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We propose a variant formulation of Hamiltonian systems by the use of variables including
redundant degrees of freedom. We show that Hamiltonian systems can be described by extended
dynamics whose master equation is the Nambu equation or its generalization. Partition func-
tions associated with the extended dynamics in many degrees of freedom systems are given. Our
formulation can also be applied to Hamiltonian systems with first class constraints.

Subject Index A00, A30

1. Introduction

In general, we have a choice of variables describing a physical system. In most cases, we choose
a set of variables whose number is same as the total number of degrees of freedom of the system
so as to minimize the number of equations of motion. However, in some cases, it is quite useful
to formulate the system by the use of variables including redundant ones. A system with gauge
symmetry offers a typical example. To describe such a system, keeping the gauge symmetry manifest,
we should employ a formulation that includes redundant variables. Although such a formulation is
somewhat complicated, thanks to the symmetry, we can clearly understand the important properties
of the system such as conservation laws and form of interactions, and can also calculate physical
quantities in a systematic way [1,2].

Therefore, it is interesting to explore the general features of formulations including redundant
degrees of freedom. Here we base this on a principle (or brief) that physics should be independent of
the choice of variables to describe it, and make an attempt to formulate Hamiltonian systems (systems
of Hamiltonian dynamics) in terms of new sets of variables including redundant ones. What kind of
dynamics describes the time evolution of the new variables?

Our strategy and conjecture are as follows. Consider a Hamiltonian system described by a canonical
doublet (g, p). Take N (> 3) variables (x1, ..., xy) that are functions of the canonical doublet, and
deal with them as fundamental variables to describe the system. If they contain redundant variables,
constraints between some variables must be induced. To handle the constraints, Dirac formalism [3,4]
provides a helpful perspective, where constraints with Lagrange multipliers are added to the original
Hamiltonian. The induced constraints play a similar role to the Hamiltonian. As for the dynamics
of N variables, Nambu mechanics [5] is quite suggestive. In Nambu mechanics, fundamental vari-
ables form an N-plet, whose time evolution is generated by N — 1 Hamiltonians according to the
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Nambu equations. Combining the advantages of the two theories, we conjecture that there is a for-
mulation whose master equation has a form of the Nambu equation or its generalization, where the
Hamiltonians consist of the original one and the induced constraints.

Nambu mechanics is a generalization of the Hamiltonian dynamics proposed by Nambu forty years
ago [5]. In his formulation, the dynamics of an N-plet is given by the Nambu equation, which is
defined by N — 1 Hamiltonians and the Nambu bracket, a generalization of the Poisson bracket.
The structure of Nambu mechanics is so elegant that many authors have investigated its applica-
tion. However, the applications have been limited to particular systems such as constrained systems,
superintegrable systems, and hydrodynamic systems, because Nambu systems (systems of Nambu
mechanics) should have multiple Hamiltonians or conserved quantities. For example, researchers
have studied how Nambu mechanics can be embedded into constrained Hamiltonian systems [6—11]
or how constrained systems can be described in terms of Nambu mechanics [12].

In this article, we show that the structure of Nambu mechanics is, in general, hidden in systems of
Hamiltonian dynamics. That is, Hamiltonian systems can be described by Nambu mechanics or its
generalization by means of a change of variables from canonical doublets to multiplets. Our formu-
lation can be generalized to many degrees of freedom systems, and the associated partition functions
are given. We also apply our formulation to systems with first class constraints. Our approach can be
regarded as a complementary one to the previous works [6—12].

The outline of this article is as follows. In the next section, we give a formulation of Hamiltonian
systems using Nambu mechanics and its generalizations. As an application, Hamiltonian systems
with first class constraints are also formulated as Nambu systems in Sect. 3. In the last section, we
give conclusions and discussions on the direction of future work. In Appendix A, we derive the
Nambu equation from the least action principle. In Appendix B, we show that a Nambu system of an
N-plet can be described by Nambu mechanics with an N + r-plet (r > 1).

2. Nambu systems hidden in Hamiltonian systems
2.1. Review

We begin with a brief review of Hamiltonian systems and Nambu systems [5]. A Hamiltonian system
is a classical system described by a generalized coordinate ¢ = ¢(¢) and its canonical conjugate
momentum p = p(¢). These variables satisfy the Hamilton’s canonical equations of motion,

dg 0H dp  0H 0
dt — dp’ dt  dq’
where H = H(q, p) is the Hamiltonian of this system. For any functions A = A(q, p,t) and B =
B(q, p, t), the Poisson bracket is defined by means of the 2-dimensional Jacobian,

0(A,B) 0AJdB 0AOJB

(A, Blpp= - == - = 2)

d(g.p) 9dq dp  dp dq
In terms of the Poisson bracket, the Hamilton’s canonical equation of motion for any function f =
f(p, g) can be written as

=t e, 3)

On the other hand, a Nambu system is a classical system described by a multiplet. As the most
simple example, let us consider a Nambu system described by a triplet x = x(¢), y = y(¢), and
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z = z(t). These variables satisfy the Nambu equations

dx _0(H,, Hy) dy 9(Hi,Hy) dz _ 9(Hi, Hy)

E - a—v - T 4/, N ., = s (4)
(v,2) dt d(z, x) dt d(x,y)

where Hi(x,y,z) and H>(x,y,z) are “Hamiltonians” of this system. For any functions A =
A(x,y,z,t), B=B(x,y,z,t),and C = C(x, y, z, 1), the Nambu bracket is defined by means of
the 3-dimensional Jacobian,

d(A, B, ()
{A,B,Clnp=—— - (%)
a(x,y,2)
In terms of the Nambu bracket, the Nambu equation for any function f = f(x, y, z) can be written as
d
4 _ {f. Hi, Ho}ng. (©)
dt
It is straightforward to extend the above formalism to a system described by an N-plet x; (i =
1,2,..., N). These variables satisfy the Nambu equations
dx; N 0H;  d0HN-
L Z Cii - (7)
ii1-iN—1 - - s
dt i 0x;, 0Xiy_,
where H, = H,(x1,x2,...,xy) (a=1,..., N —1) are “Hamiltonians” of this system and

€iiy--iy_, 15 the N-dimensional Levi—Civita symbol, the antisymmetric tensor with e12...;y = 1. For
any functions Ay = Ay (x1, x2,...,xn,1) (@ = 1,..., N), the Nambu bracket is defined by means
of the N-dimensional Jacobian,

(A1, Az, ..., AN)
{A1, A2, ..., ANINB =

d(x1,x2,...,xN)
N 9A 94 DAy
- Z N ki, iy ®
i1.02,.in=1 R I
In terms of the Nambu bracket, the Nambu equation for any function f = f(x1, x2, ..., xy) can be
written as
d
gt o, Hy ©)

2.2.  Hidden Nambu structure

Here let us describe a Hamiltonian system with a canonical doublet (¢, p) by means of N variables
xi =xi(g,p)(i=1,...,N).

2.2.1. Formulation. First we study the case with N = 2, for completeness. We assume that x =
x1(g, p) and y = x2(q, p) satisfy {x, y}pp # 0. In this case, the equation for a function f(x, y) =
f(q, p) is written as

df _ o H) _ ([ H)dk.y) _ (. H)
dt— dg,p)  9x,y) Ag,p)  Ix,y)

{x, ylpB, (10)

where H (x, y) = H(q, p). If {x, y}pg = 1, the transformation (g, p) — (x, y) is the canonical
transformation, and (x, y) are canonical variables.
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Next we study the case with N = 3. We assume that variables x = x1(¢q, p), y = x2(q, p), and

z = x3(q, p) satisfy at least two of the conditions {x, y}pg # 0, {y, z}ps # 0, and {z, x}pg # 0. In
this case, the equation for a function f(x,y,2) = f(q, p) is written as

df _(f. H) 3(f H) a(f, H) o(f., H)

E— a(q’p) = a(x’y) {x,y}PB+m{y,Z}PB+ a( )

where H (x,y,z) = H(q, p). Note that ¢, p, and H are, in general, not uniquely determined as

{z, x}pB, (11)

functions of x, y, and z.
Introducing a function G = G (x, y, z) that satisfies the conditions

G d(y,2) G d(z.x) 3G _ d(x,y)

oo _Znd) oo den) 0o Sy (12)
dx  d(g,p) 9y dg.p) 9z 9(g.p)
Eq. (11) is rewritten as the Nambu equation in the form of Eq. (6),
df
H, G}, 13
o ={f, INB (13)
where we use the formula
(A, B,C) 3(A,B)IC  3(A, B)IC 3, B)IC (14
d(x,y,2)  dx,y) dz  d(y,z) dx  d(z,x) dy
The conditions (12) are compactly expressed as
3 3 =
1 G
a_x, =3 ; &ijkixj, xkJpg  or ;Sijk@ = {xi, x;}pB. (15)

In Appendix A, the Nambu equations in the form of Eq. (4) are also derived from a Hamiltonian
system with a canonical doublet (¢, p) using the least action principle.

By the use of Eq. (15), it is shown that the Poisson bracket between G (g, p) = G(x, v, z) and an
arbitrary function u(q, p) = u(x, y, z) vanishes such that

3 =~ 3

I 0Gw, DG, @) 3G
{G, u}ps = ,Z o j){xl,x/}PB = 2“’2]{:1 d(xi, xj) dx
_36,a,6) _ (16)
a(x,y,2)

This means that G is a constant. We can eliminate the constant by redefining G, and the resulting
G(x, v, z) = 0 can be regarded as a constraint, which is induced by enlarging the phase space from
(¢, p) to (x,y,2). i

Here we give two comments on the induced constraint G (x, y, z) = 0. First, in the case in which
3G /dz # 0, we can solve G(x, y,z) =0 for z and obtain z = z(x, y). Because the condition
3G /dz = {x, y}pp # 0 also enables us to express ¢ and p as functions of x and y, the expression
z = z(x, y) can also be obtained by inserting ¢ = ¢g(x, y) and p = p(x, y) into z = z(q, p). There-
fore the implicit form of the constraint G(x, v, z) = 0 has an equivalent explicit form z = z(x, y),
which clearly shows that z is a redundant variable in this case. Second, H (x, y, z) is not uniquely
determined as a function of x, y, and z, i.e., we can add a term i(x, v, z)é(x, v,2) to ﬁ(x, v, 2),
where X(x, v, z) is some function. If a Hamiltonian I:I(x, v, z) satisfies I:I(x, v,z) = H(g, p) and
Eq. (13), another Hamiltonian H (x,v,2)+ ):(x, v, z)G(x, v, z) also satisfies them. This is because
the additional term A (x, y, z)G (x, v, z) always vanishes on the Nambu bracket.
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It is straightforward to extend the above formulation to the case with general N (> 3). We assume

that at least N — 1 of {x;, x;}pg (i, j = 1, ..., N) do not vanish. In this case, the equation for any
function f(x1,...,xn) = f(g, p) is written as
~ N
d A(f H) 1 a(f, H)
af = / = f {xi, x;}pB, (17)
dt a(q7 P) a(xlax])

where H(x1, ..., xy) = H(q, p).

Introducing functions Gy = G;,(xl, .., xy) (b=1,..., N —2) that satisfy the conditions
1 3(G1,...,Gy_2)
& = {xi,, Xi,}PB. (13)
(N =2 . IXN: B TE N e

Eq. (17) is rewritten as the Nambu equation in the form of Eq. (9),

df

o ={f,H,Gy,...,Gyn-2}ns, (19)

where we use the formula concerning Jacobians,
N

d(A1, Ag, ..., AN) 1 d(A1, Ap) (A3, ..., Ay)
= § : Eitinizin .
(X1, X2, ..., XN) 2(N —2)! 0(Xiys Xiy) 0(Xig, ooy Xiy)

(20)

i1,i2,13,iy=1

By the use of Eq. (18), it is shown that the Poisson bracket between any of N — 2 functions

Gy(q, p) = éb(xl, X2, ...,xy) and an arbitrary function u(q, p) = u(xy, x2, ..., xy) vanishes
such that
N = .
1 9(Gp, 1)
G 9 = = -, < | 9 |
{Gp, ulp 3 Z 3(X51,Xi2){x” Xi, }PB
i1,ir=1
1 al 9(Gp. @) 3(G1.....Gy_2)
= 5N o Z Eiyiyiz--iy
2N =2 =~ A(Xips Xiy)  0(Xigs -+ oy Xiy)
1,02,i3,iN=
3Gy, i,Gy,...,Gy_
_ (Gp,u, Gy N2):O. @1)
d(x1, X2, X3, ..., XN)

Hence Gy, are constants. We can eliminate the constants by redefining Gp, and the resulting
Gp(x1, x2, ..., xn) = Ocanbe regarded as induced constraints, which are associated with enlarging
the phase space from (g, p) to (x1, x2, ..., Xn).

In this way, Hamiltonian systems can be formulated as Nambu systems by the use of N variables
xi =xi(q,p) (i =1,2,...,N). The variables form an N-plet, and the N — 1 Hamiltonians

are given by the original Hamiltonian H(x1,x», ..., xy) = H(q, p) and induced constraints
Gb(xl,xz, ...,xy)=0(0bB=1,..., N —2). Note that I:I(xl,xz, ..., Xy) is not uniquely deter-
mined, because of the freedom to add a term beb(xl,xz,...,xN)Gb(xl,xz,...,xN) to
I:I(xl, X2,...,xN). Here ):b(xl, X2, ..., xy) are some functions.

2.2.2. Examples. Here we present two simple examples to show how induced constraints are
obtained for given multiplets.
(agN=3
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Consider composite variables,

1y 2> 1(2 2> 1
= - - k) —_ k) — A ) 22’
x 4( p y=,+r ¢=5qp (22)

which satisfy the following relations:

{(x,ylpe=2, {y.zlp=x, {2, x}p=—). (23)

Then the conditions (Eq. (12)) become

0G G G
—=x, —=-y, —=g (24)
ox ay 0z
and G is obtained by
~ 1
G=3 (- +2)+c (25)

where C is a constant. Redefining Gas G— C, we obtain the induced constraint G(x, v,2) =

G(g,p)=0.
(b)N =4
Consider variables including composite ones,

x1=q, x2=p, x3=x3(q,p), xs=ux4(q,p), (26)

which satisfy the following relations:

X3 0x4
{xi,x2)pe =1, {x1,x3}pB = —, {x1,x4}pB = —,
ap ap
0x3 0x4
{x2, x3})pp = ——, {x2, xa}pp = ——,
dg dg
0x3 0x4  0x3 0Xx4
{xa,aalpp=——7 — ——. (27)
dg dp  dp dq
Then the conditions (Eq. (18)) become
i 3G G
Z €iiniziy dxi, 0xi, = {Xiy, Xi, }PB, (28)
i3,ig=1
and Gl and Gz are given by
G =x3 — x3(x1,x2) + C1,  Ga = x4 — x4(x1, x2) + C2, (29)

where C| and C; are constants. By redefining G| and G, to eliminate the constants, we obtain the
induced constraints Gl(xl,xg, x3,x4) = G1(q, p) = 0and éz(xl, X2, x3,x4) = Ga(q, p) =0.

2.3.  Many degrees of freedom systems

Let us extend our formulation to Hamiltonian systems with many degrees of freedom. Consider a
Hamiltonian system described by 7 sets of canonical doublets (g, pk)) (k =1,2,...,n). Asis the
case with n = 1 given in Sect. 2.2, hidden Nambu structure can also be found in this system. Here
we present the N = 3 case, i.e., the case with n sets of triplets x; ) = X1 (i), Py) (0 = 1,2, 3).
Generalization to the N (> 3) cases is straightforward.
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2.3.1. Dynamics. In this system, the Poisson bracket of A and B is defined as

n
JA 0B JA 0B
{A, Bl =) ( - ) , (30)
99k k) 0P 99

k=1
and the Hamilton’s equation of motion for any function f = f(q), pc1), --->qwm), P(n)) can be
written as
af
— = {f, H}ps, 31
o7 = U Hles €2))

where H = H(q(1), P(1)s - - -»qm)> P(n)) 1s the Hamiltonian of the system. On the other hand, the
Nambu bracket of A, B, and C is defined as

n

{A.B.Chxp=)_

k=1

3(A, B, C)
(X Ykys Z(k)

(32)

where X1 = X1k), Yk) = *2(k)> and zg) = x3(k). Then the Nambu equation for any function f =
F(X1) Y(1)» - - - » Zn)) can be written as
df - ~ -
— =1{f, H,G}ng. (33)
dt
Here H= I:I(X(l), Y(1)s -+ {(n)) = H(qa), p(1)s ---»49m)> P)) 1s the Hamiltonian and G =
G(x(1y, Y1) -+ 2m) = 21 G (X k)» YKy 2(k)) is the sum of the induced constraints that satisfy
the conditions

3G k) 00w, Zk) 3G k) 0z, X)) 3G (k) 0w, Y)
Ixwy  0(qm. Pao) i 9qm, Pk) 9zw  9(qw), Pk)

(34

Note that the induced constraints are defined so as to be zero, Gao(Xx) Yk Z(k) =
G (@, Pk)) = 0, and the Hamiltonian is not uniquely determined because of the freedom to add
a linear combination of G(k) to H.

The 3n variables x; ) satisfy the relations

{Xi1 (k1) Xiz(ka)s Xiz(ks) INB = €ijinis  forky = ko = ks, (35)
{x,'l(kl), Xis (k) X,‘3(k3)}NB =0 otherwise. (36)
The first type of relation (Eq. (35)) is invariant under the time evolution (Eq. (33)) irrespective

of the form of H. To be more specific, for infinitesimal transformations x; ) — Xigo = Xito +
(dxixy/dr)dt,

X Yo+ 2o INB = 1 (37
hold. We can also show an important relation,
001y Yty 2y - Xy Yo Zw) _
A(X(1)s Y(1)s Z(1)s - - -5 X(n)s Y(n)» Z(n))

1, (38)

which guarantees the Liouville theorem, the conservation law of the phase space volume under time
development. On the other hand, the second type of relation (Eq. (36)) does not always hold, unless
there is no interaction between the n subsystems, i.e., H has a form such as H X1y, Y(1)s - > ) =

>k Hio (- Yo 20)-
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2.3.2.  Partition functions. It is well known that the partition function Zy for a canonical ensemble
of the Hamiltonian system (g(1), p(1), - - -, 9(n)» P(n)) 1S defined as

n
zu= [[ -+ [ [1dawdpose™". (39)
k=1

where 8 = 1/(kgT) is the inverse temperature made up of the Boltzmann constant kg and the
temperature 7. Here we study the partition function Zy for an ensemble of the Nambu system
(X(1), Y(1)» - - - » Z(n)) hidden in the Hamiltonian system.

First let us conjecture the form of Zx on physical grounds. Since H = H, Zx must contain
the “Boltzmann weight” such as e ##. The other Hamiltonian G is the sum of the constraints
G(k) (x> Yaos 2) = G (@aoy» Pk)) = 0, and therefore there should be delta functions such as
8(G ) in Zx. Furthermore, Zy must contain the volume element []}_; dxdyudz from the
Liouville theorem.

On the basis of the above observations, it is expected that Zyn should have a form such that

n
ZN = // . --/1—[dX(k)dy(k)dZ(k)8(é(k))e_ﬂH (40)
k=1

n © 4 L ~
= //"‘/l—[dx(k)dY(k)dZ(k)/ %e—ﬂH—l 2k Y00 (41)
k=1 —0o <7

We can derive Zy (Eq. (39)) from this expression for Zy. For example, let us consider the case that
Bé(k)/az(k) # 0. We assume that there are Ny solutions of G(k) =0, zgﬁ‘)‘) (axk =1,2,..., Ny), and
all of them satisfy the conditions (Eq. (34)). Then using the formula for the delta function and the
change of variables, Eq. (40) becomes

n N -

06 &

In= _// ' / l_[dx(k)d)’(k)dZ(k) Z 8z — zgﬁ‘)‘)(x(k), V) hd()
k=1

a=1 920

-1
e PH

n Nk .
a(x k)s» Y(k ) Y

- N// o _/ 1_[ dquodpae P = Nzy, (42)
k=1

where N = []¢_, N is a constant normalization factor. This factor is irrelevant to the evaluation of
physical quantities.

It is natural to require that Zy should agree with Zy (up to some normalization factor), because
we just describe the same physical system using different formulations. It should be noted here that
both expressions for Zy (Eq. (40) or Eq. (41)) are different from that proposed in Ref. [5]. This
comes from the fact that the Nambu mechanics considered here is an effective one induced by the
redundancy of the variables.

Finally, we just give the result for the case of general N (> 3). The possible form of the partition
function is given by

n ~
ZN = //"-/l_[dxl(k)dxz(k)"-de(k)S(Guk))fS(Gz(k))”'5(GN—2(k))€_ﬂH, (43)
k=1
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where Gb(k) =0(®=1,2,..., N —2) are induced constraints. This expression should agree with
Zu (Eq. (39)) up to some constant normalization factor.

2.4. Generalized Nambu equations

We generalize our formulation to include a specific case that all multiplets share some variables. In
such a case, a generalization of the Nambu equation would be required.

Let us describe a Hamiltonian system with 7 sets of canonical doublets (g, p)) (k=1,...,n)
using 2n + m variables wy (¢ =1, ..., 2n 4+ m). We classify the variables wy into two groups, x,
(a=1,...,2n) and z5; (s =1, ..., m), where x, are assumed to satisfy det{x,, x»}pp # 0. Note

that the classification of variables is not unique.
First we study the case with m = 0 for completeness. In this case, the equation for any function
fxt, ..., x20) = f(qy, P(ys - - - > 4n)» P(n)) can be written as

n n 2n 2n

Z d(f. H) —EZZ 0(f. H) d(xa,xp) _ S i a(f, H) 4

" 3(q(k)> P(k) I(xa, xp) 3qa0> Pa0) =, 3(xa,Xb)

where I‘? = FI(X], ey xzn) = H(Q(l), Py --->490n), p(n)) and g’ab is defined as

) 1 d(xq, Xp)
Zab (X1, o ooy X2m) = &ab (@), P(1)s ---» 4 Pn)) = a . {x,xb}PB 45)
a n) = 8ab(q(1), P(1) ) Z(n) Z ACICE P) 2

The g.» plays the role of a metric tensor, because it transforms under a change of variables x, — x,

as follows:
2n
- dx), ox,
gab(xi,...,xén) = Ox, Ing b e, Xon). (46)
c,d=1
In the case in which g,, depends on x,, neither the transformation (g1, p(1) - - -» 4n)> Pin)) —
(x1, ..., x2,) nor the time evolution of x, is a canonical transformation. The latter means that the

Liouville theorem in general does not hold for the dynamics of x,. This fact reminds us of the
superiority of canonical variables.

Now let us proceed to the case with m > 1. The equation for a function f (W1, .o vy Wopgm) =
gy, pay, -- - 4w)» P(n)) can be written as
~ 2n
df 1 o(f. H) a(f. H o(f. H)
—-— == Xa, X + , Z + - Zs, 2 )
=3 e g R ol ZZ G M){ a» 251PB Z o e
a,b=1 a=1 s=1
(47)

where H = ﬁ(wl, o Wngm) = H(gy, Py, - -+ 9@y, P(n)). Introducing functions GS (s =
~(m)

1,...,m)and g, that satisfy the following relations,
E{xa,xb}PB = §§f;§l)8;(GZl—i";) (48)
R s o )
(e, 2:}em = i ~%)8((§1, oinGy 1,Gs, Gyi1, ..., Gi1, G, Gyt .. Gm)’ 50)
ol (Z1s e vy Zs—1s Xas Tstls - v s Zt—1s Xbs Lt ls « - » Zm)
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where s < t, Eq. (47) can be rewritten as

2n

df o d(f, H,G1,...,Gn)
A Zg(m)

dt ab a(xdv-xb7zla~"9zm)

(51

a,b=1

using a formula concerning Jacobians.

By the use of Egs. (48)—(50), it is shown that the Poisson bracket between any of
the m functions G(q(1), P(1)s - -+ Gn)s P(n)) = Gs(wl, ..., Woptm) and an arbitrary function
M(q(1), Py, ---54n), p(n)) = ﬁ(wl, ey w2,1+m) vanishes such that

2n
1 8(G;,u) (G, it)
{Gs,ulpp = = {Xa, xp}PB + {Xa» zs}PB
' 2 Z RETCE ;;8( Xaozs)

1 " (G, i)
5 Z ———1{zy, 2t }pB
S, =

(ZS7 Z[)
= 3(G, i, G Gm)
— Z gé(:l’:) 8 sy Uy IR m :0‘ (52)
a,b=1 (Xas Xby 21y -+ » Zm)

Hence G4(q(1), p(1)s - - -» 9n)» P(n)) are constants and, if necessary, we can define G, = Gs = 0 by
shifting constants. We refer to Eq. (51) as the generalized Nambu equation. Note that the Liouville
theorem does not hold in general for the dynamics given by this equation. This unfavorable property
is a result of two factors: Eq. (51) has x,-dependent g;’}j) and multiplets in Eq. (51) share common
variables z;. The latter means that it is difficult to define an appropriate phase space volume.

One of the non-vanishing components of g(’") can be set to 4 5 by redefinition of constraints G,. For

~(m) _ ~(m) _%) by redeﬁning és; and

example, in the case in which n = 1, we can set g,,” = 5 (and 8
Eq. (51) reduces to the Nambu equation (Eq. (19)) with N =2 + m.

Finally, we consider the case in which the variables x, and z; are further classified into M “irre-
ducible” sets, {x 12, R}@{x(?,z 2)}@ @{x(%),z M)} wherea’ = 1,...,2n! (Z ~,nt =n)
ands' =1,...,m' (Z _;m' = m). Here “irreducible” means that the Poisson bracket between any
two elements that belong to different sets vanishes, i.e., {x[(l’; v )}pB =0, {xa, , Z(J )}pB =0, and

{Zii), Z (J)}pB = O fori # j. Note that this classification is not unique, either. The equation of motion

for any function f (wi, ..., wa,4m) can be expressed in the form of the generalized Nambu equation,
~ M 2i F g A~ ~ (i)
_f:Z 2”: (m)a(fHG ,...,G<) 53)
dt Saibi 50 00 20
i=1 ai bl 1 ai? bl L B IR

Here GS) and g%} should satisfy the following conditions:

~ (1) ~ ()
3(GY,....G")

1
(l) (l) ~(m)
{ } l i 7 K (54)
2 Pae, 2
2n! ) ~ () ~(l) o A0 ~ (1)
L0 0 - oy GG GG LG -
2 ai’ PB E gaibi a( (i) (l) @) ) (l)) )
hizl -.-7Z§,1 1’ bl,zs‘-’—l"'.’zmi

10/20

102 ‘TT Jequieidas uo A1seAIuN nysulys e /Blo'sfeulnolploxo-deld//:dny wouy papeojumoq


http://ptep.oxfordjournals.org/

PTEP 2013, 073A01 A. Horikoshi and Y. Kawamura

2 0] ~30) A &6 @) &6 A0 = (i)
(O Dy = 3 ) 0GGE GG GGG G
sio % IPB =0 2, B 5z HONENORNG EONENORING HONE
ai,bi=1 IR AU TEE LA TS LA S AL
(56)

where s’ < 1. We refer to the systems where the master equations are given by Eq. (51) or Eq. (53)
as generalized Nambu systems.

3. Nambu systems in constrained Hamiltonian systems
3.1.  Subject

In the previous section, we found that a Hamiltonian system can be formulated as a Nambu system
with multiplets including composite variables of ¢ and p. The main feature of our formulation is the
existence of induced constraints that are required just for consistency between the variables. Together
with the Hamiltonian of the original system, the induced constraints serve as Hamiltonians of the
Nambu system. Therefore it is intriguing to study how constrained Hamiltonian systems, systems
with physical constraints, are cast into Nambu systems in our formulation.

The relations between Nambu systems and constrained Hamiltonian systems have been investi-
gated by many authors [6—12]. To clarify the difference between previous works and our approach,
here we give a brief summary of the results obtained so far. In most works, Nambu systems are treated
as the original systems, and studies have been carried out to find appropriate constrained Hamiltonian
systems into which the Nambu systems can be embedded [6—11]. Specifically, it has been shown that
Nambu equations (Eq. (4)) are compatible with the following equations:

0H>
pi = Hi—, (57)
0x;
3
d(Hy, Hy) dx;
s UL R A (58)
8(x,~,xj') dt
i=1
Here p; (i =1,2,3) are the canonical conjugate momenta defined as p; = dL/dx; with the
Lagrangian
3
0 H> dx;
L=H 284 (59)

£ ox; dt '
i=1

Equation (58) can be derived as the Euler—Lagrange equation from this Lagrangian, and Eq. (57)
leads to the relations ¢; = p; — H10 Hy/dx; = 0, which can be regarded as constraints. In this way,
Nambu systems can be interpreted as Hamiltonian systems with specific constraints.

On the other hand, researchers have studied whether constrained systems can be described as
Nambu systems or not. Specifically, it has been shown that constrained Hamiltonian systems can
be formulated in terms of (a generalized form of) Nambu mechanics by introducing an extra phase-

space variable [12]. For a system with canonical variables (gk, px) (k = 1, ..., n) and m first class
constraints ¢;(q1, ..., pn) = 0, the equations of motion are given by
dgp 0H (ax, a¢,>
O _ T —+r—, (60)
dt Pk ; Pk dpk
dpi AH [0y Ay
P 2D N (g i), 61)
dt dqr 1= \0qk Gk
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where A; are Lagrange multipliers. Equations (60) and (61) are derived from (a generalized form of)
the Nambu equation

o(f, H, H
Z (f, Hi, H») 62)
(g, > 1)
where f = f(q1,..., pn), r is an extra phase-space variable, and Hamiltonians are defined as
H=H-r. Hy=r+) M. (63)
=1
The equation for r is given by
dr = = ¢
— == rigr, H Ay, H =— —_, 64
T Z:( i{¢1, H}ps + ¢1{\;, H}pp) M (64)

=1

where the last equality holds after imposing constraints. Requiring the extra variable r to decouple
from the dynamics, i.e., dr/dt = 0, we obtain d¢;/dt = 0.

Our approach differs from these previous works. Our starting point is not Nambu systems but
Hamiltonian systems with constraints, and we do not introduce extra variables but use redundant
variables.

3.2, Nambu structure in constrained Hamiltonian systems

Here we demonstrate that systems with first class constraints can be formulated as Nambu systems
or generalized Nambu systems, without introducing extra degrees of freedom.

As a warm-up, we consider a system of two canonical doublets (g1, p1) and (g2, p2) with one
first class constraint ¢(q1, p1, g2, p2) = O that is time independent: d¢p/dt = {¢, h}pg = 0. Here
h = h(q1, p1, g2, p2) is the Hamiltonian of this system. The constraint ¢ is associated with gauge
degrees of freedom, and an auxiliary condition x (q1, p1, g2, p2) = 0 such that {¢, x }pg 7# 0 should
be imposed to fix the freedom.

By an appropriate canonical transformation (g1, p1, g2, p2) — (Q1, P1, Q2, P>), we can elimi-
nate one of the canonical variables. Here we show the case in which P» is eliminated as follows:!

P> = x(q1, p1,q2, p2) = 0. (65)

The new Hamiltonian K is given by K(Q1, P1, Q2, P2) = h(q1, p1, q2, p2), and the original con-
straint ¢ is transformed as ®(Q1, Pi, Q2, P2) = ¢(q1, p1,q2, p2). From {¢, x}pg = 0®/0 Q2 # O,
the constraint ® = 0 can be solved by Q> to give 0> = Q2(Q1, P1). Then we obtain a constraint
U = 0y — 02(01, P1) =0, which is equivalent to the original constraint ¢ = 0.

If we consider a system described by the variables (Q1, P;, Q2) with the constraint ¥ = 0, it is
easy to show that the equation of motion for any function f = f(Qi, P1, Q2) can be written in the

! The canonical transformation generated by the generator G = A¢ is the gauge transformation, and the
infinitesimal one is given by 8¢q, = (0G/9p,)d& and dp, = —(0G/dq,)86 (r = 1,2). Here A is an arbitrary
function of the canonical variables and &£ is an infinitesimal parameter. If we take . = (p> — x)/((0¢/9¢2)&)
using a finite parameter &, p; is transformed into P, = x under the constraint ¢ = 0. In the same way, one
of the canonical variables can be eliminated by an appropriate canonical transformation. The variable to be
eliminated depends on the physical systems.
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form of the Nambu equation,

df _ 9(f H, W) )
dt  93(Q1. P1, 02)’

where H = H(Q1, P1, Q2) = K(Q1, P1, Q>, P, = 0) is the Hamiltonian. In fact, for f = Q; and
f = Pp, Hamilton’s canonical equations of motion

dQ\ _ 9H(Q1, P, 02(Q1, P1))  dP1 _ 3H(Q1, P1, 02(Q1, P1))
dt P Codr 301 ’
are derived from Eq. (66), and for f = W, we obtain time independence of the constraint, d\W /dt = 0.

(67)

On the other hand, for f = Q», the following equation is derived:
dQ> _ A(H(Q1, P, 02), V) _ 9(Q2(Q1, P1), H(Q1, P1, 02(Q1, P1)))

68
dt (01, P1) (01, P1) (%)

Using dW¥/dt = 0 and Eq. (68), we obtain Hamilton’s equation of motion for 0>(Q1, P1),
dQ2(Q1, Py _ 3(Q2(Q1, 1), H(Q1, P1, 02(Q1, P1))) (69)

dt (01, P1)

By referring to the results in Sect. 2.2, let us formulate this system by means of the compos-
ite triplet X = X(Q1, P1), Y = Y(Q1, P1),and Z = Z(Q;, P1), imposing a constraint G(X.,Y,Z)
that is equivalent to the original constraint ¢p. We assume that d(X, Y)/9(Q1, P1) #0, i.e., Z is a
redundant variable such that Z = Z (X, Y). If the variables satisfy the conditions

3G ax,y)y oG  ax.Z) 3G _ 3Z.X)

—_— = = = (70)
0Z  9(Q1, P1) 90X  9(Q1, A1) 9Y  9(Q1, P1)
then the time evolution of any function f = £ (X, Y, Z) is given by the Nambu equation,
df a(f,H,G
df 9(f.1.G) o

dt — 3X,Y,2)’

where H is equal to the original Hamiltonian, H (X,Y,Z)=H(Qi, P1, Q7). We can define various
types of Nambu systems depending on the choice of variables and the constraint.

Here we present two simple examples. First, if we choose X = Q1,Y = P, Z = Q2(Q1, P1), and
G(X, Y, Z) =V¥(Qq, P1, 02), Eq. (71) clearly holds from Eq. (66). Next, let us choose ¥ = Py,
Z = 07(Q1, P1), and G(X, Y,Z) = ®(Q1, P1, Q3). In this case, if the variable X is given by

aG 9P
X=/a—ZdQ1 Z/E)—deQl’ (72)

then the variables satisfy the conditions (Eq. (70)), and the system is described as a Nambu system.

It is straightforward to extend the above “warm-up” discussion to many degrees of freedom sys-
tems. Consider a system of n sets of canonical doublets (gx, pr) (k =1, ..., n) with m kinds of
first class constraints ¢5 (g1, p1,---,4qn, pn) = 0 (s = 1, ..., m). The Hamiltonian of this system is
given by h(q1, p1, - .-, qn, pn). To fix the gauge degrees of freedom, m kinds of auxiliary conditions
Xt (q1, P1s--->qn, Pn) =0 ( =1, ..., m) that satisfy det{¢s, x;}p # 0 should be imposed.

By an appropriate canonical transformation (g1, p1, - .-, qn, pn) = (Q1, P1, ..., On, Py), Wecan
eliminate some of the canonical variables. Here we show the case in which P,_,,; are eliminated
as follows:

Py—myr = x:(q1, p1, - -5 Gn, pn):() (73)

The new Hamiltonian is given by K = K(Q1, P1, ..., On, Py) = h(q1, p1,---,4qn, Pn), and the
original constraints ¢y are transformed as ®;(Q1, Pi, ..., On, Py) = ¢5(q1, P1,---» qn, Pn). From

13/20

102 ‘TT Jequieidas uo A1seAIuN nysulys e /Blo'sfeulnolploxo-deld//:dny wouy papeojumoq


http://ptep.oxfordjournals.org/

PTEP 2013, 073A01 A. Horikoshi and Y. Kawamura

det{os, x:}pp = det(0P; /00, —m+:) # 0, the constraints &3 = 0 can be solved by Q,,—,+; to give
Qn—m+t = Qn—m+t(Q1» Pl» ceey Qn—ma Pn—m)-

By referring to the results in Sect. 2.4, let us formulate this system by means of composite variables
Xo=X4(01, P1, ..., On—m, Pn~—m) (@a=1,...,2n—-2m) and Z;=Zy(Q1, P1,.... Qn-m,
P,_), imposing the constraints G (X1, ..., Xo,—2m, Z1, - . ., Z;) thatare equivalent to the original
constraints ¢5. We assume that det{X,, X b}i’B # 0, where the Poisson bracket is defined as

n—m

d(A, B)
A, Blpg =) o P (74)
a=1 (QOI’ PO()
This means that Z; are redundant variables such that Z;, = Z, (X1, ..., X2u—2m).
If G5 and g;’;? satisfy the following relations:
1 o d(G1,....Gp)
—{ Xy, Xpton = (m)—, 75
g X Xbles =80 57 7, 7)
2}’[—2111 pad ~ pad pad pad
1 ~m) 9(G1,...,Gs-1,Gy, Ggq1, ..., Gy)
E{Xa,Zs}i,B = — Z gc(zlz) a(z ZY X? Zv+ Zm , (76)
b—1 1y - s—1, b S+19"'7 m)
2n—2m ol ol = ol fod fod ol ol
om3(G1,...,Gs_1,Gs,Gsa1,...,Gi-1,G;, Gaty o .., Gr)
(Ze. Zdow = ) &y 9(Z AT A AT S AL
a,b:l | EIRIRI s—1> as s+1s ey t—1, b t+1s s m)
where s < 1, then the time evolution of any function f = f(Xl, oy Xon_om, 21, ..., Zy) can be
written as
~ 2n—2, ~ o~ ~ ~
ﬂ: nX:mg(m) o(f,H,Gq,...,Gp) (78)
dt a.b=1 ab a(Xa’ vazla"'vzm)’
where H is the Hamiltonian,
FI(XL o Xon—om, Ziy ooy Z)
= K(Ql, Pl, ey Qn—ma Pn—ma Qn—m—i—l, Pn—m-H = 0» ey Qn, Pn = 0) (79)

We can define various types of Nambu systems depending on the choice of variables and the
constraint. For example, in the case in which we take X, 40 = Py (@ =1,...,n—m), Z; =
On—m+s,and G, = @, if the variables X, are functions of Q, that are given by

. 3(G1,...,Gm)
Xo = %00 =2 [ B miagig g 00
(P, ..., Dy)
:2/ m dQ., 80
& + 8(Qn—m+1, ey Qn) “ ( )

then the variables satisfy the conditions (Egs. (75)—(77)), and the system is described as a Nambu
system.

In this way, Hamiltonian systems with first class constraints can be described as Nambu systems
where the master equations are Nambu equations or generalized ones. It is straightforward to for-
mulate constrained Hamiltonian systems as Nambu systems where both the original constraints and
the induced ones serve as Hamiltonians. Such systems can be realized by introducing many more
redundant variables.
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3.3.  Example: relativistic free particle

As an example, we consider a relativistic particle moving freely in 4-dimensional Minkowski space.
The motion is expressed by the space-time 4-vector ¢g" = g/ (tr) and corresponding canonical
momenta p, = pu(t) (u=0,1,2,3), where 7 is the proper time. Here we use the metric tensor
nuv = diag(1l, —1, —1, —1). The system has four sets of canonical pairs (g*, p,) and one first class
constraint

¢ = p'py —m*c* =0, (81)

where m is the mass of the particle, ¢ is the speed of light, and Einstein’s summation convention is
used. We impose an auxiliary condition y = ¢° — ¢t = 0 to fix the gauge freedom. Performing a
canonical transformation

" —>0"=x, ¢ -0 =4
po— Po=po, pi— P, =pi (82)

where i = 1,2, 3, we can eliminate Q°, and the system is described by three sets of canonical pairs
(Q!, P;) with the new Hamiltonian K = —c Py. The original constraint ¢ is transformed as

¢ — &= PP, —m*? =0, (83)
which has an equivalent expression,

U = Py+ VP> +m22 =0, (84)

where P? = D P2 Then Hamilton’s equations of motion for Q' and P; are given by

dQ’ BK cP; (85)
dr o Jp? + m2e2

dP; 0K

S ) 86
dr 90 (86)

Using the results in Sect. 3.2, let us construct Nambu systems that are equivalent to this system. The
target equation is Eq. (78) witha, b =1, ..., 6 and m = 1. Here we present three types of Nambu
systems. In each case the Hamiltonian is given by H = K.

(a) First we consider the simplest construction,

Xi=0', Xiy3=Y,=P, Z=P,
G=V=27+VY*+m22, (87)

where ¥2 =), Y2 From Eq. (75) we obtain

- _ 1
8up = E(‘Su,b—:’a —84-3,p)s (83)
and Eq. (78) becomes
af, H,G
Z (f, ) (89)
a(Xl’ Yl’ Z)

This equation reduces to Hamilton’s equations of motion (Egs. (85)—(86)) and the energy conserva-
tion law.
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(b) Next we consider a slightly different construction,

Xi=0Q', Xiz=Yi=P, Z=F,

G=d=27-Y>—m?. (90)
In this case, gﬁ) has the same form as Eq. (88), because in both cases (a) and (b), {X;, X;43}pg = 1

and G /9 Z = 1 holds. Therefore the resulting equation is same as Eq. (89).
(c) Finally we consider a case in which G /3Z # 1,

X; =2PQ', Xi3=Y,=P, Z=P",

G=o=2>—Y>—m?? 1)

From Eq. (75) each component of the factor gé}} is determined as follows:

-y _ _Xi¥; — X;¥i

g,’j 372 s

~(1 1 i 1

8,-(1) = §5i+3,1, g,(,-) = _581,i+3,

~(1

2 =0, (92)

where i, j = 1,2,3and [, m = 4, 5, 6. Although this is different from Eq. (88), we obtain the same
equation as Eq. (89) again. This is because 3( f, H, G)/d(X;, X, Z) = 0 holds in this case.

4. Conclusions and future work

We have given a variant formulation of Hamiltonian systems in terms of variables including redun-
dant degrees of freedom. By use of a non-canonical transformation that enlarges the phase space
from (¢, p) to (x1, x2, ..., xn), we can reveal the Nambu mechanical structure hidden in a Hamil-
tonian system. The Hamiltonians required for the Nambu mechanical description are given by the
Hamiltonian of the original system and constraints induced due to the consistency between the vari-
ables. Our formulation can be extended to many degrees of freedom systems and systems with first
class constraints. Generalized forms of Nambu equation (Egs. (51) and (53)) are required in some
cases. Our approach to constrained systems is different from the preceding works [6—12], i.e., we
treat Nambu mechanics as effective mechanics, and we introduce not extra degrees of freedom but
redundant degrees of freedom.

Our formulation is not just a change of description, but gives a new insight into the statistical or
quantum mechanical treatment of Hamiltonian systems. For example, the Nambu equation (Eq. (19))
could give a basis for a novel quantization scheme for a Hamiltonian system. In the present work,
the constraints (Gl, Gz, e G ~) are unphysical ones and they all are set to zero. However, if we
give them some appropriate values, Eq. (19) could provide semi-classical equations for quantum-
mechanical expectation values [13,14]. The non-vanishing G, come from quantum fluctuations,
e.g., if we take x = (§), y = (p), and z = (§?), then G = z — x? has a non-zero value in general.
The same argument holds for statistical-mechanical expectation values. Therefore we expect that the
Nambu equation (Eq. (19)) with non-vanishing G, could be a master equation for the statistical or
quantum mechanics of Hamiltonian systems. More detailed studies will be presented in a future pub-
lication, and they might provide important clues for handling the statistical or quantum mechanics
of Nambu systems [15-25].
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Appendix A. Derivation of the Nambu equation from the least action principle

Let us derive the Nambu equation (Eq. (19)) from a Hamiltonian system using the least action prin-
ciple. Here we show the case with N = 3, where the Nambu equations are given in the form of
Eq. (4).

Our starting point is the action integral such that

d d .
S=/(pd—cf—H(q,p)> dt=f(p(x,y,Z)Eq(x,y,Z)—H(x,y,z)> dr, (AD)

where x = x(q, p), y = y(q, p), z = z(q, p), and we assume that the Hamiltonian H can be
expressed by

H(q,p) = H(x,y,2). (A2)
As mentioned in Sect. 2.2, in general, ¢, p, and H are not uniquely determined as functions of x, y,
and z. Our goal is to obtain the equations of motion that hold independently of the expressions of ¢
and p.
Let us regard x = x(¢), y = y(¢), and z = z(¢) as independent variables, and consider their varia-
tionx — x +dx,y — y + 8y, and z — z + z. Integrating by parts and ignoring the surface terms,
the variation of S can be written as

dq dp ~
88 = Sp— —S6qg— — SH | dt
/(pdt Tar )

[ (op ap ap _ \ dq g dq dg .\ dp
— Lox + L8y + =87 ) — — [ —L6x + —8y + —87 | —
/_<8xx+8y y+azz dt E)xx-i_ayy_‘_azZ

aFIS +aﬁ8 +aﬁ8 dt
ox * ay Y 0z ¢

[ (opdq dqdp 9H apdg dgdp OH
- R B R i [ PR e R Rt i F
ox dt  ox dt ox dy dt  dy dt ay

dpdg dqgdp OH
+(—p—q——q—p——>8z:|dt. (A3)

dz dt  dz dt 0z
Imposing the least action principle § S = 0, we obtain the equations of motion

_@.pdy 9. p)dz oH
dx,y)dt  d(z,x)dt  ox’

_g.pdz g, prdx _9H
0y, 2) dt ~ (x,y)dt By’

_g.pdx g pdy _9H

d(z,x) dt  9(y,z) dt 0z
where we use the chain rule for the derivative of a function u(x, y, z),
d . dudx Odudy odudz
—u(x,y,7) = —— 4+ —— + ——. A5
ar = Yy Ve an (A5)
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In the case in which d(x, y)/d(q, p) # 0, g and p can be expressed by x and y, and then the
following equations are derived:

dx 9Hd(x,y) dy  9Hd(x,y)

= = , = , (A6)
dt ady d(q, p) dt ox a(q, p)
using the relations
—1
g, p) _ (8(x,y)> , d(q, p) 0. g, p) _ 0 (A7)
a(x,y) a(q, p) a(z, x) a(y, 2)

In the same way, for the case of d(y, z)/d(gq, p) # 0, g and p are expressed by y and z, and then the
following equations are derived:

dy 9Hd(y,2) dz _ 9H3(y,2)

_oH Jode_ o , (A8)
dt 09z d(q,p) dt dy d(g, p)
and for the case of d(z, x)/d(g, p) # 0, we obtain
dz _0H0Gx) dx _ 0H 3Gx) (A9)
dt ax d(q, p) dt az d(q, p)
Combining Egs. (A6), (A8), and (A9), we can write down a set of equations,
dx  9H d(x, dH d(z,
dx _9Hd(x,y) 3H 3G x) (A10)
dt  dy da(q,p) 0z d(q, p)
dy 9H d(y, dH d(x,
dy _3H3(y,z) 9H Il y) (Al1)
dt dz (g, p) 9x d(q, p)
dz 9Hd dH 3(y,
z_ ﬂ (¥, 2) (A12)

dt  9x d(q,p) 3y dq.p)
which is consistent with every expression of ¢ and p. For example, in the case in which ¢ = g (x, y)
and p = p(x, y) (0(x,y)/d(q, p) # 0), Egs. (A10)—(A11) are reduced to Eq. (A6), and Eq. (A12)
is equivalent to Hamilton’s equation of motion.
Introducing a function G = G (x, y, z) that satisfies the conditions (12), Eqs. (A10)~(A12) are
rewritten as Nambu equations in the form of Eq. (4),

dx 3(H,G) dy 9(H,G) dz 3(H, G)

= =" “=_—"1"7 (A13)
dt a(y, z) dt a(z, x) dt a(x,y)

These equations hold independently of the expression of ¢ and p.

Appendix B. Hidden Nambu systems in Nambu systems

Let us formulate a Nambu mechanical system with an N-plet x; (i =1, ..., N) using N + r vari-

ables y; = y;(x1,...,xy) (j=1,..., N +r), where r is a positive integer. We assume that at

leastr + 1 of {yj,,...,yjyInB (J1,--., jv = 1,..., N +r)donot vanish, where {y;,, ..., y;yINB

is the Nambu bracket defined by Eq. (8). Then the equation for any function f(yi, ..., ynir) =
f(x1,...,xy) can be written as

df 3(f Hi,...,Hy 1)
dt — 9(x1,Xx2,...,XN)

N+r

— 1 Z a(f,ﬁ],...,ﬁ/\/_])

N B0 Y s Vi)

{Vj1s Yjrs -+ Yjn INBs (Al4)

where FIa(yl,...,yN+r) =H;(x1,...,xny)(a@a=1,...,N—1).
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Introducing functions Gc(yl, vy IN+r) = Ge(xy, ..., xn) (c = 1, ..., r) that satisfy the relation
N+r = ~
1 (G, ...,Gy)
— O N T =1{Viis Viryerens Vi , AlS
7 Z €1 jar IN TN+ IN+r 0 jnere - Viwer) Wiy Yjn INB (A15)

DNt N =1

Eq. (A14) is rewritten in the form of the Nambu equation,

d_]?_ a(faljlh---aﬁ[\’—l’Gla-"aér)

= , (Al6)
dt 3(V1, Y2y -+ s YNs YN+1s -+ s YN+7)
where we use the formula for any functions Aj = Aj(yl, ey YN4)s
O ~ ~ N+
8(A1’A25---’ANaAN-i-l’-'"AN-‘rr)_ 1 Zr P o )
O(V1s Y25 oo s YN» YN+1s -+ s YN+7) N!r! SR IN NN

J1J2s s IN N4 es JN4r =1
y (A1, Aa, ..., AN) a(ANH,...,ANH).
a(yjl’ij""’yjN) a(yjN+1""’yjN+r)
By the use of Eq. (Al5), it can be shown that the Nambu bracket between G.(xi,...,

(A17)

xn) =Gy ..., yN+r) and the arbitrary functions ug(x1,...,xN) = ia(V1s ...\ YN4r)
(@=1,..., N — 1) vanishes such that
1 N+r a(éc,ftl,,”’ﬁN_l)
{Geyup, ..., un—1}NB = N Z 3y v - {(Viis Yiar - s Vin INB
L1 g2sesin=1 Yitr Yjar -5 Yijn
1 N+r
= N‘ }"! Z 8jlj2ijjN+1"'jN+r

J1sJ2sees N IN+1 5oy IN4r=1
Xa(éc,al,...,ﬁN_l) 3(G1,...,G))

OVjis Yias -+ Vi) 0Wjnsrs -« -5 Yin,)
3(Ge, iy, ... iiN_1,G1,...,G))

T OV Y2 YN INALs s INE)

Hence G, are constants. We can eliminate the constants by redefining G., and the resulting

0. (A18)

Ge(V1, ..., yN+r) = 0 can be regarded as induced constraints, which are associated with enlarging
the phase space from (x1, ..., xy) to (V1, ..., YN=+r)-
In this way, Nambu systems with an N-plet x; (i = 1, ..., N) can be formulated as Nambu systems

withan N +r-plet y; = yj(x1,...,xny) (j=1,..., N +7r).
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