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Dynamical Theory of Generalized Matrices
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We propose a generalization of spin algebra using multi-index objects and a dynamical
system analogous to matrix theory. The system has a solution described by generalized
spin representation matrices and possesses a symmetry similar to the volume preserving
diffeomorphism in the p-brane action.

§1. Introduction

Group theoretical analysis has been applied successfully to a wide range of physi-
cal systems, because they are often invariant under certain transformations, and such
symmetry transformations, in many cases, form a group. Matrices can represent the
action of such group elements. Among physical quantities, the spin variables [on
which representation matrices of su(2) operate] have played important roles. Rela-
tivistic particles are classified with respect to two kinds of spin variables, because the
Lorentz algebra is essentially specified by su(2) x su(2).") The spin variables and their
extensions appear in the non-commutative geometry, which is considered to repre-
sent a possible description of space-time at a fundamental level.2) For example, the
fuzzy 2-sphere constitutes a non-commutative space whose coordinates are inherently
representation matrices of the spin algebra.?) This space is used in the matrix de-
scription of a spherical membrane.):%) It also appears as a solution of matrix theory
and the matrix model with a Chern-Simons-like term.%>”) Models related to higher-
dimensional fuzzy spheres have been examined in various contexts.®)2) Hence, it is
a challenge to explore the generalization of spin algebra and representation matrices
in order to unveil yet unknown systems.

Recently, a generalization of spin algebra based on three-index objects has been
proposed, and the connection between triple commutation relations and uncertainty
relations has been investigated.'® This algebra can be generalized using an n-fold
product as the multiplication operation and an n-fold commutator among n-index
objects, as discussed below. Such n-index objects are called ‘n-th power matrices’,
which are interpreted as generalizations of ordinary matrices, and a new type of
mechanics has been proposed based on them.'¥-15) This type of mechanics can be
regarded as a generalization of Heisenberg’s matrix mechanics. It has interesting
properties, but it is not yet clear whether it is applicable to real physical systems
nor what physical meaning many-index objects possess. In an attempt to realize
a breakthrough with regard to the physical application of generalized matrices, we
shift our focus to other systems. With the expectation that studying the analogous
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systems represented by matrix theory and the matrix model will provide some in-
formation, it is interesting to explore symmetry properties in dynamical systems of
generalized matrices, while keeping their classical counterparts in mind. One possible
classical analog is the system constituted by p-brane.!”)

In this paper, we propose a generalization of spin algebra using n-th power
matrices, and a dynamical system analogous to matrix theory. This system has
a solution described by generalized spin representation matrices and possesses a
symmetry similar to the volume-preserving diffeomorphism in the p-brane action.

This paper is organized as follows. In the next section, we give a definition of
generalized spin algebras, generalized spin representation matrices and a variant of
a fuzzy sphere. We study a generalization of matrix theory based on generalized
matrices in §3. Section 4 is devoted to conclusions and discussion. In Appendix
A, we define n-th power matrices, an n-fold product, an n-fold commutator and
two kinds of trace operations. As we see from the definition of the n-fold product,
we do not use the Einstein summation rule that repeated indices are summed, to
avoid confusion. In Appendix B, we study transformation properties of hermitian
n-th power matrices. We explain the classical analog of generalized spin algebra in
Appendix C, and the framework of classical p-branes in Appendix D.

§2. Generalized spin algebra

First, we review the spin algebra su(2). This algebra is defined by
[T, T = iy €T ) s (2:1)
C

where J* (a = 1,2,3) are spin representation matrices, i is the reduced Planck
constant, and €% is the Levi-Civita symbol. Matrices in the adjoint representation
are the 3 x 3 matrices given by

(J)n = —ihe™™", (2-2)

where each of the indices m and n runs from 1 to 3.

Let us generalize the spin algebra defined by (2-1) using hermitian n-th power
matrices. (See Appendix A for the definition of hermitian n-th power matrices.) In
analogy to (2-2), we define the (n + 1) x (n+ 1) x -+ x (n 4+ 1) matrices that we
consider as follows:

(Ja)hlz---ln = _ih(n)gahlz"-ln’ (Ka)lllz---ln = h(n)‘galllzmln’? (23)

where e®12n is the (n + 1)-dimensional Levi-Civita symbol, each of the indices a
and [; (i = 1,2,---,n) runs from 1 to n + 1, and h,) is a new physical constant.
Hereafter, h(,) is set to 1 for simplicity. We find that the generalized matrices J¢
and K® form the algebra

[Jar, ... Jon=2i KO-zl ... K9] = (_1)ji Z £0102°Gn 41 Jant1 (2-4)
An+1

[Jor, ... Jon—2i-1 [(9n-2j ... K%)= (—1)j+1i Z £01027An 1 [COnt1 - (9.5)

An41
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for an even integer n and j =0,1,--- ,n/2, and

[JOt, ... JOn=2 KOn-2+1 ... K9] = (—1)j+1i Z £1A2 Al [COnt1 - (9.6)

An+1
[Jo, ... Jon-2i-1 K2 ... K] = (=1)7+Y Z gltazantl Jantl = (2.7)
an+1
for an odd integer n and j = 0,1,---,(n — 1)/2. Here, the indices [; are omitted,

and the n-fold commutator is defined by (A-4).
There exists the following subalgebra of the algebra defined by (2-4) and (2-5)

whose elements are G = (J!,--- | J""1) for an even integer n:
[Gval,CTVCLQ7 e Gan]lll2"'ln — Z Ealaz---anan+1(Gan+1)l1l2mln. (28)
An+1

Similarly, there exists a subalgebra of the algebra defined by (2:6) and (2-7) whose
elements consist of a suitable set of J* and K%. For example, the elements G* =

(JY, .-, J% K™Y for an odd integer n form the algebra given by
G G ... Qon — _4 @102 AnAn+1 ($0n+1 2.9
[ ) ) ) ]lﬂg---ln ? € ( )lllQ"'ln' ( )
an+1

We refer to the algebra defined by (2-8) and (2-9) as a ‘generalized spin algebra’ and
collectively write

[Ga17 G, .- 7Gan]l1lz---ln = (_1)7% Z €a1a2manan+1(Ganﬂ)lllz---ln' (2'10)

An41

We refer to the elements of the generalized spin algebra as ‘generalized spin repre-
sentation matrices’. We explain the classical analog of generalized spin algebra using
a generalization of Hamiltonian dynamics in Appendix C. Filippov also proposed a
generalization of Lie algebra using vectors in the n-dimensional Euclidean space as
elements and the vector product as the multiplication operation.'®)-*) In that re-
alization, the basis vectors form an analog of the generalized spin algebra (2-10).
Xiong obtained an algebra that is essentially equivalent to the algebra (2-8), using
the n-th power matrices (T )iyip. iy, = Eairiz—isy, (@ = 1, , N = 2m +1).20 We
have generalized the construction to the case with an arbitrary integer N.
The elements G* satisfy the so-called ‘fundamental indentity’,

[[Galv T 7Gan]7 Gan+1> R Gaznil]lll?"ln

= Z[Gal’ S [Gai, Gan+1’ .. ’Ga2n71]’ . 7Gan]lll2--~ln' (2'11)
=1

This identity is regarded as an extension of the Jacobi identity.

*) See also Ref. 19) for a generalization of Lie algebra.

¥102 ‘TT Jequierdss uo A1sieAlun nusuiys e /61o'sfeuno pioxo-did//:dny wouy pspeojumod


http://ptp.oxfordjournals.org/

672 Y. Kawamura

For later convenience, here we present several formulae for the generalized spin
representation matrices G*. By using (2-10) and the relation >, . gaaran ghay-an
= nld,p, we obtain the formula

—1
(Ga)lllgmln _ Z gaaiaz - an [Gm’Gaz’ .. ’Gan]lllz-“ln

=i Y tmean QUG GOy, (2:12)

a1,a2, ,an

From (2-12), we derive the formulae

YD TG =Y D (Gt 1 (Gt

a i, ln1,ln

1
- _H Z Z [Gal’ o Gan]ll"'ln—lln [G(Zl? to 7Gan]l1~~-lnln71
Tat,san i, dn1,ln
i “ee
- _E Z Z €aa1 o (Ga)ll"'ln—lln [Ga17 e 7Gan]l1---lnln_1

;01,0 50n Uy, b —1,ln

=—i ) D () TR (CL PR c TR R A )

a,at, ,an ll,"‘ Jnflvln

where Tr(y) is the second kind of trace operator defined by (A-17).
The coordinates X* of a fuzzy 2-sphere are defined by the matrices J* (i = 1,2, 3)
in the spin j representation as®)

R

V) (" )mns (2-14)

(Xi)mn =

where R is regarded as the radius of the fuzzy 2-sphere. The coordinates X* satisfy
the relations

S R g .
X X pp = i ——— TE(XE) s X2 = R%6pm, (2115

where each of the indices m and n runs from 1 to 25 + 1. Similarly, the coordinates
Xt (i =1,2,---,2k + 1) of a fuzzy 2k-sphere are the (tensor products of) matrices

which satisfy the relations?)
[Xi17Xi27 U 7Xi2k]mn = ZC Z EiliQ"'iQki2k+1(Xi2k+1)mn7 (216)
12k 11

7

where ¢ is a constant parameter. These fuzzy spheres are typical examples of a
non-commutative space.
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Now we propose a variant of a fuzzy sphere based on hermitian n-th power

matrices X* (i = 1,2--- ,n+1). The variables X* are interpreted as the coordinates
that satisfy the relations
[Xil ) Xi27 ) Xin]hlz---ln = ”7 Z 5i1i2minin+1 (Xin+l)l1l2---lna (218)
Int1
Z > Xt ate k(X ot okt = B0, 41,0, (219)
Ly yln—2,k

where 7 is a constant parameter. The variables describing this new kind of n-
dimensional space are, in general, non-commutative and non-associative for the n-
fold product (A-2). The above relations (2:18) and (2-19) are invariant under the
rotation

Xty = (X150, ZO’ N ity (2-20)

where Oé are elements of (n + 1)-dimensional orthogonal group. We assume that an
infinitesimal rotation is generated by the transformation

6(Xi)lll2"~ln = Z Gij(Xj)thmln = Ii[917 T 78n—17 Xi]lllgmln? (221)
J
where 0% (= —67%) are infinitesimal parameters and Oy (k = 1,--- ,n — 1) are the

“generators” of rotations. If the generators Oy, are given by O = >_. GZ(k)X ¢ then
0% is written

SEE DI (222)
11, yin—1
where Hl(k) are infinitesimal parameters.

§3. Dynamical system of generalized matrices

In this section, we study a generalization of matrix theory using hermitian n-
th power matrices. We write down the Lagrangian, the Hamiltonian, the equation
of motion, and a solution in terms of generalized spin representation matrices, and
study their symmetry properties.

Let us study the system described by the following Lagrangian:

L=- Z Z DOX lllz An (DOXi)lle ~ln

7 l17l27 7

n n' Z Z X“ XZQ Xin]lll?"ln[Xil’Xiz?'" 7Xin]lzll---ln

11,82, in 11,12, ln

=8> > (Xt X130,

v lyla, e

oD X g, (XX X g, (3)

n+1 &~
101,82, in 11,02, ln

-
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where X* = X(t) (i =1,2,--- , N) are time-dependent hermitian n-th power matri-
ces, «, B and +y are real parameters, and f**2"" are real antisymmetric parameters.
The covariant time derivative Dy is defined by

, d . . Z.
(DoX*)iytyty = = (X ()11t +i[ALs -+ An1, X015,

dt
d, . ;
= Ot +i D AT (XD (32)
mi1,mz, - ,Mn
where Ay (k = 1,---,n — 1) are hermitian n-th power matrices and A(t) is the

“gauge field” of time. The first and second lines in (3-2) are similar to (D-13) and
(D-8), respectively. Let us require that the Leibniz rule with regard to the covariant

time derivative hold for the n-fold commutator [By(t),- - , By(t)] as follows:
(Do[Bi(t), -+, Bu(t))itzt, = Y _[B1(t), -+, DoBui(t), -+ Bu(t)]iytzet,- (3-3)
=1

This requirement is satisfied for an arbitrary matrix (Aj);,;, with respect to the
usual commutator [Bi(t), Ba(t)], but it is not necessarily satisfied for arbitrary n-th
power matrices (Ag)i1,.-1, With respect to the n-fold commutator for n > 3. We
find that the Leibniz rule (3-3) holds for an arbitrary B;(t) (I = 1,2,--- ,n) if the
matrices Ay are normal n-th | power matrices and the antisymmetric object defined

by A(t)iy1p, = (—1)" 1Ay - Ap-1)y,1,.., satisfies the cocycle condition

(5A(t))mom1--~mn = Z(_l)iA(t)mOml”'mi"'mn =0, (3'4)
=0
where the index 7; is omitted. [Also, see (A-6) for the definition of (A4; /\Zn_l)]
Then, the covariant time derivative (3-2) is written

(Do X )iytgent, = %(Xl(t))lllz"-ln + AA®) 11 (X () 12051, (3:5)

In the case n = 2, « = 1 and § = v = 0, the Lagrangian (3-1) is reduced to the
bosonic part of BFSS matrix theory by setting R = gl, = 1.2Y) Here, R is the com-
pactification radius, g is the string coupling constant, and [, is the string length scale.
The term with ~ is regarded as a generalization of the Myers term. It is known that
the Myers term appears in the case of a background antisymmetric field.) The BFSS
matrix theory describes a system of DO-branes, and it has been conjectured that it
provides a microscopic description of M-theory in the light-front coordinates.®) The
Lagrangian of the matrix theory is derived through the dimensional reduction of a
(9+1)-dimensional super Yang-Mills Lagrangian to a (0+1)-dimensional Lagrangian.
The matrix theory is also interpreted as a regularization of supermembrane theory.?
There are several proposals for a “discretization” or quantization of a p-brane
system.19:23).24)  Our realization employing n-th power matrices is one of these,

*) See Ref. 22) for a comprehensive review of matrix theory.
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because the first and second terms in (3-1) can be regarded as counterparts to (D-10).
In our system with n > 3, it is not clear whether there exist such interesting physical
implications as in the BFSS matrix theory.

The Hamiltonian is given by

1 | |
i = 52 > Uiy, (T )11y,

i lida,ln
E E X“ XZZ 7XZ7L]l1l2~--ln[X“7X12a'" 7Xln]l211--~ln
11,82, 4in l17127' Jln

+8Y 0 > (Xt (Xt

7 llyl27 7l

+ Vn +1 Z Z fre (Xl)lll?"ln (XX Xln)l2l1-~~ln7 (3-6)

181,02, yin L1l2, e

nn'

where IT? is the canonical momentum conjugate to X?.
The following equation of motion is derived from the Lagrangian (3-1):

(D(%Xl)lllz"'ln + F Z [X“?'” 7in_17[X“7"' 7Xln_17Xl]]lllZ”'ln

11, yin—1
+26( )lllg o+ 2~y Z fzuzz ‘i (X11Xz2 e Xin)lllz“ln =0. (37)
117127 yin

Now we consider the case that f91920n+1 = g®102Gn+1 (where ag, k = 1,2, ,
n+1), and other components of f*1"2"» vanish. In this case, we find the non-trivial
solution

(Xtgtn = G005t (XDiyigea, =0, A7 =0, (3-8)

lilo--lp

where G* (a = 1,2,---,n + 1) are generalized spin representation matrices and
g=n++2,---,N. The parameter £ depends on «, 3 and v as

¢ = (7:t\/gi—4oéﬁ> " ' (3-9)

This solution is interpreted as the counterpart of the n-brane solution in the BFSS
matrix theory. For simplicity, we consider the case with =0 and « =+ = 1. Then
we have the solution with £ =1,

(X i1y, = (2 +0") 01150, + (G315,
(Xq)l1lz~~~ln = (27 + th)6l112"‘ln’ A(t);?lgm%nmn =0, (3-10)

where 2%, v*, 9 and v? are constants and 9;,1,...;,, = 01,1, - - - 01 . The Hamiltonian

takes a negative value for this solution:

- n_|_1 Z Z 1112 ln(Ga)bll---ln' (311)

a 117127 7

nflln
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Hence the energy eigenvalue of this vacuum is lower than that of the trivial solution,
ie., Xt = A(t) = 0.

Next, we study the symmetry properties of the above system. (See Appendix
B for discussion of the transformation properties of hermitian n-th power matrices.)
The system for n = 2 is invariant under the time dependent unitary transformation

(Xi(t))hb lllg Z U llml XZ( ))m1m2U( );2127 (3'12)
(A1)t — (A1), = Z U (£)1ymy (A1 () myma U ()]0
+zz iU O - U0, (3:13)

where U (t),, is an arbitrary unitary matrix. Infinitesimal transformations are given

by

SOC O, = 1144, X (O], (314)
S(A Oty =~ AU, + iAW), A1 (D, (315)

where A(t) is the hermitian matrix related to U(t) as U(t) = exp(iA(t)). The
transformations (3-12) and (3-14) can be rewritten as

(XDt = (X (O = Y, ROFE™ (X)) mumas (3-16)
mi1,m2
SX ()t =1 > AT (X (1)) myma (3:17)
mi1,Mm2

respectively. Here R(t) and A(t) are the “transformation matrices” given by R(t);."

= U 1ymy U (1)}, and A(#)]"L™2 = A(t)13m, O1ymy — A(t)maly01ym, - They are related
as R(t) = exp(iA(t)). (Note that here we use different notation for the transformation
matrix, (A(t)), from that in Appendix B, (r(1)).) In terms of R(t) and A(t), the finite
and infinitesimal transformations of A(t) are given by

mims2 m1m2 _ nmz k1k2 1mim2
‘A(t)lllQ 1112 Z Z R l112 A ”1”12R() k1ko
niy,n2 kl,kg
n1n2 1mima2 .
e Z dtR Lly ( ) ning <3 18)
ni,n2
5A(t)m1m2 _ _i mlmz — Z .A n1n2>\ m1m2
lhls - dt l1l2 l1l2 n1n2
ni,ne
n1n2 m1m2 .
Y A AR) T, (3-19)
ni,n2

respectively. Here we have A(t);"1"™* = A1(t);, 1, 0lams — A1(t) 101, 01m, » and R(t)~!
is the inverse of the transformation matrix R( ). These matrices satisfy the relations

n1n2 —1mim2 1"1"2 mime __
Z R l1l2 R ning Z R l1l2 ( )n1n2 5llm15l2m2 (320)

ni,n2 ni,n2
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Now let us study the extension of the unitary transformation of X(t) and A(t)
to the case with n > 3. First we consider the infinitesimal transformations of X*(t)
generated by the set of “generators” Ay (k = 1,2,---,n — 1) through the n-fold
commutator defined as follows:

5(Xi(t))l1l2”'ln = i[/llﬂ U ’An—lv Xi(t)]lllQ An
=3 Z /\(t)?fl;mzln mn, (XZ( ) (3-21)

mi,ma, my
The expression (3-21) is similar to (D-18) and (D-14). Under the transformation
(3-21), the covariant time derivative Do X" transforms covariantly,
S(DoX Nty =1 Y ADPE " (DX ) myme (322)
mi,ma, M
if A(t) transforms simultaneously as

d

e . kika--k MMy
SAMILE, ™ = =g O™ =1 > AGRE AT
ki,k2, kn
i3 AR A (3:23)
lila+ly kikg-kn  *
ki,k2, kn

The expression (3-23) is similar to (D-15). We can show that the first and third
terms in (3-1) are invariant under the above infinitesimal transformations (3-21) and
(3-23). However, the second and fourth terms in (3-1) are not necessarily invariant,
because the n-fold commutator [ X% X% ... X'»] transforms as

n

S[X1, X2 - X :Z[Xil e LO(XRY e X

—zz Z ngn XJ1 Nyl 1k

p (]1’ o Jn)
S AT (X)X, (3:24)

M1,M2, " My

under the transformation (3-21), and the transformation (3-24) is not always covari-
ant form. If [X™ X" ... X' ] transforms covariantly, i.e.,
5[Xi1,Xi2, cee ,Xi"]lllz...ln
=1 Z /\(t)lr?llzm%n e [X“ XZQ T 7Xin]m1m2"'mn7 (3'25)

M1,M2, Mn

our entire system possesses local symmetry.

We now discuss the case in which the covariant time derivative is given by (3-5).
In this case, (DpX") is invariant under the transformation of X*(¢) and A(t) given
by

5(Xi(t))l112-"ln - i[A17 ey Apa, Xi(t)]lllz"-ln
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= iAW) 11, (X () 11151, (3-26)

SAMD 1, = e ADit, (3:27)

where Ay (k=1,---,n — 1) are real normal n-th power matrices, and A(t) is a real
antisymmetric object defined by

AWtgetn = (~1)" (A1 - A1)y, (3-28)

Here, we require that the function A(t) has the property

n

(6A() ) momy - = Z(_l)i/l(t)momr--mi---mn = 0. (3-29)
=0

When the antisymmetric objects A(t) and A(t) are treated as n-th power matrices,
the transformation (3-27) is rewritten

d .
SA 1ty = = Aty — 1AL - An1, Aty
+ i[/ll, e N, A(t)]lllQ"'ln' (330)

Note that the last two terms in (3-30) are canceled out. The expression (3-30) is
similar to (D-19). The finite versions of the transformations (3-26) and (3-27) are
given by

(X ttget, — (X))t = €012t (XHE)) 141500, (3-31)
d
A(t)hlz'“ln - A(t)gllzmln = A(t)hlz'“ln - EA(t)lll2'“ln7 (3'32)

respectively. It is easy to see that the Lagrangian (3-1) is invariant under the trans-
formations (3-26) and (3-27) or (3-31) and (3-32). If A(t) is a coboundary, i.e.,
A(t) = 002(t), there is the extra symmetry according to which A(t) is invariant
under the transformation

L) mims-mn—1 = ' Omimaeamn
= Q) mymg--mp_y T (60(E))mima-mn_1 (3-33)
where ©(t) is an (n — 2)-th rank antisymmetric object.

Next we discuss a generalization of the unitary transformations (3-16) and (3-18),
which are given by

(XU )ttt — (X)) 1t
= Y ROPETXN ) mymanmns (3-34)

m1,ma, My

A — A ()
= Z Z R(t)ZIIZQInn A(t)nllné"'nnR(t) 1k117€2~~2~kn

n1,m2, - ,Nn k17k2"" 7kn

d mimso-m
iy ROMET R (3-35)

dt lila-ln ning - nn
n1,n2, - ,Nn
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where R(t) is a “transformation matrix” and R(¢)™" is its inverse. In the case that

R(t) can be factorized into a product of matrices as
RZLllngl Mp __ Vm1 Vm2 .. ‘/lnmn7 (336)

the first and third terms in (3-1) are invariant under the transformation in the case
that V™ is an orthogonal matrix O;". We find that the Lagrangian (3-1) is invariant

under the discrete transformation for which V™ = (57(m). Here, o(m) stands for the
permutation among indices.

We have studied the transformation properties of the system described by the
Lagrangian (3-1). Note that there is a similarity between generalizations of the
unitary transformation in the dynamical system of generalized matrices and the
volume preserving diffeomorphism in the classical system of p-branes. It is important
to explore the relationship between these two systems and make clear whether our
theory describes the microscopic physics of p-brane-like extended objects.*)

Finally, we comment on several other similar systems.

(i) Supersymmetric theory:

The supersymmetric version of the Lagrangian (3-1) with « = 1 and =~ =0 is
given by the following:

Z Z DOX l1l2 An (DOXi)lQll'“ln

i llyl27 7

Z Z [Xil’XZé’ T 7Xin]lllz"-ln [XilaXi27 T 7Xin]1211“'ln

11,52, in Li,l2, 0 ln

1 _
+§ ; IZ . (S)lllQ--'ln (DOS)lzll-..ln
1,02,

n—l Z Z 5’ 1112 AnY “ n I[Xll 7Xin7175]1211“-ln7 (3'37)

i1, 50n—1 l1,l2, ,ln

where S is a Grassmann-valued n-th power matrix, and 7%1"%-1 is a product of
Dirac v matrices. This Lagrangian is the counterpart of the super p-brane given
by (D-21), and the system possesses supersymmetry between X* and S for specific
values of n and N.

(ii) Generalization of the matrix model:
The action of the 0-dimensional system analogous to matrix model is

(0}

S = [XHE XH2 e X e, [ XY X2 D Xy,
n-n!
1,25 5 hn l17l27"'aln

B Y (Xt (X i1y,

K llyl27 7l

*) Matsuo and Shibusa have given a representation of the volume preserving diffeomorphism
using the non-commutative branes.?®) It is interesting to establish a link between their results and
our realization.
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21
’Yn—f—l

> D e (X g (XX X, (3:38)
B 1425 5l Uyl ln

where X* are hermitian n-th power matrices, and «, 8 and - are real parameters.
This action with § = v = 0 is interpreted as the n-th power matrix analog of the
action (D-24). In the case with n = 2, @ = 1/¢g? and 3 = v = 0, the action is
equivalent to the bosonic part of the type IIB matrix model.2%)

§4. Conclusions

We have proposed a generalization of spin algebra using multi-index objects
called n-th power matrices and studied a dynamical system analogous to matrix
theory. We have found that this system has a solution described by generalized spin
representation matrices and possesses a symmetry similar to the volume preserving
diffeomorphism in the classical p-brane action.

Our system is interpreted as a generalization of the bosonic part of the BFSS
matrix theory. The BFSS matrix theory has several interesting physical implications.
For example, it is regarded as a regularized theory of a supermembrane, and it de-
scribes a system of DO-branes and can offer a microscopic description of M-theory.
This theory also has a special position with regard to symmetry properties. Our
system for n = 2 has a larger symmetry, that is, invariance under an arbitrary time
dependent unitary transformation, but it seems to possess a restricted type of local
symmetry for n > 3. We have treated the abelian local transformations (3-31) and
(3-32) as an example. We have also considered the case in which the transformations
form a group whose elements are factorized into a product of matrices, as an exten-
sion of unitary transformations. It is important to explore the physical implications
and transformation properties beyond the group theoretical analysis in our system
for n > 3.

Acknowledgements

This work was supported in part by Scientific Grants from the Ministry of Ed-
ucation, Culture, Sports, Science and Technology, Nos. 13135217 and 15340078.

Appendix A
—— Definition of n-th Power Matrices

In this appendix, we define n-index objects, which we refer to as ‘n-th power
matrices’,*) and define related terminology.’ An n-th power matrix is an object with
n indices written Bj,j,..;,,. This is a generalization of an ordinary matrix, written
analogously as Bj,;,. We treat n-th power “square” matrices, i.e., N X N X --- X
N matrices, and in many cases treat the elements of these matrices as c-numbers
throughout this paper.

*) Many-index objects have been introduced to construct a quantum version of the Nambu
bracket.2?>2% The definition of the n-fold product we use is the same as that used by Xiong.
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First, we define the hermiticity of an n-th power matrix by the relation Byuy..i, =
By y,..,, for odd permutations among indices and refer to an n-th power matrix pos-
sessing the property of hermiticity as a ‘hermitian n-th power matrix’. Here, the
asterisk indicates complex conjugation. A hermitian n-th power matrix satisfies the
relation By ..y = Bi,i,..1,, for even permutations among indices. The components
for which at least two indices are identical, e.g., By,..i,...1;..1,,, Which is the coun-
terpart of the diagonal part of a hermitian matrix, are real-valued and symmetric
with respect to permutations among indices {l1,- - ,l;, -+ ,l;,- - ,1,}. We refer to
a special type of hermitian matrix whose components possessing all distinct indices
vanish as a ‘real normal form’ or a ‘real normal n-th power matrix’. A normal n-th
power matrix is written

Ny
Blllg---ln - Z 5lll]bljl1l1l}ln’ (Al)
i<j
where the summation is over all pairs among {lj,---,[,}, the hatted indices are

omitted, and blj Loyl ol is symmetric under the exchange of any (n — 2) indices,
excluding [;.

We define the n-fold product of n-th power matrices (B;)i1,-1, (1 =1,2,--,n)
by

(BB Bu)iytyety = D (B otk (B2t skt - (Br)kipot,- (A2
k

The resultant n-index object, (B1B2 - - - Bp)iyiy-1,,, 1S Dot necessarily hermitian, even
if the n-th power matrices (B;)i,1,-.1,, are all hermitian. Note that the above product
is, in general, neither commutative nor associative; for example, we have

(B1Ba -+ By)iylyt,, # (B2B1 -+ Bu)iylyely,
(B1- - Bn—1(BnBn+1 -+ Ban—1))iaty-1, # (B1 - Bpe1By) Bt -+ Ban—1)1315-1,, -
(A-3)

The n-fold commutator is defined by

[Bla BQ? o 7Bn]lll2"'ln
= > sen(P)(Bi)iyty 1k (Bin)iytskty -+ (Bio kgt (A-4)

(i1,82,,in) K

where the first summation is over all permutations among the subscripts {i1, i, -,
in}. Here, sgn(P) is +1 and —1 for even and odd permutations among the subscripts

{i1,12, -+ ,in}, respectively. If the n-th power matrices (B;);,1,...1, are hermitian,
then i[By, Ba, - , Bu]iy1,-1,, is also hermitian.
We now study some properties of the n-fold commutator [Bi, B, - -, Bpli,iy--1,,-

This commutator is written

[B1,Ba, -+, Buliyig-t,, = (B1)iyig-1, (B2Bs - - - By)

lila-lp

+(=1)""(B2)iy15-1,, (B3 - - - BnB1)

lila-lp
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+o+ (=D Bty (B1B2 -+ Bu1)yy .,
+([Bl7 327 e 7Bn])0

l1l2~~-ln7

(A-5)

P

where (B2Bs - -+ Bp), .., and ([Bi1,Ba, - =Bn])?1l2~-ln are defined by

—_~—

(B2Bs - -+ Bn)yypy..,,
= > sen(P) ((Bz‘g)ly-lnfzznln(Bz‘s)ly--znfsznlmln o (Biy ) lnlyly 1l

(42,83, yin)

+ (=) Byt —stn 11t (Bis )iyt —alo— 1ol 1l = * (Bio Mol 11—1

o (=) T (Big) iyt (Big )yt st (Bin)l1l1l3~~-ln) (A-6)
and
([B1, B2, s Bu]) iy,
= ) > sen(P)(Bi iyt sk (Bis )ty bkt (Bin izt (A7)
(41,02, +in) k#ly 12,
respectively.

P

We now discuss features of (B1Bsy- - Bn_l)l1 lpt, - 1t is skew-symmetric with
respect to permutations among indices; i.e., we have

(BlBQ o 'Bn—l)l1~~-li-~~l- _(Ble e B"—l)l1-~~lj--~l

]"'ln

(A-8)

K3 l'I’L

if each (Bk)ljll"'ii”'ln

among the n-indices {l;,11,--- ,l;-, -+, l,}, as are hermitian n-th power matrices.
Here we define the following operation on an n-th antisymmetric object Wy, my--m,,:

(k=1,---,n—1) is symmetric with respect to permutations

n

(0w)momy-m, = Z(_l)iwmoml--ﬁwmw (A-9)
1=0

where the operator § is regarded as a coboundary operator that changes n-th anti-

symmetric objects into (n41)-th objects. This operator is nilpotent, i.e. §2(x) = 0.*)
If Winymo-m, satisfies the cocycle condition (6w)mgm,--m, = 0, it is called a cocycle.

For arbitrary normal n-th power matrices B](-N), the n-fold commutator among

B and BJ(.N) is given by

N N n— NN N
[B§ ), - 7Bn_)1, B]hlz'“ln = (—1) 1(B§ ). Bn )1)l1l2---lnBlll2“'l"' (A-lO)
If (B B --BT(lN)l)l1 lp.t, 18 @ cocycle for normal n-th power matrices B( ) , the fol-

lowmg fundamental 1dent1ty holds:

HCh o 7Cn]7 B§N)7 Tt 7Bn]X)1]1112"'ln

*) See Ref. 27) for treatments of cohomology.

¥T0Z ‘TT Joquieidas uo A1seAlun nysuys e /Bio'seuinolploxo-didy/:dny woly pspeojumog


http://ptp.oxfordjournals.org/

Dynamical Theory of Generalized Matrices 683

= Z[Clv M) [Civ B§N)7 T 7B7(z]\—[)1]7 T 7Cn]l1l2"'ln' (A'll)
=1

Next, we give two kinds of trace operations on n-th power matrices. The first
one is a generalization of the trace of By,;,, defined by

TrB = Z By = B0, (A-12)
l1,l2
We define the trace operation on the n-th power matrix By j,..., by
TroyB = ZBN 1= Y Buipes,0utyey (A-13)
l17l2’ " al

where 0y,1,...1,, = 0111501515 - - 01,,_,1,,- LThe second one is a generalization of the trace
of (3132)1152, which is written

Tr(B1Bs) = ZZ (BU)uk(B2)it, = »_(B1B2)i,1,01,1,- (A-14)

l1,l2

Here we define the product of the n-th power matrices By and By by

(BiB)istyty = D (Bt 1k(B2)iy 1, skt (A-15)
k
This product is also obtained by setting By = --- = B, = T in the n-fold product

(A-2), where T is the n-th power matrix in which every component has the value of
1,1i.e., 1},1,..1, = 1. Note that this product is not commutative, but it is associative:

(B1B2)iyls- 1, # (B2B1)iyigety,  (B1(B2B3))ity-1, = ((B1B2)B3)iy iy, (A-16)
Now we define the trace operation on the n-th power matrix (B1B2),1,..1,, by

Tro)(BiBa) = Y (BiB2)iytyty 01, 11,
el

Yo D Bi)uedu ik (B2t okt 01

Ll Jln Kk
= > Byt it (Bo)iydal - (A-17)

liyesln—1,ln

For a hermitian n-th power matrix By, ..;,, the second kind of trace for (B?),1,..;, is
positive semi-definite:

Tr)B? = Y |Biq,* > 0. (A-18)
li,+5ln
For hermitian n-th power matrices By and By, the following formula holds:

Troy(BiB2) = Y (B)iytystn (B2l

Ly ln—1,ln

= > Byt (B2)igty - (A-19)
l1,la ln
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Appendix B
—— Transformation Properties of n-th Power Matrices

In this appendix, we study the analog of unitary transformations for n-th power
matrices. First, we review unitary transformations for ordinary matrices. A unitary
transformation for By, is defined by

/
Bl112 _>Bl112 - Z Ullml mlszm2l2 Z UllmlUl2m2 mime

mi,m2 mi,m2
= Z R;TllzmQBmlmzv (B'l)
m1,ma
where Uy, is a unitary matrix (3, UpnU, A => . = 1) and R;?lgm is
a “transformation matrix” defined by R][™* = UllmlUlsz' By the definition of
ervlz;sz we have the relation
(RE™)" = RpE™. (B-2)

Then, from the unitarity of Up,,, we obtain the relations

Z Rlerzn = 511127 Z lem2 = 5m1m2, (B'3)
Z Rinlm’ém2 anm R;Tl;nl 5m2n27 (B4)
ZRmananm — 5m1n15m2n2- (B~5)

In terms of R;TllzmQ, the quantities d;,;, and TrB = )", By, are shown to be invariant

under the unitary transformation from the first and second relations in (B-3), re-
spectively. The relation (B-4) is related to the covariance of Cj,;, = (B1B2)1,1, under
the unitary transformation

ClllQ - Clllz = (B/B2)11l2 = Z lem2cm1m2 (B'G)

l1l2
mi,ma2
The relation (B-5) is related to the invariance of (B;Bsg); under the unitary trans-
formation.
An infinitesimal unitary transformation is given by

. . Aymima
6Buy1, = i[A, Bliyg, =i Z r )lllg Brnyma, (B:7)
my,ms
where the “transformation matrix” (1) l1112 * is given by r(4) l1112 * = Ay Olymy —

Aty 01,m, - We find that the identity

Z (T(A)llllQQT(A )n11n22 - T(A )111122T(A)n11nz2) = T(M A ])l1l12 ’ (B8)

ni,n2
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holds among transformation matrices, from the Jacobi identity. We can also show
that the commutator [Bj, Bg| transforms as
8[Bu, Baliy1, = [0B1, Baliy1, + [B1,6Baliy,
= Z[A, [Bh B2Hlll2 =1 Z T(A);TllngBm1m2' (BQ)

mi,ma
Next, we study the case of n-th power matrices with n > 3. We define an
extension of the unitary transformation (B-1) for By,y,...,, by

Buiyety = Blyot, = Y R By (B-10)

lyla-ln
M1,m2, " ,Mn

where R/"}™7""™"" is a “transformation matrix”. From the transformation (B-10) and
the hermiticity of By,i,....,, we obtain the relations

mimb--m), i,
(Rl’lll’z-~~2l§L ) =Ry (B-11)
for odd permutations among the pairs of indices (I, my) (k=1,---,n), and
mimb--m/, iy,
Ry, ) = By, (B12)
for even permutations among the pairs of indices (lx,my) (K = 1,---,n). When

the transformation (B-10) is given by an n-fold product, the transformations do not
necessarily form a group, because the n-fold product is, in general, not associative.
However, for simplicity, here we treat the case in which the transformations form a
group and the transformation matrix erflé’f?l;'m" can be factorized into a product of
matrices as

lemg-nmn — ‘/l:’ll‘/lzlz . ‘/é;nnj (Blg)

lila-ln

where V" should be a real matrix, from the relations (B-11) and (B-12). The form of
the matrix V™ is restricted by suitable requirements. We now give examples of such
requirements. The first requirement is that the second kind of trace, Tr)(BC) =
>ty doo dn Blilaet, Claly -, be invariant under the transformation

/ _ mi1mo--m
Blllz-v-ln - Bl1lz'"ln = E Rl1l2~~-ln an1m2~~-mn7
mi1,ma, - ,Mn
/ _ mi1mso---m
ClllZ"‘ln - Clllg---ln = § : Rl1l2---ln nlemQ“'mn' (B'14)

m1,ma, My

The necessary condition to satisfy this requirement is

N R R T S S, St (B-15)

lila-ln loly-ln
l1,l2, ln

MMMy,

in which case R
lhly-+1n

is given by

Rz mn Olnl’bl 27212 . OZTan (B16)

lila-ln
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where O} is an orthogonal matrix (3, O;"O}" = 0mn, Y., O O5' = O1)-
Next, we require that the trace Tr(2)02 = Lt 1, Cily-1, Claty 1, be invariant
under the transformation

(Boutytn = Brygt, = > RIE™ ™ (Br)mimym,,  (B17)

M1,M2, M

where Cy,p,...1, is the n-fold product given by Cj,1,..;, = (B1Ba- - Bp)ijiy1,- We
find that the following 1)))"'7"""" satisfies the above requirement:
Ry, ™ =Dy Dy - D (B-18)

where D" = 6f(m), and o(m) stands for a permutation of the index m. Note that
Dy satisfies the relations

> D}, Di, - Dh = 0mimymy, > DDE Dk =64y, (B19)
7 m

for an arbitrary integer k. Using the relations (B-19) with & = n, we find that d0;,;,...1,,

and Tr(;) B are invariant under the extended transformation (B-10). Further, we find

that the n-fold product Cj,1,...,, = (B1Ba - - Bp)i1,.-1, transforms covariantly, i.e.,
Cl1l2~--ln - Cl/1l2~~-ln = Z lem2...mncm1m2~-mna (B'ZO)

l1lo-ln
M1,ma, ,Mn

under the transformation (B-17) with the transformation matrix (B-18).
Finally, we study the generalization of the infinitesimal transformation (B-7) for

n-th power matrices with n > 3. We consider the following transformation by use of
n-fold commutator:

5Blll2...ln = i[/ll, e 7An—17 B]lllg"'ln

N T S (B-21)

m1,m2,,Mn

mima--Mn . . . .
Here, T(A)lll12-~2ln is a “transformation matrix”, and Ay, (k = 1,---,n) is a set of
“generators”. The n-fold commutator [By, B, - - - , B,] transforms as
n

8[B1, Bz, , Bulityt, = »_[Bu,-++8(Br), -+, Buliyi-a,

k=1
:iz Z ZSgD(P)(‘Bil)ll"'lnflk

(i1, sin) K
A)M1IM2 My
> st (Biymyms my -+ (Biy ki1, (B-22)

M1,M2, " M

under the transformation

S(Bitgotn =1 > T (Bl mims-mn (B-23)

M1,M2, Mn

¥T0Z ‘TT Jequeldss uo AsBAIUN NusUIYS e /61o'seulnolpiosxo-did//:dny wo.j papeoumoq


http://ptp.oxfordjournals.org/

Dynamical Theory of Generalized Matrices 687

Note that the transformation law

5[B17 B27 T 7Bn]lll2"'ln
=1 Z T(A)?:;;"jbj;'m” [B17 By, - ’Bn]m1m2"'mn (B24)

mi,ma, - ,Mn

does not necessarily hold for n-th power matrices with n > 3. This means that the
fundamental identity does not always hold among n-th power matrices with n > 3.
Here we treat the case that Ay (k = 1,2,---,n) are normal n-th power matrices
as an example that the law (B-24) holds. In this case, the n-th power matrices By
transform as

S(Bi)iyigtn, = t[A1, -+ A1, Brliyioetn, = 1At 1, (B)iyioo1, s (B-25)

where A j,..0, = (_1)71—1(/11 3 'An—l)l1l2~--ln- In terms of Aj;,,..,, the transforma-
tion matrix 1) is written

(A)mlmg My,

hioodn = Amymoom O 02 - - (B-26)

It Ay, satisfy the cocycle condition,

n
Mgyt = D (=1 Ay iy, =0, (B-27)
i=0
we find that the n-fold commutator [By, B, - - - , By] transforms covariantly:
5[317 B27 T )Bn]lllgmln = iAlll2-~~l7L [B17 B27 T )Bn]lllzmln' (B28)

Appendix C
—— Classical Analog of Generalized Spin Algebra

In this appendix, we study the classical analog of generalized spin algebra. First,
we consider the following action integral, whose variables are ¢*(t):2®)

S = /(ZA ‘W (¢)> dt. (C1)

The change in S under an infinitesimal variation of ¢'() is given by

d¢> OH \ _ .
68 = /Z ) o Sp'dt, (C-2)

where Fj;(¢) is defined by

(C3)
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From the least action principle, we obtain the equation of motion
dgb’ U
Z F a¢a (C-4)

where F is the inverse of Fij, ie. Z FUF ik = 6}6. Then, the Poisson bracket is
defined by

_ 9f 99
{ﬂg}PB_iZjF 96 960" (C-5)
and using it, the equation of motion (C-4) is rewritten
d 7
¢ = {¢', H}pp. (C-6)

When the variables compose a trlplet X% (i = 1,2,3) and are such that we have
Fii = >k ek X* then these variables form the algebra described by

(X', X7 }pp =) _hxF. (C-7)

This is the classical analog of the spin algebra su(2). In this case, the first term of
the action integral (C-1) is rewritten as

/;Ai(X)dXi: %//;Fij(X)dXiAde ://Rsmedmd(p, (C-8)

where A represents Cartan’s wedge product, and the variables X are coordinates on
52 with radius R, which can therefore be written in polar coordinates as

= Rsinfcosp, X2 = Rsinfsinp, X3 = Rcosf. (C9)

The action integral (C-8) is regarded as an area on S2.
Next, we consider a generalization of the action integral (C-1) whose variables
are ¢ = gbl(t 01, ,O0n—1)

0p" | 9 I
o / /( Z Ay i _1in (P) o1 Oop_q Ot

77;71,71 7in

o O0(Ha,--- 7H”))>d01 o dop_qdt, (C-10)

Aoy, -, on

where A;,..;, (¢) is antisymmetric under the exchange of indices and the quantities
H; are “Hamiltonians”. The change in S under an infinitesimal variation of ¢* is
given by

O
s fof 8 (St

Jyi1y yin—1

d0'1 s dO‘nfldt, (C-ll)

B 8(H1,H2, e ) 5¢] 8¢“ ‘ a¢in_1
(7, -+, pin-1) dor Doy
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where Fj;,...;, is defined by

0A;,...; 0Ai,..q 0Aji,..i
Fjiyoi, = —220 4 (—)n 222 g (o) D e C-12
Jt1tn a¢] +( ) 8¢“ + +( ) a(bzn ( )
From the least action principle, we obtain the equation of motion
d¢l i1 -1 8(H17H27”' 5Hn)
_ Fiiin 1
- > (C-13)

8 i1 ... in ’
i1, 40n <¢ 7¢ )
where FU1in is the inverse of Fy,.; , i.e., Y.

i Finy i, = 6. Then the
Nambu bracket is defined by

10 afl afn-ﬁ-l
e = rinl —J 2L .
{f17 7f7l+1}NB - . Z F - 8¢Z1 a¢in+1 ) (C 14)
15 5tn+41
and using it, the equation of motion (C-13) is rewritten
de’ ,
Cz = {qbzaHl)"' 7Hn}NB- (015)

The equation of motion (C-15) is equivalent to the Hamilton-Nambu equation.'6)

When the variables compose an (n + 2)-let X (i = 1,---,n+2) and are such
that we have " ntt = 57, gl int1int2 Xint2 - then these X form the algebra
described by
(X0, XN = ) ghinting2 Xoingz, (C-16)
in+2
This is the classical analog of the generalized spin algebra. In this case, the first
term of the action integral (C-10) is rewritten as

/ / Z Ajyoi (X)AXT Ao A dX

yin,

= (n—i—l / / Z “ 7/n+1 )dXil /\.../\dXinH

ln+1

= / .- /Rn sin 0 sin? 03 - - -sin” 9n+1d92 AdOy ANdOs A --- N d9n+1, (Cl?)

where the variables X are coordinates on S"*! with radius R, which therefore can
be written in polar coordinates as

X! = Rsinf,1sinb, - - -sin 63 sin f cos 01, (C-18)
X? = Rsin6y,11sin 6, - - - sin 03 sin fs sin 01,
X3 = Rsinfy1sinf, ---sinfscosty, --- ,X”'H = Rsin0,41 cosb,,

X2 = RcosOp1.

The action integral (C-17) is regarded as an “area” on S,
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Appendix D
—— Classical Analog of Generalized Matriz Systems

In this appendix, we explain the framework of classical p-branes. The bosonic
p-brane action is given by'?)

S = —/dp+1a ~3, (D1)

where dP*lo represents the (p + 1)-dimensional world-volume element, and g =
detgas. Here, gog is the induced world-volume metric given by

oXHoX"Y
Jap = an/ —80'0‘ —8O'B , (D-Q)
J787%

where X* (u = 0,1,---,D — 1) are the target space coordinates of the p-brane
and 0% (a« =0,1,---,p) are the (p + 1)-dimensional world-volume coordinates. We
assume that the target space is the D-dimensional Minkowski space. Then, the
action integral (D-1) is invariant under the reparametrization

SXH =) €0 X", (D-3)

where €% is an arbitrary function of o®.
Let us next introduce the light-cone coordinates in space-time:

_ b
V2

The transverse coordinates are denoted by X* (i = 1,---,D — 2). By using the
reparametrization invariance, we can choose the light-cone gauge,

X* (X0 + xP-h, (D-4)

Xt =zt +ptr, (D-5)

where ™ and p* are the center of mass position and momemtum, respectively, and
7 = 0¥, In the light-cone gauge, the action is written (up to a zero mode term)

S = %/dpﬂa <Z:(D0X")2 - detgab> , (D-6)

where g is the induced p-dimensional metric given by

0X'0XJ
Yab = Z i 50a 9ot (D7)
i7j
Here, 0% (a = 1,---,p) are the p-dimensional volume coordinates. The covariant

time derivative Dy is defined by

- 0 a 0 7
DoX' = (Ejuza:u aaa)X’ (D-8)
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where u® is regarded as the “gauge field” of time, which should satisfy the equation
ou®

do?
a

~0. (D-9)

The action (D-6) is rewritten

s=5 [ @e [ S0ux - 5 3 (X x02) (D0)
i1, ip

(3

where the symbol {f1,---, fp} is defined by

ay, ON1 I fp
. = ap-ap ZJ1 :
{f17 7fp} - IZ € pao_al ao_ap‘ (D 11)
ai, - ,ap
(If the coordinates o form a canonical p-let, the symbol {f1, -, f,} is regarded

as the Nambu bracket.) In the case that u® is written in terms of functions A
(k=1,---,p—1) as

a ail-ap—1a aAl aAp—l
u- = Z g1 p—1 Doar ”'ao-apﬂ’ (D-12)
ai, - ,ap—1

the covariant time derivative (D-8) can be written as

oxX?

DyX' = 5 +{Ay, -, A1, X (D-13)

T

The action (D-10) is invariant under the p-dimensional volume preserving diffeomor-
phism:

SX' = N9, X7, (D-14)
a o\ b a b a
dut = ——— =y A"+ Ny, (D-15)
b b
where \® satisfies the condition
ON?
- do? 0 (D-16)
In the case that A* can be written in terms of functions Ay (k=1,--- ,p—1) as
oAy 0Ap
a __ al--ap—1a . Y4 .
A= Z € P p— oy (D-17)

ai, - ,ap—1

the transformation laws of the p-dimensional volume preserving diffeomorphism
(D-14) and (D-15) are rewritten as

5Xl:{/117 7Ap—17Xi}7 (Dlg)
ox
or

ou’ =

_{Al7"' aAp—ly)\a}+{Al7"' )Ap—17ua}7 (D]-g)
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respectively. This system has the extra symmetry that u® =), oW is invariant
under the transformation

0A 0A,—
ab | _ a1--ap—_2ba 1 p—2
o - 1 Z 2 ) ' don 0o -2 Ap—
ai, - ,ap—
N W/ab _ Wab + Z 8C@abc’ (D-20)

where ©%¢ is an arbitrary antisymmetric function of o®.
Next, we write down the action integral of the super p-brane:

1 . .
/dp+1 DOXZ) ' Z {le’”‘ ’X’Lp}Q
p' 7;17"'77;17
4 SD()S—I— Z S’y“ “ip— 1{X“ 7AX—ip71,S}2 _ (D-21)

11 Sip—1

(P -

Here, S on the right-hand side is a spinor of SO(d — 2), and %""in-1 is a product of
Dirac v matrices. It is well known that super p-branes exist in space-times possessing
certain particular numbers of dimensions.2%)

Finally, we discuss an alternative formulation of bosonic p-branes. First, the
action (D-1) is rewritten as

/dﬁl \/ 1) {0, X g2, (D-22)
p

1, uu'p+l

where the symbol {f1,---, fp+1} is defined by

_ Qg 8f1 afp+1
{f1,-- ’prrl}: 1 Z 15 1 p+180-a1 .“8(70‘?“' (D-23)
Q1,0 ,Qp

Then by introducing the auxiliary field e = e(0), we can write down the following
action, which is classically equivalent to the above action (D-22):

1 1
s=5 o G, 2 (Ot xyiec) (02
1y 5 Mp+1

The action (D-24) is a p-brane generalization of the so-called Schild action.3?)
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