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We propose a generalization of cubic matrix mechanics by introducing a canonical triplet
and study its relation to Nambu mechanics. The generalized cubic matrix mechanics we
consider can be interpreted as a ‘quantum’ generalization of Nambu mechanics.

§1. Introduction

The study of a new, generalized mechanics beyond classical mechanics (CM)
and quantum mechanics (QM) is often regarded as ambitious, because QM has been
applied to very broad areas of physics with indisputable success. There is, however,
no strong reason to believe that QM is the unique mechanics to describe nature at a
fundamental level (around and beyond the gravitational scale). In fact, M-theory1) is
a promising candidate of a fundamental theory of nature, and there is an intriguing
proposal for a formulation of M-theory based on the infinite momentum frame,2)

deeply related to the quantum mechanics of supermembranes,3) but no complete
such formulation has yet been made. There is a possibility that an ultimate theory
requires a new mechanics combined with a configuration of fundamental objects.
Therefore it is still meaningful to construct a new, generalized mechanics and study
its properties.

Nambu proposed a generalization of Hamiltonian dynamics through the exten-
sion of phase space based on the Liouville theorem and gave a suggestion for its
quantization.4) The structure of this mechanics has been studied in the framework of
constrained systems5) and in geometric and algebraic formulations.6) There are sev-
eral works in which the quantization of Nambu mechanics (NM) is investigated.6)–11)

As an interesting approach, Awata, Li, Minic and Yoneya introduced many-index
objects to realize the quantum version of Nambu bracket.9)

Recently, a new mechanics has been proposed based on many-index objects,12)

which is a generalization of Heisenberg’s matrix mechanics, and its basic structure
has been studied from the algebraic point of view.13) The definition of the triple
product among three-index objects called ‘cubic matrices’ given in Ref. 12) is differ-
ent from that given in Ref. 9) in the respect that a generalization of the Ritz rule in
the phase factor is required, but the associativity of the products is not necessary.
This mechanics possesses a counterpart to the canonical structure in CM and can
be generalized through the extension of phase space modeling, following NM. It is
quite interesting to investigate this type of generalization and its relation to NM.

In this paper, we propose a generalization of cubic matrix mechanics, which we
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154 Y. Kawamura

refer to as ‘generalized cubic matrix mechanics’, by introducing a canonical triplet
and study the correspondence to NM. A conjecture concerning operator formalism
is also given.

Our strategy is almost the same as that in Ref. 13). In the next section, we
review the canonical structure of NM and discuss the basic structure that a mechanics
beyond NM should possess. We formulate a generalized cubic matrix mechanics and
study its structure from an algebraic viewpoint and its relation to NM in §3. Section
4 is devoted to conclusions and discussion.

§2. Nambu mechanics and beyond

2.1. Canonical structure of Nambu mechanics

Here we review the canonical structure of Nambu mechanics.4) For simplicity,
we treat a system with a 3-dimensional phase space whose variables are x = x(t),
y = y(t) and z = z(t). They satisfy the “Hamilton’s equations”

dx

dt
=

∂(K,H)
∂(y, z)

,
dy

dt
=

∂(K,H)
∂(z, x)

,
dz

dt
=

∂(K,H)
∂(x, y)

, (2.1)

where the right-hand sides represent 2-dimensional Jacobians, and K and H are the
“Hamiltonians”. Physical variables are given by functions of the canonical variables
and the time variable t; e.g., A = A(x, y, z, t), B = B(x, y, z, t), and C = C(x, y, z, t).
Hereafter we consider systems such that physical variables do not contain t explicitly,
that is, closed physical systems. The Nambu bracket of three variables A, B and C
with respect to x, y and z is defined by

{A,B, C}NB ≡ ∂(A, B, C)
∂(x, y, z)

, (2.2)

where the right-hand side represents a 3-dimensional Jacobian. Hence, the Nambu
brackets of the canonical variables are given by

{x, y, z}NB = 1, {x, x, z}NB = {x, y, y}NB = · · · = {z, z, z}NB = 0. (2.3)

The basic features of the Nambu bracket are as follows:

{A,B, C}NB = {B, C, A}NB = {C, A,B}NB

= −{C,B, A}NB = −{B, A,C}NB = −{A,C, B}NB, (skew-symmetry) (2.4)
{A + B, C, D}NB = {A,C, D}NB + {B, C, D}NB, (linearity) (2.5)
{{A, B, C}NB, D, E}NB = {{A, D, E}NB, B, C}NB + {A, {B, D, E}NB, C}NB

+ {A,B, {C, D, E}NB}NB = 0, (fundamental identity) (2.6)
{AB, C, D}NB = A{B, C, D}NB + {A,C, D}NBB. (derivation rule) (2.7)

By use of (2.1) and (2.2), the physical variable A is shown to satisfy the equation

dA

dt
= {A,K,H}NB. (2.8)
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We call a transformation A → A′ = C(A) that preserves the bracket structure
‘canonical’:

{A,B, C}NB −→ C({A, B, C}NB) = {C(A), C(B), C(C)}NB. (2.9)

The infinitesimal version A → A′ = A + δA is given by

δA = {A,G1, G2}NBδs, (2.10)

where G1 and G2 are generators of the transformation, and δs is an infinitesimal
parameter. We can show that the bracket structure is preserved under the transfor-
mation (2.10) by using the identity (2.6).

2.2. Beyond Nambu mechanics

The structure of Nambu mechanics is so elegant that it is natural to expect the
existence of a ‘quantum’ counterpart of NM. In this subsection, we present a conjec-
ture for the basic structure of a new mechanics beyond NM based on a requirement
that the algebraic structure of equations of motion and symmetry transformations be
preserved (up to anomalous breakings).

The above requirement is expressed as the following properties:
1. There are counterparts of the canonical variables in NM, which are denoted

X = X(t), Y = Y (t) and Z = Z(t), and physical variables are functions of X,
Y and Z in a closed system. There exists a counterpart of the Nambu bracket,
which we call the ‘generalized bracket’, and the bracket relations for X, Y and
Z are conditions that place restrictions on the phase space (like quantization
conditions in QM). The generalized bracket does not necessarily possess all
the algebraic properties of the Nambu bracket. However, at least it possesses
properties of skew-symmetry and linearity.

2. The equations of motion for physical variables are of the same type as those
in NM. More specifically, an equation of motion is obtained from the corre-
sponding equation in NM by replacing the Nambu bracket with the generalized
bracket.

3. There is a transformation that preserves the generalized bracket structure that
we call a ‘generalized canonical transformation’. The ‘fundamental identity’
analogous to (2.6) for the generalized bracket holds, including generators, which
are conserved quantities. Continuous symmetry transformations are realized as
generalized canonical transformations of conserved quantities.

Now we formulate the basic structure of a new mechanics based on the above
properties.

1. Let us denote the generalized bracket by B(∗, ∗, ∗) and impose the following
conditions on X, Y and Z:

B(X, Y, Z) = Θ,B(X, X, Z) = B(X, Y, Y ) = · · · = B(Z, Z, Z) = 0. (2.11)

Here Θ is a constant of motion, and the bracket of Θ and any conserved quan-
tities Λi vanishes; i.e. B(Θ, Λi, Λj) = 0. The skew-symmetry and linearity
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conditions are expressed by

B(A, B, C) = B(B, C, A) = B(C, A,B)
= −B(C, B, A) = −B(B, A,C) = −B(A, C, B), (2.12)

B(A + B, C, D) = B(A, C, D) + B(B, C, D). (2.13)

We do not necessarily require correspondences between the fundamental iden-
tity nor the derivation rule in NM as properties of B(∗, ∗, ∗) for generic variables.

2. The equation of motion for a physical quantity A is given by

dA

dt
= B(A, K,H), (2.14)

where K and H are the “Hamiltonians”.
3. A generalized canonical transformation is defined by the transformation A →

A′ = G(A), which preserves the structure of B(∗, ∗, ∗):
B(A, B, C) −→ G(B(A, B, C)) = B(G(A),G(B),G(C)). (2.15)

The infinitesimal version of (2.15) is written

δB(A, B, C) = B(δA,B, C) + B(A, δB, C) + B(A, B, δC), (2.16)

under the infinitesimal generalized canonical transformation A → A′ = A+ δA.
For conserved quantities G1 and G2 [i.e., dGi/dt = B(Gi, K, H) = 0], the
fundamental identity holds:

B(B(A, B, C), G1, G2) = B(B(A, G1, G2), B, C)
+ B(A,B(B, G1, G2), C) + B(A, B,B(C, G1, G2)). (2.17)

Then, a symmetry transformation is given by the infinitesimal generalized
canonical transformation,∗)

δA = B(A, G1, G2)δs. (2.18)

§3. Generalized cubic matrix mechanics

We have discussed the basic structure that a new mechanics beyond Nambu
mechanics should possess. It is expected that the study of NM will be helpful to
understand the structure of M-theory,1), 2) through the quantum theory of super-
membranes.3) For this reason, it is important to construct a ‘quantum’ version of
NM and study its features. In this section, we propose a new mechanics based on
cubic matrices, which is a generalization of the cubic matrix mechanics examined in
Refs. 12) and 13), and study its structure and the correspondence to NM.

∗) It is not certain whether every continuous generalized canonical transformation A → A′ =

G(A) can be constructed from the infinitesimal one given by δA = B(A, F1, F2)δs, where Fi are

generators. Here, we require the algebraic structure of symmetry transformations to be identical to

that in NM.
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3.1. Cubic matrix

Here we state our definition of a cubic matrix and its related terminology. A
cubic matrix is an object with three indices, Almn, which is a generalization of a
usual matrix, such as Bmn. We refer to a cubic matrix whose elements possess
cyclic symmetry, i.e., Almn = Amnl = Anlm, as a cyclic cubic matrix. We define
the hermiticity of a cubic matrix by Al′m′n′(t) = A∗

lmn(t) for odd permutations
among indices and refer to a cubic matrix possessing hermiticity as a hermitian
cubic matrix. Here, the asterisk indicates complex conjugation. A hermitian cubic
matrix is a special type of cyclic cubic matrix, because it obeys the relations Almn =
A∗

mln = Amnl = A∗
nml = Anlm = A∗

lnm. We refer to the following form of a cubic
matrix as a normal form or a normal cubic matrix:

A
(N)
lmn = δlmamn + δmnanl + δnlalm. (3.1)

A normal cubic matrix is also a special type of cyclic cubic matrix. The elements of
a cubic matrix are treated as c-numbers throughout this paper.

3.2. Generalized cubic matrix mechanics and its structure

The physical variables are cyclic cubic matrices given by

Almn(t) = AlmneiΩlmnt, (3.2)

where the angular frequency Ωlmn has the properties

Ωl′m′n′ = sgn(P )Ωlmn, (δΩ)lmnk ≡ Ωlmn − Ωlmk + Ωlnk − Ωmnk = 0. (3.3)

Here, sgn(P ) is +1 and −1 for even and odd permutations among indices, respec-
tively. The operator δ is regarded as a coboundary operator that changes k-th
antisymmetric objects into (k + 1)-th objects, and this operation is nilpotent, i.e.
δ2(∗) = 0.14) The frequency Ωlmn is regarded as a 3-cocycle, from the second equation
in (3.3).

If we define the triple product among cubic matrices Almn(t) = AlmneiΩlmnt,
Blmn(t) = BlmneiΩlmnt and Clmn(t) = ClmneiΩlmnt by

(A(t)B(t)C(t))lmn ≡
∑

k

Almk(t)Blkn(t)Ckmn(t) = (ABC)lmneiΩlmnt, (3.4)

this product takes the same form as (3.2), with the relation (3.3), which is a gen-
eralization of the Ritz rule.∗) We comment that the resultant three-index ob-
ject, (ABC)lmneiΩlmnt, does not always have cyclic symmetry, even if Almn(t),
Blmn(t) and Clmn(t) are cyclic cubic matrices. Note that this product is, in gen-
eral, neither commutative nor associative; that is, (ABC)lmn �= (BAC)lmn and
(AB(CDE))lmn �= (A(BCD)E)lmn �= ((ABC)DE)lmn. The triple-commutator is
defined by

[A(t), B(t), C(t)]lmn ≡ (A(t)B(t)C(t) + B(t)C(t)A(t) + C(t)A(t)B(t)
− B(t)A(t)C(t) − A(t)C(t)B(t) − C(t)B(t)A(t))lmn. (3.5)

∗) The Ritz rule is given by Ωln = Ωlm + Ωmn in QM, where Ωmn is the angular frequency of

radiation from an atom.
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The triple-anticommutator is defined by

{A(t), B(t), C(t)}lmn ≡ (A(t)B(t)C(t) + B(t)C(t)A(t) + C(t)A(t)B(t)
+ B(t)A(t)C(t) + A(t)C(t)B(t) + C(t)B(t)A(t))lmn. (3.6)

If Almn(t), Blmn(t) and Clmn(t) are hermitian matrices, i[A(t), B(t), C(t)]lmn and
{A(t), B(t), C(t)}lmn are also hermitian cubic matrices.

The generalized bracket is defined by use of the triple-commutator (3.5) as

B(A, B, C)lmn ≡ 1
i�C

[A(t), B(t), C(t)]lmn, (3.7)

where �C is a new physical constant. By definition, we find that the generalized
bracket (3.7) has the properties of skew-symmetry and linearity, as seen from the
relations

[A(t), B(t), C(t)]lmn = [B(t), C(t), A(t)]lmn = [C(t), A(t), B(t)]lmn

= −[C(t), B(t), A(t)]lmn = −[B(t), A(t), C(t)]lmn = −[A(t), C(t), B(t)]lmn, (3.8)
[A(t) + B(t), C(t), D(t)]lmn = [A(t), C(t), D(t)]lmn + [B(t), C(t), D(t)]lmn. (3.9)

Note that neither the fundamental identity nor the derivation rule necessarily holds
for generic variables. (See Appendix A for properties of the triple-commutator
[A, B, C].)

We impose the following conditions on the canonical triplet Xlmn(t), Ylmn(t) and
Zlmn(t):

[X(t), Y (t), Z(t)]lmn = i�CΘlmn,

[X(t), X(t), Z(t)]lmn = · · · = [Z(t), Z(t), Z(t)]lmn = 0. (3.10)

Here, Θlmn can be a normal cubic matrix, because the conditions should be imposed
time independently, and an arbitrary normal cubic matrix is a constant of motion,
as seen below.

The cyclic cubic matrix Almn(t) yields the generalization of the Heisenberg equa-
tion

d

dt
Almn(t) = iΩlmnAlmn(t) =

1
i�C

[A(t), K,H]lmn, (3.11)

where K and H are the Hamiltonians given by

Klmn = δlmkmn + δmnknl + δnlklm (3.12)

and

Hlmn = δlmhmn + δmnhnl + δnlhlm, (3.13)

respectively. By use of (3.12) and (3.13), Ωlmn can be written

Ωlmn =
1

�C

(
kmlhmn + knmhnl + klnhlm

− hmlkmn − hnmknl − hlnklm

)
. (3.14)
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Because the Hamiltonians Klmn and Hlmn are normal forms, we find that an arbitrary
normal cubic matrix A(N) is a constant of motion: i�CdA(N)/dt = [A(N), K, H]lmn =
0. The Hamiltonians are conserved quantities, and the time evolution of Almn(t) is
regarded as the symmetry transformation generated by them. The fundamental
identity with Klmn and Hlmn must hold in order to preserve the bracket structure
under the transformation. This requirement is equivalent to the requirement that
Ωlmn be a 3-cocycle, i.e., (δΩ)lmnk = 0. An extreme case in which Ωlmn is a 3-cocycle
is that in which klm = 1 or hlm = 1. When klm = 1, Klmn and Ωlmn can be written

Klmn = δlm + δmn + δnl, (3.15)

Ωlmn =
2

�C

(
h

(−)
lm + h(−)

mn + h
(−)
nl

)
, (3.16)

respectively. Here h
(−)
lm = 1

2(hlm − hml). In this case, our generalization of cubic
matrix mechanics is equivalent to ordinary cubic matrix mechanics∗) discussed in
Refs. 12) and 13).

Next, we consider the case that klm = −kml and hlm = −hml and both klm and
hlm are 2-cocycles, i.e., (δk)lmn = 0 and (δh)lmn = 0. In this case, we can show that
Ωlmn is a 3-cocycle, and then Ωlmn can be rewritten as

Ωlmn =
3

�C

(
kmlhmn − hmlkmn

)
. (3.17)

Rewriting this further, we have

Ωlmn = − 3
�C

(
(kplhpm − hplkpm) + (kpmhpn − hpmkpn)

+ (kpnhpl − hpnkpl)
)
, (3.18)

where p is arbitrary. The relation (3.18) shows that Ωlmn is a 3-coboundary, and
it leads to the conjecture that generalized cubic matrix mechanics can be reduced
to cubic matrix mechanics by a suitable change of Hamiltonians. We discuss a
simple example for variables that yield the generalized Heisenberg equation (3.11)
in Appendix B.

The generalized bracket structure (3.7) is preserved by the infinitesimal trans-
formation

δAlmn(t) =
1

i�C
[A(t), G(N)

1 , G
(N)
2 ]lmnδs, (3.19)

where G
(N)
1 and G

(N)
2 are normal cubic matrices and

˜
(G(N)

1 G
(N)
2 )lmn is a 3-cocycle.

Here, we use the fact that the fundamental identity holds for such normal cubic

∗) In cubic matrix mechanics, Klmn is given by Ilmn = δlm(1−δmn)+δmn(1−δnl)+δnl(1−δlm).

The difference between Klmn in (3.15) and Ilmn has no effect on the equations of motion, because

there is the identity [A, B, ∆]lmn = 0 for arbitrary cyclic cubic matrices A and B and ∆lmn =

δlmδmn.
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matrices G
(N)
1 and G

(N)
2 , so that

[[A, B, C], G(N)
1 , G

(N)
2 ]lmn = [[A, G

(N)
1 , G

(N)
2 ], B, C]lmn

+ [A, [B, G
(N)
1 , G

(N)
2 ], C]lmn + [A, B, [C, G

(N)
1 , G

(N)
2 ]]lmn. (3.20)

Further, we find that the derivation rule

[ABC, G
(N)
1 , G

(N)
2 ]lmn = ([A, G

(N)
1 , G

(N)
2 ]BC)lmn + (A[B, G

(N)
1 , G

(N)
2 ]C)lmn

+ (AB[C, G
(N)
1 , G

(N)
2 ])lmn (3.21)

holds for G
(N)
1 and G

(N)
2 if (ABC)lmn is a cyclic cubic matrix.

3.3. Correspondence to Nambu mechanics

We now discuss the relation between Nambu mechanics and generalized cubic
matrix mechanics from the viewpoint of the correspondence principle. First we
review the relation between classical mechanics and quantum mechanics. A physical
variable F (t) in CM is regarded as a linear combination of one-index objects (a 1×1
matrix) in the form

F (t) =
∑
n

FneiΩnt, (3.22)

where F ∗
n = F−n, because F (t) should be a real quantity, and the angular frequency

Ωn is an integer multiple of the basic frequency ω, i.e. Ωn = nω. By use of the fact
that the action variable J = 1

2π

∮
pdq is the canonical conjugate of the angle variable

ωt, the equation of motion for F (t) can be written

d

dt
F (t) =

∑
n

inωFneiΩnt = {F (t), H}PB, (3.23)

where {∗, ∗}PB is the Poisson bracket with respect to the canonical pair ωt and J ,
and we use Hamilton’s canonical equation for the angle variable,

d

dt
(ωt) = {ωt, H}PB =

∂H

∂J
. (3.24)

Under the guidance of Bohr’s correspondence principle, there is the following corre-
spondence between ω and Ωmn:

ω =
Ω∆n

∆n
⇐⇒ lim

∆n
n

→0

Ωn+∆nn

∆n
= lim

∆n
n

→0

En+∆n − En

�∆n
. (3.25)

Here, ⇐⇒ indicates the correspondence, and we use the Bohr frequency condition
�Ωmn = Em − En. We find that the equation on the right-hand side in (3.25)
corresponds to (3.24) with the Bohr-Sommerfeld quantization condition, J = �n.

Next, we study the ‘classical’ limit of generalized matrix mechanics based on
3-index objects, whose frequency condition is given by (3.17). We consider the case
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that a physical variable A(t) in NM is expanded as a linear combination of one-index
objects, so that

A(t) =
∑

n

AneiΩnt, (3.26)

where A∗
n = A−n and the angular frequency Ωn is an integer multiple of the basic

frequency ω, i.e. Ωn = nω. The equation of motion for A(t) is written

d

dt
A(t) =

∑
n

inωAneiΩnt = {A(t), K,H}NB, (3.27)

where {∗, ∗, ∗}NB is the Nambu bracket with respect to the canonical triplet J1, ωt
and J2, and we use “Hamilton’s equation” for the angle variable ωt,

d

dt
(ωt) = {ωt, K,H}NB =

∂(K,H)
∂(J2,J1)

. (3.28)

Here J1 and J2 are conserved quantities. (See Appendix C for the “Hamilton-
Jacobi formalism” of NM.) It is natural to assume the existence of the following
correspondence between ω and Ωlmn:

ω =
Ω∆N

∆N
⇐⇒ lim

∆l
l

, ∆n
n

→0

Ωll+∆ln

∆l∆n

= lim
∆l
l

, ∆n
n

→0

3(kl+∆llhn+∆nn − hl+∆llkn+∆nn)
�C∆l∆n

,

= − 3
�C

lim
∆l
l

, ∆n
n

→0

(kl+∆ln − kln

∆l

hln+∆n − hln

∆n

− hl+∆ln − hln

∆l

kln+∆n − kln

∆n

)
. (3.29)

Here, ∆N = ∆l∆n, ∆l = m − l, ∆n = m − n, ⇐⇒ indicates the correspondence,
and we use the frequency condition (3.17) with the property that klm and hlm are
2-cocycles. We find that the equation on the right-hand side in (3.29) corresponds to
(3.28) if J1 and J2 are quantized in analogy to the Bohr-Sommerfeld quantization
condition. In this way, the generalized cubic matrix mechanics can be interpreted as
a ‘quantum’ generalization of NM.

3.4. Conjecture on operator formalism

We have studied the structure of generalized cubic matrix mechanics using a
matrix formalism. This mechanics has an interesting algebraic structure, but the
formalism is not practical, because it is only applicable to stationary systems. From
experience, it is known that in order to be of practical use, operator formalism must
be capable of handling problems in a wider class of physical systems. By analogy to
quantum mechanics, we now give a conjecture on the operator formalism of gener-
alized cubic matrix mechanics. First, we make the following basic assumptions.
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1. For a given physical system, there exists a triplet of state vectors |m1; Pm1m2m3〉,
|m2; Pm1m2m3〉 and |m3; Pm1m2m3〉 that depend on both the quantum numbers
mi (e.g., these mi represent l, m or n) and their ordering. Here, the ordering
is represented by a permutation (denoted by Pm1m2m3) for a standard ordering
(e.g., m1 = l,m2 = m, m3 = n).

2. For every physical observable, there is a one-to-one correspondence to a linear
operator Â.

Under the above assumptions, it is natural to identify the cubic matrix element Almn

with Â|l; Plmn〉|m; Plmn〉|n; Plmn〉. In general, the quantity Am1m2m3 is identified
with Â|m1; Pm1m2m3〉|m2; Pm1m2m3〉|m3; Pm1m2m3〉. By use of (3.11), the following
equations of motion for the states are derived:

i�C
d

dt
|l; Plmn〉 =

∑
l′

|l′; Pl′mn〉[K, H](mn)
l′l ,

i�C
d

dt
|m; Plmn〉 =

∑
m′

|m′; Plm′n〉[K, H](nl)
m′m,

i�C
d

dt
|n; Plmn〉 =

∑
n′

|n′; Plmn′〉[K, H](lm)
n′n , (3.30)

where [K, H](mn)
l′l ≡ Kml′lHl′nl −Hml′lKl′nl, and we employ the Schrödinger picture.

By use of relations (3.12) and (3.13), [K, H](mn)
l′l can be written as

[K, H](mn)
l′l = (klmhl′n − hlmkl′n)δll′ . (3.31)

The equations (3.30) are regarded as a generalization of the Schrödinger equation.
The time evolution of state vectors is given by

|l; Plmn〉 = exp
(

i

�C
(klnhlm − hlnklm)t

)
|l; Plmn〉0,

|m; Plmn〉 = exp
(

i

�C
(kmlhmn − hmlkmn)t

)
|m; Plmn〉0,

|n; Plmn〉 = exp
(

i

�C
(knmhnl − hnmknl)t

)
|n; Plmn〉0, (3.32)

where the subscript 0 indicates that the state is that at an initial time. In the same
way, the time development of state vectors for the matrix element Amln is given by

|l; Pmln〉 = exp
(

i

�C
(knlhlm − hnlklm)t

)
|l; Pmln〉0,

|m; Pmln〉 = exp
(

i

�C
(kmnhml − hmnkml)t

)
|m; Pmln〉0,

|n; Pmln〉 = exp
(

i

�C
(knlhnm − hnlknm)t

)
|n; Pmln〉0. (3.33)

From (3.32) and (3.33), we can identify |l; Pmln〉 with the complex conjugate of
|l; Plmn〉. It is seen that this identification is consistent with the skew-symmetric
property of the phase factor in (3.2).
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§4. Conclusions and discussion

We have proposed a generalization of cubic matrix mechanics by introduc-
ing a canonical triplet and studied the structure of the mechanics and the rela-
tion to Nambu mechanics. The basic structure of generalized cubic matrix me-
chanics is summarized as follows. The infinitesimal symmetry transformation of a
physical quantity Almn(t), which is a cyclic cubic matrix, is given by δAlmn(t) =

1
i�C

[A(t), G1, G2]lmnδs. Here the triple-commutator is the counterpart of the Nambu
bracket in NM, and G1 and G2 are generators of the transformation, which are normal
cubic matrices. The time evolution of Almn(t) is regarded as the symmetry trans-
formation generated by the Hamiltonians Klmn and Hlmn, such that i�CδAlmn(t) =
[A(t), K,H]lmnδt, which is a generalization of the Heisenberg equation. A normal cu-
bic matrix, G

(N)
lmn, is a constant of motion; i.e., i�CdG

(N)
lmn/dt = [G(N), K, H]lmn = 0.

The fundamental identity and the derivation rule hold in the case that they contain
a special type of conserved quantities, G1 and G2, such as (3.20) and (3.21), and
the bracket structure is preserved under the symmetry transformation, as seen from
the fundamental identity. There is a correspondence between generalized cubic ma-
trix mechanics and NM, and hence our matrix mechanics can be interpreted as a
‘quantum’ version of NM. There is a simple system of harmonic oscillators described
by 3 × 3 × 3 matrices, which yield the generalization of the Heisenberg equation
(3.11), but this is not a non-trivial example entirely. The dynamical variables in
this system are essentially Xlmn(t) and Ylmn(t), and the introduction of a special
type of normal cubic matrices F i

lmn seems tricky. Moreover, the system can also
be described in terms of cubic matrix mechanics. It would be interesting to find a
non-trivial system, where all members of a canonical triplet are time-dependent and
satisfy (3.11), and study its dynamics and relation to reality. For this purpose, it
would be useful to explore a counterpart to the rigid rotator that yields the Euler
equation.

There still exist several obstacles that must be overcome before we can arrive at
a final formulation. For example, there is the conjecture that no global symmetry
exists in a quantum theory including gravity.15) If this conjecture holds, then we
would need a formulation including local symmetries. Another modification would
be necessary if we incorporate a gravitational interaction. The theory should be
formulated in a background-independent way, as the theory of general relativity.
Therefore, the scheme discussed in this paper can be interpreted as an effective
description of an underlying mechanics after fixing the background geometry and
ignoring dynamical degrees of freedom for the graviton.
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Appendix A
Features of Triple-Commutator

In this appendix, we study the properties of the triple-commutator [A, B, C] for
cyclic cubic matrices Almn Blmn and Clmn. This commutator is written

[A, B, C]lmn = Almn(̃BC)lmn + Blmn(̃CA)lmn + Clmn(̃AB)lmn

+ ([A, B, C])0lmn, (A.1)

where (̃BC)lmn and ([A, B, C])0lmn are defined by

(̃BC)lmn ≡ BlnnCnmn + BlmlClln + BmmnClmm

− BnmnClnn − BllnClml − BlmmCmmn (A.2)

and

([A, B, C])0lmn ≡
∑

k �=l,m,n

(
Almk(BlknCkmn − ClknBkmn)

+ Blmk(ClknAkmn − AlknCkmn) + Clmk(AlknBkmn − BlknAkmn)
)
, (A.3)

respectively. The features of (̃BC)lmn are as follows:

1. (̃BC)lmn possesses skew-symmetry with respect to permutations among indices:

(̃BC)lmn = (̃BC)mnl = (̃BC)nlm

= −(̃BC)nml = −(̃BC)mln = −(̃BC)lnm. (A.4)

2. If blm ≡ Bllm and clm ≡ Cllm are 2-cocycles, i.e, blm(= −bml) = bln + bnm and

clm(= −cml) = cln + cnm, then (̃BC)lmn is a 3-cocycle:

(δ(̃BC))lmnk ≡ (̃BC)lmn − (̃BC)lmk + (̃BC)lnk − (̃BC)mnk = 0. (A.5)

We can show the following relations from the above expressions and properties.
1. For arbitrary cyclic cubic matrices A and B, [A, B, ∆]lmn = 0 with ∆lmn =

δlmδmn.
2. For arbitrary normal cubic matrices B

(N)
lmn and C

(N)
lmn, the triple-commutator

among A, B
(N)
lmn and C

(N)
lmn is given by [A, B(N), C(N)]lmn = Almn

˜(B(N)C(N))lmn.
3. The triple-commutator among arbitrary normal cubic matrices A

(N)
lmn, B

(N)
lmn and

C
(N)
lmn is vanishing; that is, [A(N), B(N), C(N)]lmn = 0.

4. The fundamental identity holds if any two of A, B, C, D and E are normal

forms (e.g., D = D
(N)
lmn and E = E

(N)
lmn), and ˜(D(N)E(N))lmn is a 3-cocycle:

[[A, B, C], D(N), E(N)]lmn = [[A, D(N), E(N)], B, C]lmn

+ [A, [B, D(N), E(N)], C]lmn + [A, B, [C, D(N), E(N)]]lmn. (A.6)
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5. The derivation rule holds for normal cubic matrices D
(N)
lmn and E

(N)
lmn, so that

[ABC, D(N), E(N)]lmn = ([A, D(N), E(N)]BC)lmn + (A[B, D(N), E(N)]C)lmn

+ (AB[C, D(N), E(N)])lmn, (A.7)

if ˜(D(N)E(N))lmn is a 3-cocycle and (ABC)lmn is a cyclic cubic matrix.

Appendix B
Example

Here we study a simple example for variables that yield the generalization of the
Heisenberg equation (3.11). The variables are three kinds of cyclic 3×3×3 matrices
defined by

Xlmn(t) ≡ �C√
2
|εlmn|eiΩlmnt,

Ylmn(t) ≡ �C

i
√

2
εlmneiΩlmnt,

Zlmn ≡ − �C√
6

(
δlmεmn + δmnεnl + δnlεlm

)
, (B.1)

where each of the indices l, m and n runs from 1 to 3, εlmn is the Levi-Civita symbol,
and εlm =

∑
k εlmk. The above variables satisfy the relations

[X(t), Y (t), Z]lmn = −�2
CWlmn, [Y (t), Z, W ]lmn = −�2

CXlmn(t),
[Z, W, X(t)]lmn = �2

CYlmn(t), [W, X(t), Y (t)]lmn = −�2
CZlmn, (B.2)

where Wlmn is proportional to Ilmn and defined as

Wlmn ≡ i
�C√

6

(
δlm(1 − δmn) + δmn(1 − δnl) + δnl(1 − δlm)

)
. (B.3)

When we consider Xlmn(t), Ylmn(t) and Zlmn as a canonical triplet, the first relation
in (B.2) is regarded as the first condition in (3.10).

Next, we introduce normal cubic matrices defined by

Ei
lmn ≡ δlm(δi

m − δi
n) + δmn(δi

n − δi
l) + δnl(δi

l − δi
m), (B.4)

where i = 1, 2, 3. The quantity ei
lm ≡ δi

l − δi
m satisfies ei

lm + ei
mn + ei

nl = 0, because
ei
lm is a 2-coboundary. Further, there is the relation

ei
mle

j
mn − ej

mle
i
mn = −εijεlmn. (B.5)

The variables Xlmn(t), Ylmn(t) and Ei
lmn satisfy the relations

{X(t), Ei, X(t)}lmn = {Y (t), Ei, Y (t)}lmn = �2
CF i

lmn,

{X(t), F i, X(t)}lmn = {Y (t), F i, Y (t)}lmn = �2
CEi

lmn, (B.6)
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where F i
lmn are normal cubic matrices given by

F i
lmn = δlm(|εmn|δi

m − |εmni|) + δmn(|εnl|δi
n − |εnli|)

+ δnl(|εlm|δi
l − |εlmi|). (B.7)

Here, we use the formula of triple-anticommutator

{A,B, C(N)}lmn = Almn
̂(BC(N))lmn + Blmn

̂(AC(N))lmn

+ δlm

(∑
k

(AmnkBnmk + BmnkAnmk)cmk

)

+ δmn

(∑
k

(AnlkBlnk + BnlkAlnk)cnk

)

+ δnl

(∑
k

(AlmkBmlk + BlmkAmlk)clk

)
, (B.8)

where C(N) = δlmcmn + δmncnl + δnlclm and ̂(BC(N))lmn is defined by

̂(BC(N))lmn ≡ Blnncnm + Blmlcln + Bmmncml

+ Blmmcmn + Bnmncnl + Bllnclm. (B.9)

When the Hamiltonians are given by

Klmn = Ei
lmn, Hlmn =

1
3

�CΩEj
lmn, (B.10)

the frequency Ωlmn can be written

Ωlmn = −Ωεijεlmn, (B.11)

by use of (3.14). Then, the time-development of the variables Xlmn(t), Ylmn(t) and
Zlmn are given by

d

dt
Xlmn(t) =

1
i�C

[X(t), K,H]lmn = ΩYlmn(t), (B.12)

d

dt
Ylmn(t) =

1
i�C

[Y (t), K,H]lmn = −ΩXlmn(t), (B.13)

d

dt
Zlmn =

1
i�C

[Z, K,H]lmn = 0, (B.14)

where we take i = 1(2, 3) and j = 2(3, 1). We find that Xlmn(t) and Ylmn(t) describe a
harmonic oscillator from the above equations. The quantities K and H are expressed
in terms of Xlmn(t) and Ylmn(t) as∗)

Klmn =
1

2�2
C

(
{X(t), F i, X(t)}lmn + {Y (t), F i, Y (t)}lmn

)
,

Hlmn =
Ω

6�C

(
{X(t), F j, X(t)}lmn + {Y (t), F j , Y (t)}lmn

)
. (B.15)

∗) These expressions for K and H are not unique.

 at Shinshu U
niversity on Septem

ber 11, 2014
http://ptp.oxfordjournals.org/

D
ow

nloaded from
 

http://ptp.oxfordjournals.org/


Cubic Matrix, Nambu Mechanics and Beyond 167

It is known that equations of the same forms as (B.12) and (B.13) are derived in
cubic matrix mechanics.12) We have

d

dt
Xlmn(t) =

1
i�C

[X(t), I, H]lmn = ΩYlmn(t), (B.16)

d

dt
Ylmn(t) =

1
i�C

[Y (t), I, H]lmn = −ΩXlmn(t), (B.17)

where I and H are given by

Ilmn = δlm(1 − δmn) + δmn(1 − δnl) + δnl(1 − δlm),

Hlmn =
iΩ

6�2
C

[X(t), I, Y (t)]lmn,

= −1
6

�CΩ(δlmεmn + δmnεnl + δlnεlm). (B.18)

Appendix C
“Hamilton-Jacobi Formalism” for Nambu Mechanics

In this appendix, we study “Hamilton-Jacobi formalism” for Nambu mechanics.
The basic ingredient is the differential 2-form relation∗)

dS = xdy ∧ dz − KdH ∧ dt, (C.1)

where ∧ represents Cartan’s wedge product and S = S(y, z, t) is a differential 1-form.
Hamilton’s equations (2.1) are derived by taking the exterior derivatives of the above
equation (C.1):

0 = dx ∧ dy ∧ dz − dK ∧ dH ∧ dt. (C.2)

By use of the skew-symmetric property of the Nambu bracket and the equation of
motion (2.8), we find that the Hamiltonians K and H are constants of motion. The
trajectory of the physical system in the phase space (x, y, z) is determined by the
intersection of two surfaces, K(x, y, z) = k = const and H(x, y, z) = h = const.
Hereafter, we consider periodic motion on the intersection given by C(x, y) = const
and z = const for simplicity.

Next, we consider the canonical transformation from the canonical triplet (x, y, z)
to (J1, ωt,J2),

xdy ∧ dz − KdH ∧ dt = J1dθ ∧ dJ2 − K ′dH ′ ∧ dt + dW , (C.3)

where θ ≡ ωt is the angle variable, J2 = z, and W = W(y, z,J1, t) is a differential 1-
form called the ‘generating function’. With the relation W = αdβ and the equation
(C.3), we obtain the equations

x =
∂(α, β)
∂(y, z)

, θ =
∂(α, β)

∂(J1,J2)
,

∂(α, β)
∂(y,J1)

= 0, (C.4)

−K
∂H

∂y
=

∂(α, β)
∂(y, t)

, − K
∂H

∂z
+ K ′∂H ′

∂J2
=

∂(α, β)
∂(z, t)

, K ′∂H ′

∂J1
=

∂(α, β)
∂(J1, t)

. (C.5)

∗) It is known that the dynamics of relativistic strings are described by Hamilton-Jacobi formal-

ism based on a slightly different 2-form including two evolution parameters from (C.1).16)
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For a conserved system, we find that J1 and J2 are constants of motion from Hamil-
ton’s equations for J1 and J2:

dJ1

dt
=

∂(K ′, H ′)
∂(θ,J2)

= 0,
dJ2

dt
=

∂(K ′, H ′)
∂(J1, θ)

= 0. (C.6)

By solving the equations (C.6), we obtain the relations J1 = J1(k, h) and J2 =
J2(k, h).

Finally, we study the change in θ over a complete cycle of y, given by

∆θ =
∮

∂θ

∂y
dy =

∮
∂

∂y

∂(α, β)
∂(J1,J2)

dy =
d

dJ1

∮
∂(α, β)
∂(y,J2)

dy =
d

dJ1

∮
xdy, (C.7)

where we have used the equations (C.4). Because ∆θ = 2π, J1 is given by

J1 =
1
2π

∮
xdy. (C.8)

Hence, J1 corresponds to the action variable in CM. The period T of a complete
cycle of rotation is given by

T = 2π
∂(J2,J1)
∂(k, h)

, (C.9)

as seen from Hamilton’s equation for θ(= 2π
T t),

dθ

dt
=

∂(K ′, H ′)
∂(J2,J1)

. (C.10)
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