€T), a,bEC}.

Then Ar is strongly separating but does not satisfy (3.3). Also, T is a real-linear isometry
of At onto At if and only if there exist k, A € T such that T has one of eight forms:

(az +b) = kaz + Ab, T(az +b) = kbz + Aa,

T(az +b) = kaz + b, T(az+b) = /d_)z + g, (3.26)
T(az +b) = kaz + Ab, T(az + b) = kbz + Aa,

T(az +b) = K@z + Ab, T(az + b) = bz + Aa.

Some of these equations cannot be written in the form (3.4) in Theorem 3.2.2. Therefore,
we cannot remove the condition (3.3) in Theorem 3.2.2. On the other hand, T is a complex-
linear isometry of At onto Af if and only if there exist x, A € T such that T" has one of
two forms in the first line of (3.26). These forms are represented in the form (3.25) in
Corollary 3.5.1.

Proof. 1t is clear that At is a strongly separating complex function space on T. Also, the
equipped (supremum) norm is given by

llaz + b|| = |a| + |b]. (3.27)

Moreover, we see that Ch(Ar) = T, similarly to Example 3.4.5.
Let us consider the real-linear isometries. If T has the form in (3.26), then it follows
from (3.27) that T is a real-linear isometry of At onto Ap. In particular,

Ti(az+b)=az+b
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is a real-linear isometry of At onto Ar. Let us see that T} is out of the form (3.4) in
Theorem 3.2.2. To do this, we assume the converse. Note that £ = T or E = 0 in
Theorem 3.2.2, because T is connected. Then our assumption says that there exist a
homeomorphism ¢ of T onto T and a unimodular continuous function w on T such that

az+b="Ti(az +b) = w(z)(ap(z) + b) (3.28)
or

az+ b= Ti(az +b) = w(z)(ap(z) + b). (3.29)

Taking a = 0 and b = 1 in (3.28) and (3.29), we obtain w(z) = 1. If (3.28) holds, we
take a = 1 and b = 0 in (3.28) to see that z = w(2)p(z) = ¢(z) and az + b = az +b.
This is impossible when b = i. On the other hand, if (3.29) holds, then ¢(z) = Z and
az+b=az+b. This is also impossible when a = i. In any case, we reach a contradiction.
Thus 77 does not have the form (3.4).

Since we have just found a real-linear isometry of At onto At out of the form (3.4),
Theorem 3.2.2 tells us that At does not satisfy (3.3).

Next, we start with an arbitrary real-linear isometry T of At onto Ap. Write

T(z)=ciz+dy, T(iz) =cez+dz, T(1)=czz+d;z, T(i)=caz+dy, (3.30)
for so'me c1,¢2,C3, C4,d1, do, d3, dg € C. By (3.27), the first equation gives
lexl + ldi| = llerz + dof| = | T(2)] = ll2l = 1, (3.31)
and the remaining ones give
leo +ld2| =1, es|+|ds| =1, |ca| +|daf =1. (3.32)
Next, we consider the function z = 1, and use the above equations to see

2=z 1| =Tz || = |T(z) £ T()|l = [l(c1z + d1) % (c32 + ds)||
= |(e1 £ e3)z + (dy £ d3)|| = |er £ c3| + |dy = d3| < fer| + |es| + |da| + |ds] = 2,

and so
ler + c3| = |er| + |es| = |er — e3| and  |dy +ds| = |di| + |d3| = |d1 — d3].
By the equality condition for the triangle inequality, these imply
“e1=00rc3=0" and “di=0o0rdg=0". (3.33)
Here we replace the function 2 + 1 by z =4 or iz + 1. Then we similarly get

“ci1=00recs=0" and “di=0o0rds=0", (3.34)
“eo=0o0rec3=0" and “dp=0o0rds=0". (3.35)

Now assume that ¢; # 0. Then the first fact in (3.33) says that c3 = 0, and so |d3| =1
by the second equation in (3.32). Here if we use (3.34) instead of (3.33), we get c4 = 0
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and |d4| = 1. Since d3 # 0, the second fact in (3.33) says that d; =0, and so |c;| =1 by
(3.31). If we use (3.35) instead of (3.33), we get do = 0 and |cg| = 1. Thus we obtain

le1] = lea| =|d3] = |da) =1 and c3=cs=d; =dp =0. (3.36)
Hence (3.30) becomes
T(z) =c1z, T(iz) =coz, T(1)=d3, T(i)=dy,
and the real-linearity of 7" implies that
T(az+b) = (Rea)T(z) + (Ima)T(iz) + (Reb)T(1) + (Im b)T(3)
= ((Rea)es + (Ima)ca)z + ((Reb)ds + (Imb)dy).
Putting a =1+ and b =0 in (3.37), we have T((1 +¢)z) = (¢1 + ¢2)z, and so
ler + eal = |T((L+0)2) = |1+ )2 = 1+ = V2.

Applying Remark after Proposition 3.2.1, we get ¢y = tic;. f weputa=0and b=1+1
in (3.37), we obtain ds = +id3. Thus (3.37) becomes

(3.37)

T(az+b) =ci(Reatilma)z + d3(Reb+iImb).

Putting k = ¢; and )\ = d3, we arrive at the left four equations in (3.26).

On the other hand, if ¢; = 0, then we can prove the right four equations in (3.26) in
the same way.

Finally, we consider the complex-linear case. Note that the only two equations in the
first line in (3.26) satisfy T'(if) = ¢T'f. So, every complex-linear isometry T" of At onto
At has one of such forms. If T(az +b) = kaz + Ab, then we put ¢(z) = KAz and w(z) = \.
In this case, we have

T(az + b) = Ma(kAz) +b) = w(z)(ap(z) + b).

On the other hand, if T'(az +b) = Kbz + Aa, then we put p(z) = KA\Z and w(z) = Kz to
see that T'(az + b) = w(z)(ap(z) +b). Thus both equations are represented in the form
(3.25) in Corollary 3.5.1. O

3.6 Isometries between complex function spaces

From Theorem 3.2.2 and the Mazur-Ulam theorem, we obtain the following characteriza-
tion of general isometries.

Corollary 3.6.1. Let A and B be complex function spaces on locally compact Hausdorff
spaces X and Y, respectively. Suppose that A and B are strongly separating and that A
satisfies the condition (3.3). If T is an isometry of A onto B, then there exist a (possibly
empty) open and closed subset E of Ch(B), a homeomorphism ¢ of Ch(B) onto Ch(A)
and a unimodular continuous function w on Ch(B) such that

wy)flely)) f yeE,

T . _ T = _
(T)y) - (TO)(y) {w(y)f(w(y)) if y€Ch(B)\E,

forall f € A.
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