Infinitely many shape invariant potentials and new orthogonal polynomials
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Abstract
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Three sets of exactly solvable one-dimensional quantum mechanical potentials are presented. These are shape invariant
potentials obtained by deforming the radial oscillator and the trigonometric/hyperbolic Péschl-Teller potentials in terms
of their degree ¢ polynomial eigenfunctions. We present the entire eigenfunctions for these Hamiltonians (¢ = 1,2,...)

(C\J in terms of new orthogonal polynomials. Two recently reported shape invariant potentials of Quesne and Gémez-Ullate
G)et al.’s are the first members of these infinitely many potentials.
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1. Introduction

h 22

() In this Letter we present two infinite sets and one fi-
I_ ‘nite set of exactly solvable one-dimensional quantum me-
chanical Hamiltonians. As the main part of the eigenfunc-
tions, a new type of orthogonal polynomials is obtained
E for each Hamiltonian. They are exactly solvable by com-
—'bining shape invariance [1] with the factorisation method

[2,13] or the so-called supersymmetric quantum mechanics
~ '[4]. Then the entire energy spectrum and the correspond-
O\l ing eigenfunctions can be obtained algebraically. However,
\S—' these new shape invariant Hamiltonians do not possess the
)

ath

exact Heisenberg operator solutions [5], in contrast to most
. 'of the known shape invariant Hamiltonians.

Shape invariance is a sufficient condition for exactly
solvable quantum mechanical systems. Based on one shape
invariant potential, an infinite number of exactly solvable

=" ‘potentials and their eigenfunctions can be constructed by

.—_ a modification of Crum’s method [6, [7]. But these newly
derived systems fail to inherit the shape invariance, nor
do they possess Heisenberg operator solutions. Although
several shape invariant ‘discrete’ quantum mechanical sys-
tems are added to recently [&], the catalogue of the shape
invariant potentials was rather short for a long time. In
2008, Quesne [9] reported two new shape invariant po-
tentials based on the Sturm-Liouville problems for the
Xj-Laguerre and the X;-Jacobi polynomials proposed by
Gémez-Ullate et al. [10].

Here we present our preliminary results on the three
sets of shape invariant potentials and the corresponding
new types of orthogonal polynomials, without proof. Af-
ter brief introduction of notation and the shape invariance
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method, they are obtained by deforming the well-known
shape invariant potentials, the radial oscillator and the
Darboux-P6schl-Teller [11, [12] potentials, in terms of the
degree ¢ polynomial eigenfunctions, i.e. the Laguerre and
the Jacobi polynomials. The eigenpolynomials of the new
Hamiltonians are orthogonal polynomials starting from de-
gree £, which could be called X, polynomials. The Quesne-
Goémez-Ullate et al. examples [9, [10] correspond to the
¢ =1 cases.

2. General setting: shape invariance

The starting point is a generic one-dimensional quantum
mechanical system having a square-integrable groundstate
together with a finite or infinite number of discrete energy
levels: 0 = & < & < & < ---. The groundstate energy
&o is chosen to be zero, by adjusting the constant part of
the Hamiltonian. The positive semi-definite Hamiltonian
is expressed in a factorised form |2, |3, |4]:

H=ATA=p*+U(z), p=—id,, (1)
A9, —w'(z), AT =-0, (), (2)
U(z) ¥ w'(2)? + w’ (2). (3)

For simplicity of presentation we have adopted the unit
system in which & and the mass m of the particle are such
that h = 2m = 1. Here we call a real and smooth function
w(z) a prepotential and it parametrises the groundstate
wavefunction ¢g(x), which has no node and can be chosen
real and positive, ¢o(z) = e, It is trivial to verify
Ago(x) =0 and Heo(z) = 0.

Shape invariance, a sufficient condition for exact solv-
ability [1], is realised by specific dependence of the po-
tential, or the prepotential on a set of parameters A =
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(A1, A2, . ..), to be denoted by w(z; A), AX), H(A), En(A),
etc. The shape invariance condition to be discussed in this
Letter is

ANANT = AN+ 8)TAN+8) +EN), (4)
w' (3 0)2 —w” (23 \)
=w'(1; A+ 8) + w" (7 A + ) + E1(N), (5)

in which § is a certain shift of the parameters. Then the
entire set of discrete eigenvalues and the corresponding
eigenfunctions of H = H(A)

is determined algebraically [1, 4, |]:

n—1
En(N) =D E1(A+ kD), (7)
k=0
b (23 0) o AN)TAN+8)T- - AN+ (n — 1)8)1

% ew(w;)\eri)' (8)

3. The radial oscillator

Here we present an infinite number of shape invariant
potentials indexed by a non-negative integer £ = 0,1, 2, . . ..
For ¢ = 0, it is the well-known radial oscillator, or the har-
monic oscillator with a centrifugal barrier potential, with
A=g>0:

—1
H0(9)2P2+$2+%—1—297 (9)
wo(x;g) = —%xz +glogz, 0<z<o0. (10)

Here we adopt the notation of our previous work [3]
§III.A.1. The shape invariance, the Heisenberg opera-
tor solution and the creation-annihilation operators of the
above Hamiltonian are discussed in some detail there. It
is trivial to verify (@) with § =1, £1(g) = 4 and we obtain
the equidistant spectrum and the corresponding eigenfunc-
tions n =0,1,2,...,

Enlg) = 4n, (11)
. _ 2. wo (x;9) . _ r(g=3%)

On(2;9) = Pu(2™g)e , Pa(;9) = Lo *(2). (12)
The polynomial eigenfunctions are the Laguerre polynomi-
als in 22, which are orthozgonal with respect to the measure
¢o(x)2 — 2wo(wg) — p—a" 129

For each positive integer £ > 1, let us introduce a pre-
potential and a Hamiltonian:

Colarg) LI (<), (13)
&(2%941)

52(332;9) 7
Ae(N) €0, — wi(a3X), AN = —0,— wj(z; A), (15)
Ho(A) L A (AT A (N). (16)

we(@; g) = wolw; g+ €) + log (14)

Since the polynomial & (z2;g) has no zero in the domain
0 < x < oo, the prepotential and the potential are smooth
in the entire domain. It is straightforward to verify the
shape invariance condition () with § =1, £,1(g) = 4. By
using (B)) as a Rodrigues type formula, we obtain the com-
plete set of eigenfunctions with the equidistant spectrum:

He(g)ben(7;9) = Een(g)ben(r;g), n=0,1,..., (17)
g&n(g) = gn(g + é) =4n, (18)

def €Wo(@g+E)
Gon(x59) = Prn(a”; 9)he(x), Po(x) = Qg (19)
Pyn(z19) € €0 g + 1) Pa(xig +0)
—&-1(759 +2)Po1(z;9 + 0). (20)

Obviously we have Py o(z;g) = &e(z;9 + 1) and ¢r0(x; 9)
= ¢w¢(#:9) The polynomial eigenfunction Py, (z?;g) is a
degree ¢ + n polynomial in z2? but it has only n zeros in
the domain 0 < x < co. These polynomials are orthogonal
with respect to the measure 1, (z; g)*:

/ dxwz(m;g)2PZ,n(x2;g)PZ,m(xQ;g)
0

= %(n—i—g—i— 20— 5)T(n+g+L€—3)0nm. (21)
They form a complete basis of the Hilbert space just like
the Laguerre polynomials in the £ = 0 case. These new
types of polynomials do not satisfy the three term recur-
rence relation, a characteristic feature of all the ordinary
orthogonal polynomials. It should be stressed that all four
terms in (20) are the Laguerre polynomials of the same in-
dex, g+ ¢ — 1/2. The action of the operators A¢(g) and
A¢(g)" on the eigenfunctions are:

Af(g)(bﬁ,n(x;g) = _2¢Z7n71(x;g + 1)7
Ae(9) ben—1(z;9 + 1) = —2n¢¢ (25 9). (22)

For ¢ = 1 the Hamiltonian reads

1
H1(9)=p2+m2+%—3—29

4 4(29 + 1)
2yt (224g+1)7

which is equivalent to that of the shape invariant poten-
tial of Quesne eq.(8) of [9] with the replacement w — 2
and | — g. The formula ([20) expressing the polynomial
eigenfunctions in terms of the Laguerre polynomials is the
generalisation of Gémez-Ullate et al.’s [10] relation eq.(80)
between the X;-Laguerre and the Laguerre polynomials.

4. Darboux-Po6schl-Teller potential

Here we present another infinite number of shape in-
variant potentials indexed by a non-negative integer £ =



0,1,2,....
potential [12], with two positive parameters A =
-1 h(h -1

sin® x cos? x

For ¢ = 0, it is known as the Pdschl-Teller

(9, h):

—(g+n)?  (23)

wo(z; A) = glogsinz + hlogcosz, 0<z< g (24)
We again follow the notation of our previous work [3]
§III.A.2. The shape invariance, the Heisenberg opera-
tor solution and the creation-annihilation operators of the
above Hamiltonian are discussed in some detail there. Ap-
parently, it was Darboux [11] who first introduced this po-
tential, although the coupling constants were restricted to
positive integers only. It is trivial to verify the shape in-
variance condition (Bl with é = (1,1), &1(A) = 4(14+g+h)
and we obtain the quadratic energy spectrum and the cor-
responding eigenfunctions n = 0,1, ...,

Sn(A) = 4”(” +9g+ h)a (25)
bn(x;A) = Py (cos2x; A) 0@
Pu(z;A) = P22 (), (26)

The polynomial eigenfunctions are the Jacobi polynomials
in cos 2z, which are orthogonal with respect to the measure
Po(z; X)? = e2wo (@A) = (sin 2)29(cos x)?".

For each positive integer £ > 1, let us introduce a pre-
potential and a Hamiltonian (IH)—-(I6]) together with the
restriction on the parameters, h > g > 0O:

def =1 hye—3

*(x), (27)

. &o(cos2x; A 4 9)
wo(x; A+ £8) + 1 el ) (28)

E(mn) & poT

we(x; X) def

Since the polynomial & (cos2x; A) has no zero in the do-
main 0 < x < 7, the prepotential and the potential are
smooth in the entire domain. It is straightforward to verify
@) with 6 = (1,1), Eg1(A) =4(1 +2¢+ g+ h). The eigen-
values and the eigenfunctions of H¢(A) have the following
form:

He(N)pen (25 A) = Ern(N)den(z;A), n=0,1,..., (29)
EonN) =E(A+108) =4n(n+20+ g+ h), (30)
(b[ n( ) PLn(COS 237, )¢g($,)\), (31)

def ewo(w;)\JrZB)
Ye(z; ) = ma (32)
Py (z; )\) = agn(x AP (x; A+ £9)
+ be (3 N) P (2 A + £0), (33)

an(w:N) = E(wig+1,h+1)
2n(—g+h+0—1)&_1(x;9,h + 2)
(—g+h+20-2)(g+h+2n+20-1)
~ n(2h+40—-3)&—2(z;9+1,h+3) (34)
(29+2n+1)(—g+h+20-2) °
bon(z: )\)d_ef( g+h+0—-1)(29+2n+20—1)
" (29+2n+1)(g+h+2n+20-1)

x &—1(w59,h +2). (35)

The polynomial eigenfunction Py, (z;A) is a degree £ +n
polynomial in x and we have Pyo(x;A) = &(z; A + 9)
and ¢y o(z;A) = e @M Again Py, (cos 2x; A) has only
n zeros in the domain 0 < x < 3. It should be stressed
that Py, (z;A) are polynomials in the coupling constants
g,h. They are orthogonal with respect to the measure

"/’f(x?)‘)gv

/ ’ dx e (x; A)ng,n (cos 2x; )\) Py, (cos 2x; )\)

0

 Pln+g+L+3P(n+h+0+3)

20l (2n4g+h+200(n+ g+ h+20)
mn+g+0+3)(n+h+20—3)

n+g+2)n+h+e-13)

577,m7 (36)

and they form a complete basis of the Hilbert space just
like the Jacobi polynomials in the ¢ = 0 case. The action
of the operators Ay(A) and A;(A)T on the eigenfunctions
are:

AN den(T;A) = —=2(n+20+ g+ h)pon_1(z; X+ 8),
AN 1 (z; X+ 8) = —2ndg (25 N). (37)
For ¢ = 1 the Hamiltonian reads explicitly as

h(h+1)
cos? x

1
Hy(n) = p? 4+ 9D
100

8(g+h+1) B
14+g+h+(g—h)cos2x

—(2+g+h)?

8(2g+1)(2h +1)
(14+g+h+(g—h) cos2x)?’

which is equivalent to that of the shape invariant potential
of Quesne eq.(11) of [9] with the replacement A — % (g +
h)+1, B — f(h—g) and  — 2(¥ —z). The formula (33)
expressing the polynomial eigenfunctions in terms of the
Jacobi polynomials is the generalisation of Gémez-Ullate
et al.’s [10] relation eq.(56) between the X;-Jacobi and the
Jacobi polynomials.

5. Hyperbolic -Po6schl-Teller potential

The next example provides only a finite number of shape
invariant potentials, as many as the existing bound states
of the starting Hamiltonian with the hyperbolic Poschl-

Teller potential with A = (g, h), h > g > 0:
-1 h(h+1
Mo =2+ LD IS g (3
sinh® z cosh” z

wo(z; A) = glogsinhx — hlogcoshz, 0 <2 < co. (39)

As the name suggests, it is the hyperbolic function version
of the Darboux-Pd&schl-Teller model discussed in the pre-
ceding section. It is trivial to verify (@) with 6 = (1,—1),
E1(A) = 4(h — g — 1). We obtain the quadratic en-
ergy spectrum and the corresponding eigenfunctions n =



0,1,...,np % [(h—g)/2], expressed in terms of the Jacobi

polynomials:
EnN)=4dn(h—g—n), n=0,1,2,...,n5, (40)
Gn(;A) = Py, (cosh2z; X) 0@
Po(w; A) = P30 (g, (41)

Here [z]’ denotes the greatest integer not equal or exceed-
ing x. These finite number of polynomials in cosh 2z are
square integrable and are orthogonal with respect to the
measure ¢g(x; X)? = e2%0(#A) = (sinh x)?9 (cosh z) 2",

For each positive integer 1 < ¢ < np, let us introduce a
prepotential and a Hamiltonian (I5])—(T6):

of (—g—t—i _hio-3

Solas ) E RTTTET g, (42)

&o(cosh2z; A + 9)
&o(cosh 2x; A)

Since the polynomial &(cosh2x;A), 1 < ¢ < ng, has
no zero in the domain 0 < x < oo, the prepotential
and the potential are smooth in the entire domain. It
is straightforward to verify (&) with 6 = (1, —1), £¢,1(A) =
4(h — g — 2¢ — 1). The repetition of the shape invariant
transformation we(z; ) — we(z; A+9) is unlimited for the
previous two examples. For the hyperbolic Péschl-Teller
Hamiltonian H,(A), the maximal repetition is ng — ¢. Be-
yond that point, the transformed Hamiltonian no longer
possesses a bound state. The maximal ¢ case, Hy,, has
only one bound state, which is exactly calculable, and the
transformed one has none. The energy spectrum is

EonA) =E(A+L08) =4n(h— g — 20 —n),
n=20,...,ng— L. (44)

Using the same notation as 29) and BI)-(@33) with the
replacement cos 2z — cosh 2z, the eigenfunctions are

we(z; A) L wo (a3 X + £8) + log . (43)

agn(t;A) E &g+ 1,0 — 1)
2n(=g—h+{—-1)&- 1(x;9,h —2)
(—g—h+20-2)(g—h+2n+2(-1)
_ n(_2h+4€_3)§€72(xvg+17h_3) (45)
(29+2n+1)(—g—h+20—-2)
of (—g — —1)(2 2 20—1
bgn(x;)‘)d:f( g—h+0—-1)29+2n+20—1)
: (29+2n+1)(g—h+2n+20-1)
x &—1(z39,h —2). (46)
The polynomials { P, ,(x; A)} are orthogonal with respect
to the measure 1(z;A)2. The action of the operators
A(X) and A¢(A)T on the eigenfunctions are:

Ae(N)pon(a;A) = =2(h — g — 2l = n)drn—1(z; X + ),
Ag()\)Tm,n_l(m; A+ 0) = —2n¢pn(z; N). (47)

The ¢ = 1 Hamiltonian reads

8(h—g—1) 8(29+1)(2h — 1)

1+g—h+(g+h)cosh2z  (1+g—h+(g+h)cosh2z)?

+

6. Summary and Comments

By deforming two well-known shape invariant poten-
tials in terms of their eigenpolynomials, two infinite sets of
shape invariant potentials are obtained. Their eigenpoly-
nomials form new types of orthogonal polynomials starting
with degree ¢, which is the degree of the polynomial used
for deformation. It would be interesting to try to deform
other shape invariant potentials in a similar way. It is a
good challenge to clarify various properties of these new
polynomials, e.g. generating functions, the Gram-Schmidt
construction, substitutes of the three term recurrence re-
lations, etc., and to pursue possible physical applications.

The forward shift operator F, and the backward shift
operator By are defined by

FoA) Z (s X+ 8)71 0 Ag(A) 0 the(z; N),
BeA) ()7 o AN o (i A+ 6),  (49)

and their action on the eigenpolynomials P ,, can be read
from @22)), B7) and {@T).

The ¢ = 1 Hamiltonian H1(A) [@8) for the deformed hy-
perbolic Poschl-Teller potential is equivalent to the ‘new
extended potential’ (9) of Bagchi et al.’s paper [13] with
the replacement A — $(h —g) —1, B — 3(h + g) and
x — 2z. We thank C. Quesne for pointing this out. After
submitting the present Letter for publication, a new paper
appeared [14], which discussed the ¢ = 2 deformed Hamil-

tonian Ha(A) (IB)-86) with [I3)-I4) or [27)-(28)), and
other potentials related to the Xy-Laguerre or Xs-Jacobi
polynomials.
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