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FAITHFUL REPRESENTATIONS OF ASSOCIATION SCHEMES

AKIHIDE HANAKI

(Communicated by Jim Haglund)

Abstract. Every character of an association scheme can be considered as a
faithful character of some quotient scheme. Also we will show that a faithful
character of an association scheme determines a thin closed subset which is
cyclic as a finite group.

1. Introduction

Let G be a finite group and let χ be a character of G. We can consider that χ is
a faithful character of G/Ker(χ). If G has a faithful irreducible character, then the
center of G is cyclic. These are well known facts in group representation theory.
We will generalize them to characters of association schemes.

Every character of an association scheme can be considered as a faithful character
of some quotient scheme (Theorem 2.1). Also we will show that a faithful character
of an association scheme determines a thin closed subset which is cyclic as a finite
group (Theorem 3.1).

Let (X,S) be an association scheme in the sense of [7] or [3]. We will denote the
valency of s ∈ S by ns. Let T be a closed subset of S. Put eT = nT

−1
∑

t∈T σt.
Then eT is an idempotent of CS. It is known that C(S//T ) ∼= eTCSeT as algebras
by σsT �→ (nsT /ns)eTσseT (see [4]).

We denote the identity matrix by E.

2. Faithful representations

Let (X,S) be an association scheme, and let Φ : CS → Mn(C) be a representa-
tion of (X,S) affording a character ϕ. Define

K(Φ) = {s ∈ S | Φ(σs) = nsE}
and

K(ϕ) = {s ∈ S | ϕ(σs) = nsϕ(1)}.
It is known that K(Φ) = K(ϕ) (see [1, section 3]). Note that K(Φ) is closed but
not necessarily normal. We say that Φ or ϕ is faithful if K(Φ) = {1}.

If K(Φ) is a normal closed subset of S, then there is a natural algebra epi-
morphism π : CS → C(S//K(Φ)) and Φ can be considered as a representation of
S//K(Φ). But K(Φ) is not necessarily normal, and the natural map π : CS →
C(S//K(Φ)) is not an algebra homomorphism in general (see [6]).
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The next theorem is the main result in this section.

Theorem 2.1. Let (X,S) be an association scheme, and let Φ : CS → Mn(C) be a
representation of (X,S). Suppose that T is a closed subset contained in K(Φ). Then
we can define a representation Φ′ : C(S//T ) → Mn(C) by Φ′(σsT ) = (nsT /ns)Φ(σs).
Moreover, Φ′ is faithful if T = K(Φ).

Proof. If Ψ is an irreducible component of Φ, then K(Φ) ⊆ K(Ψ). Thus, without
loss of generality, we may suppose that Φ is irreducible.

Let ϕ be the character afforded by Φ. Let eϕ be the primitive central idempotent
of CS corresponding to ϕ. By the assumption on T , we have eϕeT = eϕ = eT eϕ.

We will show that Φ′ is well-defined. Suppose sT = uT . We have

1

ns
Φ(σs) = Φ(eϕ

1

ns
σseϕ) = Φ(eϕeT

1

ns
σseT eϕ)

= Φ(eϕeT
1

nu
σueT eϕ) = Φ(eϕ

1

nu
σueϕ) =

1

nu
Φ(σu).

This means that Φ′ is well-defined.
We show that Φ′ is an algebra homomorphism. We use the isomorphism C(S//T )

∼= eTCSeT and identify them. Then Φ′(eTσseT ) = Φ(σs). We have

Φ′((eTσseT )(eTσueT )) = Φ(σseTσu) = Φ(σseT )Φ(σu)

= Φ(σseT eϕ)Φ(σu) = Φ(σseϕ)Φ(σu)

= Φ(σs)Φ(σu) = Φ′(eTσseT )Φ
′(eTσueT ).

Finally, we will show that Φ′ is faithful if T = K(Φ). Suppose sT ∈ K(Φ′).
Then E = nsT

−1Φ′(σsT ) = ns
−1Φ(σs). So s ∈ K(Φ) and sT = 1T . Now Φ′ is

faithful. �

Corollary 2.2. Let (X,S) be an association scheme, and let ϕ be a character of
(X,S). Suppose that T is a closed subset contained in K(ϕ). Then nu

−1ϕ(σu) =
ns

−1ϕ(σs) for any u ∈ TsT .

Proof. This is obtained by the fact that Φ′ in Theorem 2.1 is well-defined. �

3. Faithful representations and closed subsets

Let (X,S) be an association scheme, and let Φ : CS → Mn(C) be a representa-
tion of (X,S) affording a character ϕ. Define

Z(ϕ) = {s ∈ S | |ϕ(σs)| = nsϕ(1)}.
Then Z(ϕ) is a closed subset of S containing K(ϕ) (see [2, Proposition 3.2 and
3.3]). For s ∈ S, s ∈ Z(ϕ) if and only if Φ(σs) = εsnsE for some root of unity εs.

The following theorem is a generalization of [5, Theorem 2.32 (a)].

Theorem 3.1. Let ϕ be a faithful character of (X,S). Then Z(ϕ) is thin and
cyclic as a finite group.

In the rest of this section, (X,S) is an association scheme and Φ : CS → Mn(C)
is a faithful representation of (X,S) affording a character ϕ. For u ∈ Z(ϕ) we
define a root of unity εu by Φ(σu) = εunuE or equivalently by ϕ(σu) = εunuϕ(1).
We need a lemma.

Lemma 3.2. If u, v ∈ Z(ϕ) and u �= v, then εu �= εv. Moreover, Z(ϕ) is thin.
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Proof. For u, v ∈ Z(ϕ), suppose εu = εv. Then Φ(σu)Φ(σv∗) = nunv∗E. Now
w ∈ K(ϕ) = {1} for any w ∈ uv∗. So uv∗ = {1}. This means that u = v and u is
thin. �
Proof of Theorem 3.1. If ξ is an irreducible constituent of ϕ, then Z(ϕ) ⊆ Z(ξ). So
we may suppose that ϕ is irreducible. We consider Z(ϕ) as a finite group. Then, by
Lemma 3.2, σu �→ εu is an irreducible faithful character of an abelian group Z(ϕ).
So Z(ϕ) is cyclic. �

We remark that if ϕ is a faithful irreducible character of a finite group G, then
Z(ϕ) is just the center of G. But for a character of an association scheme, it is not
true in general.
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