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Abstract

We will consider structures of Terwilliger algebras of direct and wreath prod-
ucts of association schemes. In general, it is difficult to determine the struc-
ture of the Terwilliger algebras though they are known to be semisimple
C-algebras. But, we get the structure of Terwilliger algebras of these cases
under some assumptions.
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1. Introduction

The Terwilliger algebra is a new algebraic tool for the study of associa-
tion schemes, introduced by Terwilliger in 1992 [6], [7] and [8]. In a sense,
Terwilliger algebras can contain combinatorial information more than adja-
cency algebras. However, we don’t know general theory for the structure of
Terwilliger algebras. In general, it is difficult to determine irreducible rep-
resentations of Terwilliger algebras although the algebras are known to be
semisimple over the complex number field.

In [2], Bhattacharyya et al. determined the structure of Terwilliger alge-
bras of repeated wreath products of class-one schemes. They computed all
irreducible representations concretely. In this article, we will determine all
irreducible representations of wrath products of arbitrary schemes by class-
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one schemes or thin schemes using information of smaller schemes. The main
result in [2] is obtained by repeating our result.
2. Association schemes and Terwilliger algebras

Let X be a finite set, S a collection of non-empty subsets of X x X. We
say that (X, S) is an association scheme if the following conditions hold:

—_

(1) Ugegs =X x X and sNt =0if s #t.

(2) Put 1 ={(z,z) |z € X}. Then, 1 € S.

(3) For s € S, put s* ={(y,x) | (z,y) € s} € S. Then s* € S.
(4)

4) For all s,t,u € S and all z,y € X,

pa=Hze X |(z,2)€s, (z,y) €t}
is constant whenever (z,y) € u.

We call pl_. the valency of S and write it by n,.

Let (X, S) denote an association scheme. Let Mx(C) denote a C-algebra
of matrices with complex entries, where the rows and columns are indexed
by elements in X. For s € S, let o5 denote the matrix in Mx(C) that has

entries
1 if (z,y) € s,
(US)wy = .
0 otherwise.

We call o, the adjacency matriz of s € S.
Then @, .4 Co, becomes a subalgebra of Mx(C) by the condition (4).
We call @, s Co, the adjacency algebra of S, and write it by &7(S).

Definition 2.1 (thin scheme). Let G is a finite group. For each g € G, put
sg={(a,8) € GxG|a'f =g} Then (G,{s, | g € G}) is an association
scheme. We call this a thin scheme.

Definition 2.2 (class-one scheme). Let X is finite set. We define relations
1 =A{(z,z) | x € X} and t = {(z,y) | * # y}. Then (X,{1, t}) is an
association scheme. We call this a class-one scheme.

Let (X,S) be an association scheme. For U C X, we denote by ¢y the
diagonal matrix in My (C) with entries (ey)z, = 1 if x € U and (ep)ze = 0
otherwise.



The Terwilliger algebra of (X, S) with respect to xy € X is defined as a
subalgebra of Mx(C) generated by {os | s € S} U {e4,s | s € S} (see [6],[7],
and [8]). The Terwilliger algebra will be denoted by 7 (X, S, zq) or .7(5)
briefly. Since 27(S) and 7 (S) are closed under transposed conjugate, they
are semisimple C-algebras. The set of irreducible characters of .7 (S) and
</ (S) will be denoted by Irr(.7(S)) and Irr(e/(S)), respectively. The trivial
character 1) of < (S) is a map o5 — n, and the corresponding central
primitive idempotent is | X|~!Jx, where Jx is the all-one matrix. The trivial
character 15y of 7 (S) corresponds to the central primitive idempotent
> ses My €asIxEags Of T(S). For x € Irr(/(S)) or Irr(7(S)), ey, will be
the corresponding central primitive idempotent of 27(S) or .7 (5).

For Y C X and s € S, set

sy =sN(Y xY)

and set

Sy ={sy | s €S, sy #0}.

In general, (Y, Sy) is not necessary an association scheme. When (Y, Sy)
is an association scheme, we say that Y induces an association scheme

(Y, Sy).

3. Terwilliger algebras of direct products

Let (X, S) and (Y, T) be association schemes. We will consider the direct
product (X x Y, S x T) of (X,S) and (Y,T') (for example, see [5]). The
adjacency matrix of (s,t) € S x T is given by the Kronecker product o, ® oy.

We fix zp € X and yy € Y and consider the Terwilliger algebras of
(X, S) and (Y, T) with respect to z and yo, respectively. We will determine
the structure of the Terwilliger algebra of (X x Y, S x T') with respect to

(‘r07 yU)
Theorem 3.1. We have

y(X X KS X Ta (xl)?yO)) = L7()(7 57 3:0) ® 9(Y7 T7 y0)
C

Proof. First we confirm notation. We will consider .7 (S x T') C Mxyxy(C)
and 7 (S) ®c T (T) C Mx(C) ®@c My(C) = Mxyy(C). We will identify



Mx y (C) with Mx(C) ®c My (C) by the natural way and prove that 7 (S x
T)=9(5)®c T(T).

For (s,t) € SX T, 050y = 0s @0y € T(S) ®c J(T). For (s,t) € S x T,
E@owo)(st) = Emosxyot = Ezos @ Eyot € T(S) ®@c F(T). Since T (S x T)
and 7 (S) ®c 7 (T') are algebras and 7 (S x T') is generated by o(,’s and
E(wowo)(s,t) S, We can say that 7 (S x T) C 7 (S) ®@c J(T).

For s € S,

0, ® Iy = O(s,1) € 9(5 X T)
and
Exzos & Iy = ExpsxY = stosxyot = 25105 ® Eyot € y(S X T)
teT teT

Now, for an arbitrary a« € 7(5), a® Iy € 7(S x T). Similarly, for
an arbitrary f € 7 (1), Ix®@p e T(SxT).Soa®f=(@®p)=(a®
Iy)(Ix®pB) € T(SxT). We can say that 7 (S)®c 7 (T) C T(SxT). O

4. Wreath products

Let (X,S) and (Y,T) be association schemes. For s € S, set § =

{((z,y), (@' y)) | (z,2") € s, y € Y} Fort €T, set t = {((,9),(«",y)) |
r, o € X, (y,y) € t}. Alsoset SiT ={5]|se Stu{t|teT\{1l}}
Then (X x Y,ST) is an association scheme and called the wreath product
of (X,9) by (Y,T) (see [5]). For the adjacency matrices, we have

05 =0,Q1y, op=Jx Qo0

where [y is the identity matrix and Jy is the all-one matrix. We fix g € X
and yp € Y. Note that

(z0,%0)8 = (z0s,90) = {(z,%0) | © € wos},
(zo,y0)t = (X,y0t) ={(z,y) | v € X, y € yot}

and

E(z0,y0)3 = Exps @ Eyols

E(zopo)t = ZseS Ezos @ Eyot = Ix ® Eyot-

The structure of Terwilliger algebras of wreath products of association
schemes was studied in [2]. We will give a generalization of their results.
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4.1. Central primitive idempotents

Let (X,S) and (Y,T) be association schemes. Fix xyp € X and yo € Y
and consider the wreath product (X x Y, S T). In the rest of this section,
we assume that (Y,7) is a thin scheme or a class-one scheme. Set F(*) =
(z0,y0)t = (X, yot) and UY = (SUT)(uyye) for t € T. If (Y, T) is a thin
scheme, then (F'®) U®) is naturally isomorphic to (X,S) for every t € T.
If (Y,T) is a class-one scheme, then (F®), UM) is naturally isomorphic to
(X,S) and (F® U®) is isomorphic to the wreath product of (X, S) by the
class-one scheme (Y’,T") where Y’ = Y — {y}. So, for both cases, F®
induces an association scheme for every t € T

For x € rr(7(UW)) \ {1 7@}, set

éX :€X®€{y0} € y(SZT)

Then clearly €, is an idempotent of .7 (S T).

For t € T\ {1} and ¢ € Trr(o/ (UM)) \ {1 @y}, we will determine an
idempotent. If (Y, 7)) is thin, then we put e, = e, ® €, and this is an
idempotent of .7 (S T). Suppose that (Y,T) is a class-one scheme. Then
U® is a wreath product of S and a class-one scheme. By [3] and [5], we can
determine the set of all central primitive idempotents of U®. It is given by

{ew ® eyor | € Trr( o/ (S)) \ {Lars) U {IX| T x ® ey | v € Trn( (T7))

Naturally, we can see that they are idempotents of .7 (S T). So we can
define an idempotent é, of 7 (S T) for ¢ € Irr(/(U®D)) \ 1w}
We will show the following theorem.

Theorem 4.1. Let (X,S) and (Y, T) be association schemes. Suppose that
(Y, T) is a thin scheme or a class-one scheme. Fiz xo € X and yo € Y, and
consider the wreath product (X x Y, SU1T). Then

{er} U {& | x €(TUMNN\ {1y}t
U U {e, | ¢ € Irr(a (UM)) \ 1w}

teT\{1}
is the set of all central primitive idempotents of T (X xY, ST, (xo,4))-
To prove Theorem 4.1, we need some lemmas.

Lemma 4.2. For x € Irr(Z (UMW) \ {1,pwy}, &y is a central idempotent
of 7(S1T).



Proof. It is enough to show that ¢, = e, ®ey,,}; commutes with o, ®@ Iy, Jx ®

or (T # 1), €a9s @ Eqyey and Ix @ gy (t#1).
By the form of €155 We have Jx = 619<5)Jx = JXelg(S). So we have
exJx = Jxe, = 0. So we can see that

(exy ®egyoy) (Ix ® o) = (Jx ® 0¢)(ey ® €gyy) = 0.
For t € T'\ {1}, since e(yp}eypt = EyotEyo} = 0, We have

(€X @ 6{3/0})([)( @ 6yot> - (IX @ €y0t>(ex ® 8{yo}) = 0.

Since e, is a central element of .7 (5), €, commutes with o, ® Iy and e,,5 ®
{yo}- Il

Lemma 4.3. Fort € T\ {1} and ¢ € Irr(/(UD))\ {10}, € is a
central idempotent of 7 (S T).

Proof. 1t is enough to show that é, commutes with o, ® Iy, Jx ® 0, (u €
T\ {1}), 210 © 200y, a0 Ix @ 2y (u € T\ {1}).

Suppose that (Y,7) is thin. In this case, €, = e, ® .. For s € S,
Co(0s @ Iy) =3 cq (05 ®Eygu) = E,(0s @ €yyt). Since o, ® €yt € o (UW),
we have €,(0s ® Iy) = (05 ® Iy)é,. Since t # 1, we have €, (€405 ® €qy01) =
(205 ® Eqyo1)€p = 0. Since e; = |X| ' Jx and eje, = eye; = 0, we have
e,Jx = Jxe, = 0. So we can see that

(Jx ®@ 0u)(ep @ yet) = (€p ® yot) (Jx ® o) = 0.

The last commutativity é,(/x ® eypu) = (Ix ® €you )€, is trivial.
Suppose that (Y, T) is class-one scheme. Then

o { Rewe i eln(/(5))\ {1},
T XI s @, if g € Iin(/(T)) \ {1}).

If e, is e, ® €yyt, then the same argument as thin case will work. Next, we
show that €, = | X|'Jx ® e, is central. Easily we can see that

ey(0s @ 1y) = nse, = (0, ® Iy)eéy,
€o(Cans ® Eqyoy) = (Eaps ® Eqyo})Ep =0,
Collx ®eyt) = (Ix ®eyet)l, = €y



To show that e,(Jx®0;) = (Jx®0y)eé,, it is enough to show that e, 0, = oye,,.
Now

00 0 01 1 0]0 0
0 1 0

G0t = ey : A - e A ’
0 1 0

because the all-one vector is an eigenvector of e, with the eigenvalue zero.
Since e, A = Ae,, we can conclude e,0: = ose,. Therefore e, is a central
idempotent of 7 (S T). O

Lemma 4.4. For x € Ire(Z(UW))\ {15y}, & is a central primitive
idempotent of 7(S1T). Fort e T\ {1} and ¢ € Irr(o/ (UD))\ {10},
€, is a central primitive idempotent of 7 (S T).

Proof. Tt is enough to show that €,, and e, are primitive.

First, we prove é, to be primitive. The map 7 : .7 (S1T) — &,.7 (51 T)
is a projection. Now é,.7 (S T) is naturally isomorphic to e, 7 (S). e, is a
central primitive idempotent of .7 (S). So the map f : 7 (S1T) = M,1)(C)
is an epimorphism. Therefore €, is primitive.

By the same argument, e, is primitive. O

Lemma 4.5. The sum of central primitive idempotents in Theorem 4.1 is
the identity elements.

Proof. ey is trivial idempotent of 7 (S T). So,

e1 =Y Ny npsIxEa0s @ £y yEoy + D 1X[ T x @y ey vy
ses teT\{1}

Then, Y. n;le,,sJx€ss is the trivial idempotent of 7 ().
seS
If (Y,T) is the thin scheme, then n, = 1 (for all ¢t € T') and e, Jy ey, is



the trivial idempotent of .27 (U®).
Y Ay Y .
XEE(TZOONY)  teT\(1} el (TON\ {1}

— (Z n;  eros IXEros @ Eyo} Y Efyo} + Z | X Tx @ n; ey Jyeyr)
s€S teT\{1}

+ > ex @ty + > €o © EyotJy Eyot

XEIrr (T (UM)N\{1}) teT\{1} pelrr(«/ (UM))\{1}

= Z ey ® Egyey + Z Z Cp @ Eyot Sy Eypt

x€Irr (7 (UM)) teT\{1} pelrr(«/ (UM®))

= Ix ®egy) + Z Ix ® gyyt
teT\{1}
= Ix®Iy =Ixxy

If (Y,T) is the class-one scheme, then

_ {&p ® Egot (v € Irr(o7(S))\{1})
XUk ®e, (¢ e Im(o (T)\{1})

and n; 'yt Jy €yt is the trivial idempotent of o7 (U?).

€1 + Z éX ‘|— Z é@

x€lrr(7(UM)\{1}) pelrr(o/ (UM))\{1}
= (Z 15 Engs I xEmgs @ E{wo} Y Efyo} T Z X7 x @ ny teyor Sy eyor)
ses teT\{1}
+ Z €x & E{yy + Z €p @ Eygt + Z X 'x ®e,
x€lrr(7(UMW)\{1}) pelrr(/ (5)\{1} pelrr(/ (T7)\{1}

= Z ex @ Eqyoy + Z o @ eyt + | X| T x ® £y

xEIrr(F(UM) pelrr(«/ (S))\{1}
— _[X ® g{y()} + Z eQO ® gyot

p€Elrr(7(S))

= Ix®Iy = Ixxy



Now, combining Lemma 4.2, Lemma 4.3, Lemma 4.4, and Lemma 4.5,
the proof of Theorem 4.1 is completed. Finally, we state the degrees of
irreducible representation as a corollary. This is clear by Lemma 4.4.

Corollary 4.6. The degree of the trivial character of 7 (S) is |[S1T| =
S|4+ |T|—1. Forx € Irr(F(UM)) \ {17ww)}, the degree of the correspond-
ing character is x(1). For ¢ € Irr(o/(UM)) \ {1 Wy}, the degree of the
corresponding character is ¢(1).
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