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1 Introduction

Association schemes, or briefly schemes, are combinatorial objects which are
connected to many different mathematical objects, especially to codes and
designs; cf. [9] and [34]. Based on their connection to codes and designs
commutative schemes (in particular symmetric schemes) have been investi-
gated in numerous articles during the last thirty years. However, indepen-
dently from combinatorial constraints one does not have to assume schemes
to be commutative. In this article, we consider schemes as generalizations
of groups and, consequently, we do not assume them to be commutative.
Non-commutative schemes were studied by Higman [28], [29] as homogeneous
coherent configurations.

In scheme theory, one is often interested in a complete description of
certain classes of schemes. With the help of computers, one presently knows
all schemes of order at most 30; cf. [25]. For larger orders, classifications
become increasingly more complicated, since the number of schemes increases
too fast. However, the number of different adjacency algebras does not grow
with the same speed. For example, one can classify all adjacency algebras
of association schemes of order at most 34, whereas the classification of all
schemes of this order is out of reach. The classification of adjacency algebras
or character tables of schemes gives a rough classification of schemes. Thus,
an algebraic approach would help us to attack classification problems.



There exists a well-established representation theory of schemes over the
complex number field. The adjacency algebra of a scheme over this field
is semisimple, so that the character theory is well understood in this case.
Especially, if a scheme is commutative, its complex adjacency algebra is com-
pletely determined by its character table. There exist many useful formulas
for complex characters. They are immediate consequences of the basic defini-
tions, but they can be obtained from more general results on coalgebras and
Frobenius algebras. In Section 2, we will summarize the theory of these alge-
bras, and in Section 4, we will present applications. This enables us to find
new formulas on schemes and to generalize formulas for other combinatorial
objects.

Imprimitive schemes give rise to subschemes and quotient schemes, so that
one can employ inductive arguments. From this point of view it might be
useful to understand the relationship between representations of schemes and
representations of their subschemes and quotient schemes. We will discuss
this relationship in Section 4. Especially, we explain how Clifford theory for
finite groups can be generalized to association schemes.

In Section 5, we will give a short introduction to modular representation
theory of schemes. Modular representation theory is a relatively new branch
in scheme theory and deals with representations (of schemes) over fields of
positive characteristic. Its usefulness surfaced recently, when Katsuhiro Uno
and the author succeeded in utilizing its techniques in order to prove that
association schemes of prime order must be commutative; cf. [26]. In Section
5, we will outline our proof and provide some related problems on modular
representations.

2 Algebras and modules

In this section, the reader is assumed to be familiar with basic facts on finite
dimensional algebras and their modules. As for coalgebras, we refer to [35].
General introductory textbooks on finite dimensional algebras and Frobenius
algebras are [11] and [6].

2.1 Algebras and coalgebras

Let K be a field. In this subsection, tensor products are over K. Though we
assume knowledge of basic facts on finite dimensional algebras, we will give



the definition of an algebra to compare it with the one of a coalgebra. Many
of our arguments remain valid if K is a commutative ring with unity.

Definition 2.1 (Algebras). Let A be a K-vector space. Given K-linear maps
m: AR A— Aand u: K — A, the triple (A, m,u) is called a K-algebra if
the following diagrams are commutative :

m®id

ARA® A AR A AR A
N
id@m KA m AR K
A® A A \\\\ ////
m A

(they are called the associativity and the unit, respectively). Namely,
mo(m®id) =mo(id®@m), mo(u®id)=1id, mo (id®u)=id

by identifying K ® A = A. The maps m and u are called the multiplication
and the wunit, respectively.

Taking the dual of the definition of K-algebras, we define K-coalgebras.

Definition 2.2 (Coalgebras). Let C' be a K-vector space. Given K-linear
maps A : C — C® C and € : C — K, the triple (C,A,¢) is called a
K -coalgebra if the following diagrams are commutative :

A

C Cel C
/y &
A A®id K@C A C®K
E@\\ //@;
CoC—— = CaCal b

(they are called the coassociativity and the counit, respectively). Namely,
(A®id) o A=(id®A)oA, 1@ =(c®id)oA, ®1=(id®e)oA.

The maps A and ¢ are called the comultiplication and the counit, respectively.
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For each K-vector space V', we set V* = Homg (V) K). The vector space
V* is called the K-dual of V. Let V', W be K-vector spaces, and ¢ : V — W
a K-linear map. Define ¢* : W* — V* by

forveV and f e W*.

Proposition 2.3 ([35, Lemma 1.2.2, Proposition 1.2.4]). If (C, A ¢) is a K-
coalgebra, then (C*, A* €*) is a K-algebra. If (A,m,u) is a finite dimensional
K-algebra, then (A*,m*,u*) is a K-coalgebra.

For a K-coalgebra (C, A, ¢), the multiplication of C* is given by m = A*,
So
m(f ®g)(c) =A"(f®g)(c) = (f®g)oAlc)
for f,ge C* and c € C.

Definition 2.4 (Group-like elements). Let (C, A, ¢) be a K-coalgebra. An
element ¢ € C is called a group-like element if A(c) = ¢ ® ¢ and (c) = 1.
Let G(C) denote the set of all group-like elements of C'.

Proposition 2.5 ([35, p.4]). Let (C,A,¢e) be a K-coalgebra. The set G(C)

15 K -linearly independent.

Remark. Let (B,m,u) be a K-algebra and (B,A,e) a K-coalgebra. If
both A and e are algebra homomorphism, then (B, m,u,A ¢) is called a
bialgebra. A bialgebra is called a Hopf algebra if it has an antipode. Every
adjacency algebra of an association scheme over a field of characteristic zero is
an algebra and a coalgebra, but not a bialgebra, in general. In the paper [10],
Yukio Doi defined bi-Frobenius algebras and group-like algebras. Adjacency
algebras of association schemes over fields of characteristic zero give typical
examples of bi-Frobenius algebras and group-like algebras.

Example 2.6. Let GG be a finite group, and let KG be the group algebra of
G over a field K. Define A: KG — KG® KG and € : KG — K by

Alg)=g®yg, ¢€(g) =1

for every g € G. Then (KG, A, ¢) is a K-coalgebra. (Actually, KG is a Hopf
algebra). It is clear that ¢ € G is a group-like element. By Proposition 2.5
and since G is a K-basis of KG, every group-like element is an element of G.



2.2 Semisimple algebras

In this subsection, K is a field, A a finite dimensional K-algebra with unity,
and A-modules are finite dimensional over K and left A-modules.

Definition 2.7 (Jacobson radicals). The intersection of all maximal left
ideals of A is called the Jacobson radical of A and denoted by J(A).

The Jacobson radical J(A) is a two-sided ideal of A and a nilpotent ideal.
Moreover, the Jacobson radical is the largest nilpotent ideal of A.

Definition 2.8 (Semisimple algebras). A K-algebra A is said to be semisim-
ple if J(A) = 0.

Note that J(A/J(A)) = 0 for any A. So A/J(A) is always semisimple.

Next we define simple algebras.

Definition 2.9 (Simple algebras). A K-algebra is said to be simple if it has
no non-trivial ideal.

We are assuming that A is a K-algebra with unity. So A is not a nilpotent
ideal. Thus, if A is simple, J(A) = 0 and A is semisimple.

Example 2.10. Let D be a division K-algebra. Let Mat, (D) denote the
full matrix algebra over D and of degree n. Then every non-zero element
of Mat,, (D) generates Mat, (D) as a two-sided ideal. So Mat, (D) has no
non-trivial ideal. Therefore Mat,, (D) is a simple algebra.

Now we describe the structure of semisimple algebra.

Theorem 2.11 (Wedderburn-Artin [11, Theorem 2.4.3]). Every semisimple
K-algebra A is isomorphic to a direct sum of full matrix algebras over division
K-algebras. Moreover, if K is algebraically closed, then A is isomorphic to
a direct sum of full matriz algebras over K.

Let F be an extension field of K, let A be a K-algebra, and set
A = F oy A.

If {z;} is a K-basis of A, then {1®ux;} is a F-basis of A”. Usually we identify
1 ® x; with x; and consider A C AF.

For Jacobson radicals, we see that F @ J(A) C J(AF). So AP is not
necessary semisimple, even if A is semisimple.
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Definition 2.12 (Separable algebras). A K-algebra A is called separable if
AF is semisimple for any extension field F of K.

A field K is called perfect if every finite dimensional semisimple K-algebra
is separable. It is known that fields of characteristic zero and finite fields are
perfect.

Definition 2.13 (Splitting fields). Let A be a K-algebra. An extension field
F of K is called a splitting field of A if AT /J(AT) is isomorphic to a direct
sum of full matrix algebras over F'. A K-algebra A is called a splitting algebra
if K is a splitting field of A.

For any finite dimensional K-algebra A, there exists a finite extension F’
of K such that F'is a splitting field of A. Note that the minimal splitting
field is not uniquely determined (see [11, p. 78]).

Suppose A is a semisimple K-algebra. We consider finitely generated A-
modules. To simplify our arguments, we suppose K is algebraically closed.
By Theorem 2.11, we have

A= éMatni(K).
i=1

For every direct summand Mat,, (K), there is an irreducible left module
whose K-dimension is n;, and it also becomes a left A-module. Conversely,
any irreducible left A-module is isomorphic to one of the modules obtained
as above. So there are r isomorphism classes of irreducible A-modules. Let
IRR(A) denote the set of representatives of isomorphism classes of irreducible
A-modules.

Consider an arbitrary (not necessary semisimple) A. Since every irre-
ducible A-module is annihilated by the Jacobson radical J(A), simple A-
modules are obtained as simple A/J(A)-modules.

Definition 2.14 (Completely reducible modules). Let A be a K-algebra.
An A-module V is said to be completely reducible (or semisimple) if it is a
sum of irreducible A-submodules of V.

It is known that an A-module V' is completely reducible if and only if V'
is isomorphic to a direct sum of irreducible modules. This is equivalent to
the fact that, for any A-submodule W of V', there exists an A-submodule U
of V such that V =W & U.



We may consider A as a left A-module. This module is called the left
reqular A-module. To distinguish the regular module A from the algebra
A, we write 4A for the regular module. It is known that the algebra A is
semisimple if and only if the left regular A-module 4 A is completely reducible.
Also this condition is equivalent to the fact that every A-module is completely
reducible.

2.3 Matrix representations and characters

Let K be a field, A a finite dimensional K-algebra, and V a left A-module
with dimg V =n < oco. The action of A on V induces a map

T:A— Endg(V) = Mat, (K)

by T'(a)(v) = av for a € A and v € V. The map T is a K-algebra homomor-
phism. In general, a K-algebra homomorphism 7T : A — Mat, (K) is called
a matrixz representation of A.

Conversely, let T : A — Mat,(K) be a matrix representation. Then
V' = K" becomes a left A-module by the action av = T'(a)v for a € A and
veV.

For an A-module V', a matrix representation 7' : A — Mat,, (K) depends
on the choice of the basis of V. If we take a different basis of V', we get a
similar representation, that is a — P~'T(a)P for some nonsingular matrix
P. Conversely, similar representations give isomorphic A-modules.

For a matrix representation 7' : A — Mat, (K), the trace function is
called the character of T'. Note that the characters of similar representations
are the same. It is easy to see that a character is K-linear, namely, in
A* = Homg (A, K).

Let us now consider a semisimple C-algebra A and its characters. (Our
reasoning remains valid for any finite dimensional splitting algebra over a
field of characteristic zero). By Theorem 2.11,

A= é Mat,, (C).
i=1

Let e; € A correspond to the identity matrix of Mat,, (C). Then every e; is
a central primitive idempotent of A, and we have

r
€€ = 6@'61, E €; = 1A-
=1
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Recall that isomorphism classes of irreducible A-modules correspond to direct
summands of A. So they are indexed by ¢ = 1,2,...,r. Let x; be the
character afforded by the i-th representation. Then it follows readily that
Xi(ae;) = di;x(a)
for a € A. We write Irr(A) ={x; |t =1,--- ,r}.
Proposition 2.15. Let A be a semisimple C-algebra.
(1) The set Irr(A) is linearly independent in A*.

(2) Let T and T be representations of A. Then T and T' are similar if
and only if their characters are the same.

The following proposition provides a condition under which the hypoth-
esis of Proposition 2.15 is satisfied.

Proposition 2.16. Let A be a C-subalgebra of Mat,,(C) closed under the
transposed complex conjugate a — ‘a. Then A is semisimple.

2.4 Frobenius algebras

Let K be a field and A a finite dimensional K-algebra. As before, the dual
of A is denoted by A* = Homg (A, K). Then A* has a structure of an (A, A)-
bimodule by

(fa)(b) = f(ab), (af)(b) = f(ba)
for f € A* and a,b € A.
Definition 2.17 (Frobenius algebras). An algebra A is called a Frobenius

algebra if there exists ¢ € A* such that ¢ generates A* as a left A-module.
In this case, we also say that (A, ¢) is a Frobenius algebra.

Let (A, ¢) be a Frobenius algebra. Then the map
0:A— A" Oa)=ad

gives an isomorphism as left A-modules. We define a K-bilinear form ( , )4

on A by
(a,0)4 = 0(b)(a) = (bg)(a) = ¢(ab).

The form ( , )4 is non-degenerate.



Definition 2.18 (Dual bases). Let (A, ¢) be a Frobenius algebra and {z;}
a K-basis of A. Since ( , )a is non-degenerate, there exists a K-basis {y;}
such that

P(xiy;) = (24, Y5) 4 = 6ij-
The bases {x;} and {y;} are called dual bases of A.

Definition 2.19 (Class functions). For an arbitrary Frobenius K-algebra A,
f € A* is called a class function if f(ab) = f(ba) for any a,b € A. (In [30],
a class function is called a feasible trace.) We shall denote by CF(A) the set
of all class functions of A.

Now we consider a semisimple C-algebra A. Then (A, ¢) is a Frobenius
algebra for some ¢. For example, we can take ¢ = erhr( )X but there are
many choices of ¢. Also fix dual bases {z;} and {y;} of (A4, ¢). It is easy to
see that f € A* is a class function if and only if f is a linear combination of
irreducible characters.

Lemma 2.20. Let (A, ¢) be a Frobenius C-algebra with dual bases {z;} and
{yi}. A class function f =737 1,4y fxX generates A* as a left A-module if
and only if f,, # 0 for all x € Irr(A).

Put ¢ = >° i) @xX € CF(A) for a semisimple Frobenius C-algebra
(A, ¢). By e, we denote the central primitive idempotent of A corresponding
to x € Irr(A). Note that x(e,) = d,,x(1) for x, € Irr(A). Then we have
the following formulas.

Proposition 2.21. Let (A, ¢) be a Frobenius C-algebra with dual bases {x;}
and {y;}. Then ey, = ¢y > . x(2:)y;.

Theorem 2.22 (Orthogonality relations). Let (A, ¢) be a Frobenius C-algebra
with dual bases {x;} and {y;}. Assume (A, @) to be semisimple, and set

¢ =2 ctm(a) PxX € CF(A). Let x,p € rr(A). Then

¢
X(

){) ;X(Qf’z)@(yz) = Oxp-

Orthogonality relations for non-semisimple Frobenius algebras were stud-
ied in [13].



3 Association schemes and their adjacency
algebras

In this section, we will give some definitions and notation for subsequent
sections. Basic facts will be stated without proofs. The reader is referred to
textbooks such as [2], [38], and [39].

3.1 Association schemes

Definition 3.1 (Association schemes). Let X be a finite set and S a partition
of X x X. The pair (X,95) is called an association scheme, or in short a
scheme, if the following conditions are satisfied.

(1) {(z,z) |z € X} € S (this relation will be denoted by 1x or simply 1).

(2) If s € S, then {(y, ) | (x,y) € s} € S (this relation will be denoted by
5%).

(3) For s,t,u € S, there exists an integer p¥ such that
tH{ze X | (x,2) €5, (2,y) €t} =ps

whenever (x,y) € u (pY is called intersection number or structure con-
stant).

We say that the scheme is commutative if p¥, = pi. for all s,t,u € S. We say
that the scheme is symmetric if s* = s for all s € S. Symmetric schemes are
commutative. An association scheme is also called a homogeneous coherent
configuration.

Let (X,S) be a scheme. The cardinality of X will be called the order
of (X,S). The class of the scheme is |[S| — 1. For z € X and s € S, put
xs ={y € X | (z,y) € s} and sx = {z € X | (2,2) € s}. Then, for any
r € X, pl.. = |vs| = |sz| = pl.,. This number will be called the valency of
s € S and denoted by n,. For a subset T" of S, we set ny = EteT ny. Note
that ng = | X]|.

Definition 3.2 (Complex products). For s,t € S, we put st = {u € S |
p% > 0} and call this the complex product of s and t. For subsets T and

U of S, we also define the complex product by TU = {J,cr U,ep tu. When

uelU
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U = {u}, T{u} and {u}7T will be denoted by Tu and uT', respectively.
Complex multiplication of both elements and subsets are associative.
We also set 7" = J,cp 2.

Definition 3.3 (Closed subsets). Let (X,S) be a scheme. A nonempty
subset 1" of S is called closed if TT C T'. A closed subset T of S is said to be
normal if ST = T's for all s € S. A closed subset T' of S is said to be strongly
normal if sT's* =T for all s € S. Strongly normal closed subsets are normal,
but the converse is not true, in general.

Let (X, S) be a scheme, T" a closed subset of S. For x € X, put
Serxer = {sN (T xaT) | s €S, sN(zT x 2T) # 0}.

Then (27, Syrxzr) is a scheme. We call this scheme a subscheme of (X, 5)
by T' with respect to z € X. (Note that subschemes are defined differently
in [2].) For s,t,u € S, put s = sN (xT x 2T), t' =t N (2T x 2T), and
u' = un (2T x 2T). Suppose s # 0, t' # 0, and o’ # (. Then p% = p¥,
holds. Also, for valencies, we have n, = ny.

Again, let (X, S) be a scheme, T" a closed subset of S. Put X/T = {aT |
r € X}. For s € S, we define relation s” on X/T by

st ={(zT,yT) | (z',y) € s for some 2’ € T and y' € yT'}

and put ST = {s” | s € S}. Then (X/T,S)T) is a scheme. We call this
scheme the quotient scheme of (X,S) by T. For the intersection numbers,

we have 1
UT U
pSTtT — g g ps’t’
nr

s'eTsT t'eTtT

and ngr = nygr/nr.

Definition 3.4 (Thin elements and thin subsets). Let (X,S) be a scheme.
An element s of S is said to be thin if n, = 1. A subset U of S is said to be
thin if every s € U is thin. A thin closed subset is essentially a finite group.

It is known that a closed subset T is strongly normal in .S if and only if the
quotient scheme (X/7,S//T) is thin.

Definition 3.5 (Isomorphisms and algebraic isomorphisms). Let (X, .S) and
(Y,T) be schemes. An isomorphism from (X,S) to (Y,T) is defined to be
a pair (¢,v) such that both ¢ : X — Y and ¢ : S — T are bijections
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and (z,y) € s if and only if (¢(x),d(y)) € ¥(s) for s € S and z,y € X.
An algebraic isomorphism from (X, S) to (Y,T) is a map ¢ : S — T such
that p¥, = ngg)) o(t) for s,t,u € S. Each isomorphism induces an algebraic

isomorphism, but the converse does not hold, in general.

3.2 Adjacency algebras

Let R be a commutative ring with unity. Let Mat,, (R) denote the full matrix
ring over R and of degree n. For a finite set X, let Matx(R) denote the
full matrix ring over R whose both rows and columns are indexed by X.
Obviously, one has Matx (R) = Mat|x|(R).

Let (X, S) be an association scheme. For s € S, we define the adjacency
matriz o5 € Matx (R) by

(02)ey = {1, if (x,y) € s,

0, otherwise.

It follows right from the definition of association schemes that the set of
R-linear combinations of {os | s € S} is an R-algebra. Especially, we have
o = 'og (the transposed matrix), oy = I (the identity matrix), and os0; =
Y ues Paou. We call the R-algebra the adjacency algebra of (X, S) over R and
denote it by RS. Note that adjacency algebras of algebraically isomorphic
schemes are isomorphic as algebras.

It is easy to see that the map RS — R (05 — nslg) is a representation
of RS of degree 1. We call this the trivial representation of RS and denote
it by 1gg or 1g. The corresponding character is called the trivial character
and also denoted by 1zg or 1g.

Let RX denote the R-free R-module with a formal basis X. Then RX
is a left Matx (R)-module with respect to the natural multiplication. Since
RS is defined as a subalgebra of Matx (R), RX is also a left RS-module. We
call RX the standard module of (X, S) over R. The corresponding represen-
tation and character are called the standard representation and the standard
character of (X, S). They are denoted by I's and ~g, respectively. It is easy

to see that
(02) | X|1g, ifs=1,
Og) = .
s 0, otherwise.

Lemma 3.6. There exists an RS-monomorphism ¢ : RS — RX. Indeed,
the map o4 +— osx is an RS-monomorphism for any x € X.
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Let (X, S) be a scheme and T a closed subset of S. Then, by the defini-
tion, RT = ), ., Ro, is an R-subalgebra of RS, and the adjacency algebra
of every subscheme of S by T is isomorphic to RT. This allows us to con-
sider representations of closed subsets as representations of the corresponding
subschemes.

4 Ordinary representations

In this section, (X, S) is an association scheme. By a representation of (X, 5),
we mean a representation of the adjacency algebra of (X, S) over a commu-
tative ring with unity. The theory will be divided into two cases, the case
where the underlying ring is a field of characteristic zero and the other cases,
especially the case where the underlying ring is a field of positive character-
istic or an integral domain. In the former case, one speaks about ordinary
representation theory, in and latter one about modular representation theory.
In this section, we compile facts on ordinary representations. The theory of
modular representations will be discussed in the next section.

4.1 Ordinary adjacency algebras and characters

By Proposition 2.16, the adjacency algebra CS of (X, .S) over C is semisimple.
The set Irr(CS) of irreducible characters of CS will be denoted by Irr(S).
We consider the irreducible decomposition of the standard character vg:

Vs = > myX.
xE€Irr(S)

The multiplicity m, of x in vg is called the multiplicity of x € Irr(S). The
multiplicity of x in the regular character is x(1). So by Lemma 3.6, we have
the following easy but important fact. This is proved in [12].

Theorem 4.1. We have m, > x(1) > 0 for every x € Irr(S5).
It is easy to see that m;, = 1g(1) = 1.

Theorem 4.2. For a scheme (X, S), (CS,ns 'vs) is a semisimple Frobenius
algebra. Moreover, {os | s € S} and {ns " os | s € S} are dual bases of this
algebra.
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Applying this theorem to Proposition 2.21 and Theorem 2.22, we have
the following.

Theorem 4.3. For each x € Irr(S), the central primitive idempotent corre-
sponding to x has the representation

1
Mx —x(0g)0s.

S

e, =
X

n
s ses

Theorem 4.4 (Orthogonality relations). For x, ¢ € Irr(S), we have
My 1

(D) 2, (0)P(00) = O

Theorem 4.4 can be generalized to (generalized) table algebras and to
(non-homogeneous) coherent configurations.
As for character values, one has the following.

Proposition 4.5. Let x be a character of a scheme (X, S) afforded by a
representation ® over C. For s € S, we have x(0s) = x(05) (where x(os) is
the complex conjugate). Moreover, there ezists a representation ® which is

similar to ® such that ®' (o) ='®'(0y) for all s € S.

Let ® be a matrix representation of CS. For s € S, every eigenvalue
of ®(o;) is an eigenvalue of o,. Since o, is a matrix over rational integers,
its eigenvalue is an algebraic integer. Thus, character values are algebraic
integers. Note also that the valency ng is the Perron-Frobenius root of every
connected component of o,. So |£| < ng for every eigenvalue £ of o.

Theorem 4.6. For a character x of S and s € S, we have |x(0s)| < ngx(1).

Let us consider the case where one has equality in Theorem 4.6. For
x € Irr(9), put

K(x) = {s€S]|x(os) =nx(1)},
Z(x) = {s€S|Ix(os)] =nsx(1)}.

For a character 7 = cj.(5) @xX; put

Kn)=()Kx) and Z(n) = () Z(x)

ay>0 ax>0
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Theorem 4.7. Let n be the character of S afforded by a representation ®.
Then K(n) and Z(n) are closed subsets of S. Moreover, K(n) = {s € S |
O (o) = nsl} where I is the identity matriz. Ifn € Irr(S), then Z(n) = {s €
S| ®(os) = ensl for some € € C such that |e| = 1}.

We remark that K (n) and Z(n) are not necessary normal in S.

The matrix whose rows are indexed by elements of Irr(S) and whose
columns are indexed by elements of S with the (x, s)-entry x(os) is called
the character table of (X, S). We state a question.

Question 4.8. Which properties of a scheme can be read from its character
table?

We give one answer to this question.

Theorem 4.9 ([16, §3]). All (strongly) normal closed subsets of a given
scheme can be read from its character table.

We summarize the proof of this theorem.

Proposition 4.10 ([16, Theorem 3.4]). Let n be a character of (X,S). Put
I(n) = {x € Irr(S) | x(os) = nsx(1) for any s € K(n)}. Then K(n) is nor-
mal in S if and only if

Z myx(1) = s

Xel(n) MK ()

One sees easily that, for a normal closed subset T of S, there exists a
character n of (X, S) such that K(n) = T. Thus, Proposition 4.10 provides
us with all normal closed subsets of S. In order to obtain the strongly normal
closed subsets, we may apply following criterion.

Proposition 4.11 ([31, Theorem 2.8]). For x € Irr(S), K(x) is strongly
normal in S if and only if m, = x(1) (in which case x is essentially a group
character).

Every strongly normal closed subset is an intersection of some K(x)’s
for x € Irr(S). This way one obtains all strongly normal closed subsets by
inspection of the character table.

Another answer to Problem 4.8 was given in [20].

Let us now consider a closed subset of a scheme (X, S). For a subset U
of S, put ey = ny~toy. Then we have the following.
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Theorem 4.12 ([17, Proposition 3.3]). For a subset U of S, U is a closed
subset if and only if ey is an idempotent. Moreover, U is a normal closed
subset if and only if ey is a central idempotent of CS.

4.2 Representations of quotient schemes

In this subsection, we will consider representations of quotient schemes. Let
A be a finite dimensional semisimple C-algebra and e an idempotent of A.
Then eAe is a C-algebra with unity e. Since A is semisimple,

A é Mat,, (C).
i=1

Let m; : A — Mat,, (C) be the projection. Without loss of generality, we may
assume that 7;(e) is of the form diag(1,---,1,0---,0). Let m; be the rank
of m;(e). Then one verifies easily that

eAe = @ Mat,,, (C).

=1

Let y; be the character corresponding to the i-th direct summand. Then
m; = x(e). Note that m; can be zero. So we have the following.

Proposition 4.13. Let A be a finite dimensional semisimple C-algebra and
e an idempotent of A. Then there exists a natural bijection between Irr(eAe)

and {x € Irr(A) | x(e) # 0}.

Let (X,S) be a scheme and T a closed subset of S. The idempotent
er = ny 'or establishes a relation between Irr(S) and Irr(S)T).

Proposition 4.14. The map

ngr

p:C(SJT) — erCSer, plogr) =

eérOser
S

1s an algebra isomorphism.

So we can apply Proposition 4.13. Furthermore, by [23, Theorem 3.10],
we have the following.
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Theorem 4.15. Let (X,S) be a scheme and T a closed subset of S. Then
there ezists a natural bijection between Irr(S)T) and {x € Irr(S) | x(er) #
0}. Moreover, this map preserves the multiplicities of irreducible characters.

Remark. Let (X, 5) be a (non-homogeneous) coherent configuration, and let
Y be a fiber of (X, S). Define e € Matx(C) by |Y|~! times the characteristic
function of Y xY. Then e is an idempotent, and one obtains a similar relation
between the irreducible characters of (X,.S) and the irreducible characters
of the homogeneous component of (X, .S) defined by Y.

In general, there is no canonical algebra epimorphism from CS to C(S)/T).
But if T" is normal, then there exists a such epimorphism. Suppose T is
normal. Then er is a central idempotent of CS. So the map oy — epoger is
an algebra epimorphism. Especially, the map in Theorem 4.15 preserves the
degree of a character. Thus, one may view Irr(S//T') as a subset of Irr(S5).

Let x € Irr(S), and consider K (). Suppose a closed subset 7" of S is
contained in K(x). Then one obtains easily that x(er) = x(1). So, in this
case, x can be considered as a character of S//T though we do not assume
that T is normal.

Question 4.16. Let K be an algebraically closed field of positive character-
istic, (X,S) a scheme, and T a normal closed subset of S. Then there is a
natural algebra homomorphism 7 : K'S — K(S//T) which, in general, does
not need to be an epimorphism. Is it possible to describe the relationship
between representations of K'S and representations of K (S//T)? Especially,
can we describe the relationship between the irreducible representations of
K S and irreducible representations of K(S)T)?

4.3 Character products

In this subsection, we will consider products of characters. To do this, we
need a coalgebra structure of adjacency algebras. The tensor products in
this subsection are over C.

Let (X, S) be a scheme. Define A : CS — CS®CS and ¢ : CS — C by

1
Aog) = —0s® 05, €(0s) = ns.

Then (CS, A, ¢) is a (cocommutative) coalgebra. Note that ¢ is an algebra
homomorphism but A is not, and so CS is not a bialgebra. By Proposition
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2.3, (CS)* = Hom¢(CS,C) is an algebra with respect to the multiplication

(Fo)lo) = (F @ 9) 0 Alor) = —f(o)g(or)
for f,g € (CS)* and s € S.

For every s € S, n, 1o, is a group-like element of the coalgebra (CS, A, ).
Also the set {n; 1o, | s € S} is a basis of CS. So by Proposition 2.5, a € CS
is group-like if and only if there exists s € S such that a = ny"'o,. So the
coalgebra structure determines the distinguished basis {0, | s € S} of CS.

Recall that CF(CS) is the set of class functions on CS and consists of all
linear combinations of irreducible characters of CS. Since CF(CS) C (CS)*,
we can define the product fg for f,g € CF(CS). But fg is not necessary in
CF(CS).

Definition 4.17 (Group-like schemes [16]). Let (X, S) be a scheme. We say
that (X, S) is a group-like scheme if CF(CS) is closed with respect to the
above multiplication (we note that there is no relation between group-like
elements and group-like schemes).

Note that every commutative scheme (X, S) is group-like since CF(CS) =
(CS)* in this case. Group-like schemes have many good properties. Espe-

cially, if a scheme (X, S) is group-like, then there is some fusion (X,.5) of
(X, S) such that the adjacency algebra CS is the center of CS (see [16]).
We consider one problem on character products.

Question 4.18. Let (X,S) be a (non-group-like) scheme, and let x,¢ €
Irr(S). When is y¢ € CF(CS)?

We give a partial answer to this question.

Proposition 4.19 ([18, Theorem 3.3, Theorem 3.4]). Let (X, S) be a scheme
and x, ¢ € Irr(S). If my, = x(1), then xp € CF(CS). Moreover, if m, =1,
then xp € Irr(S) and my, = my,.

Now we suppose (X, S5) is a commutative scheme. Then (X, .S) is group-
like. So, for x, ¢, & € Irr(S), there exists rf«p € C such that

Xp= D 1k

gelrr(S)
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This product is essentially the same as the Hadamard product of primitive
idempotents [2, p. 64]. Namely, let

1
exolo = > Gt
s
£elrr(S)

where o is the entry-wise product of matrices. Then we have

e Mymy .

= —— 7>

Ixe me X

The number qfw is known as the Krein parameter and it must be a non-
negative real number (Krein condition).

4.4 Inductions and restrictions

In this subsection, we define inductions and restrictions of modules. Induced
and restricted modules give rise to induced and restricted representations
and to induced and restricted characters.

Let R be a commutative ring with unity, (X, .S) a scheme, and T a closed
subset of S. Then RT is an R-subalgebra of RS. Let M be a left RS-
module. Then M can be considered as an RT-module. We call this module
the restriction of M to RT and denote it by M |grr. For an RT-module L,
we define an RS-module

L1B5= RS Qpr M

and call this the induction of L to RS.

Induced and restricted representations and characters are denoted corre-
spondingly. Especially, when we consider characters over the complex num-
ber field, we will write x |7 and ¢ 19 instead of x |cr and ¢ 1%, respectively.

Let us now consider complex characters of schemes. Let (X,S) be a
scheme and 7" a closed subset of S. Obviously x(1) = x |7 (1) holds for each
character x of S. But there is no such formula for induced characters. There
is a formula on multiplicities. To state the result, we extend the definition
of multiplicities. Usually, the multiplicity m, (in the standard character)
is defined only for an irreducible character x. Let n = erhr(s) a,x be a
character. Define the multiplicity m,, of n by

my, = Ay MMy
X€EIrr(S)
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Then we have the following.

Theorem 4.20. Let (X, S) be a scheme and T a closed subset of S. Let x
and @ be complex characters of S and T, respectively. Then we have

ns
X(l) = XLT (1)7 m(pTS = M.
nr

4.5 Clifford theory

In Subsection 4.2, we saw how representations of schemes are related to rep-
resentations of their quotient schemes. Now we want to see how representa-
tions of schemes are related to representations of their subschemes. But this
is difficult, even for representations of finite groups. In group representation
theory, one of the most important results in this direction is provided by the
so-called Clifford theory. We will try to mimic Clifford theory for schemes.
We can apply Dade’s results in [8]. For details, see [21].

In the following, the letter T" stands for a strongly normal closed subset of
a scheme (X, S). Then the quotient ST can be regarded as a finite group.
If S is thin, then the group S//T acts on the adjacency algebra CT', and so we
can define S//T-conjugates of a CT-module. But, in general, the group ST
does not act on CT'. We define S)/T-conjugates of an irreducible CT-module
as follows.

For each s € S, C(T'sT) is a (CT, CT)-bimodule. So, for a left CT-module
L, C(TsT) ®cr L is also a left CT-module. The next proposition is crucial.

Proposition 4.21. Let L be an irreducible left CT-module and s € S. Then
C(T'sT) @cr L is an irreducible left CT-module or 0.

Let L be an irreducible left CT-module. When C(7'sT) ®cr L # 0, we
say that L and C(T'sT) @cr L are S)/T-conjugate. Being S//T-conjugate is
an equivalence relation on the set of representatives of isomorphism classes
of irreducible CT-modules. Actually, irreducible CT-modules L and L’ are
S/ T-conjugate if and only if there exists an irreducible CS-module M such
that both L and L’ are irreducible constituents of M |c7. Now we can state
our first result on Clifford theory.

Theorem 4.22. Let M be an irreducible CS-module and L an irreducible
constituent of M |cr. Then there exists a positive integer m such that

M l(CTg m <@ L/> )
I
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where L' runs over all S)/T-conjugates of L.

We note that the dimensions of S//T-conjugate irreducible CS-modules
are not necessary equal. But their multiplicities are the same.

Now we consider relations between representations of a scheme and its
subschemes or quotient schemes. Again, let L be an irreducible left CT-
module. Let IRR(CS | L) denote the set of all representatives of isomorphism
classes of irreducible CS-modules whose restrictions to CT' contain L as an
irreducible constituent. Put

],5‘([/) = {S eSS | (C(TST) Qcr L = L}

Then Ig(L) is a closed subset of S containing 7. We have the following
theorem.

Theorem 4.23. The map IRR(CIg(L) | L) — IRR(CS | L) defined by
M — M 1% is a bijection.

Since the correspondence is very easy, many problems on S can be reduced
to Is(L). So, if Is(L) is a proper closed subset of S, then questions about S
are transferred to questions about smaller schemes. If I5(L) = S, we have
the following theorem.

Theorem 4.24. Suppose I5(L) = S. Then there exists a factor set o of S)JT
such that there exists a bijection between IRR(CS | L) and the generalized
group algebra IRR(C)(S)T)). If M € IRR(CS | L) corresponds to N €
IRR(C(S)T)), then we have dim¢ M = (dime L)(dime N).

As for generalized group algebras, the reader is referred to [36, II. §8].

Let us add the following remarks. If S/T is a cyclic group, then the
second cohomology group H?(S/T,C*) = 1 and so the factor set o can be
assumed to be trivial. If L is extendible to S, in other words, if there exists
M € IRR(CS) with M |cr= L, then we may suppose that a = 1. If a = 1,
then the generalized group algebra is the usual group algebra.

Let us now consider a commutative scheme (X, S) and a strongly normal
closed subset T" of S. Let L be an irreducible CT-module, and put U = Ig(L).
In this case, we may assume that o = 1. Moreover, there exists an irreducible
CU-module M such that

IRR(CU | L) = {M ®¢ N | N € IRR(C(UJT))}.
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Here M ®¢ N is irreducible by Proposition 4.19. We have
IRR(CS | L) = {CS ®cy (M ®c N) | N € IRR(C(UJT))}.

Especially, we have |IRR(CS | L)| = ns/ny.

So far we have seen that Clifford theory works fine for schemes with non-
trivial strongly normal closed subsets. We do not know if Clifford theory also
works for normal closed subsets that are not strongly normal. It is desirable
to have a result controlling this case at least for commutative schemes.

5 Modular representations

In this article, modular representations mean representations over positive
characteristic fields or integral domains. Modular representation theory is
more complicated (but also more interesting) than ordinary representation
theory, since the adjacency algebras over positive characteristic fields are not
necessary semisimple anymore.

5.1 Preliminaries

Definition 5.1 (p-Modular systems [36, III. §6]). Let R be a complete dis-
crete valuation ring with maximal ideal 7R, where m € R. Let K be the
quotient field of R, and let F' be the residue class field R/mR. Suppose
that K and F' have characteristic 0 and p (> 0), respectively. Then we call
(K, R, F) a p-modular system.

There is a natural way to construct a p-modular system from algebraic
number fields which we wish to present now. Fix a rational prime number
p. Let K be an algebraic number field, and denote by R the ring of integers
of K. Choose a prime ideal ‘B of R lying above pZ. Denote by Kg the
B-adic completion of K, and let Ry denote the ring of PP-integers in K.
Then (Kg, Ry, F) is a p-modular system, where F' = Ry /BRy = R/BR.
For details, see [36].

Let (K, R, F) be a p-modular system, and let 7R be the maximal ideal
of R. Let A be an R-free R-algebra with finite R-rank. We can define a
K-algebra AX = K ®@r A and an F-algebra A" = A/7rA. Let M be an
R-free A-module with finite R-rank. Then we can define an AX-module
MY = K ®@p M and an A"-module M¥ = M /7M. Let @ denote the image
of a € A by the natural epimorphism A — A/mA.
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Definition 5.2 (R-Forms [36, II. Theorem 1.6]). Let N be an AX-module.

Then there exists an A-module N such that NX & N. We call N an R-form
of N.

Note that an R-form N is not uniquely determined by an Afi -module N.
But it is known that the multiplicities of simple A"-modules in N*" as simple
components are determined only by N.

Let e be an idempotent of A. Then e and @ are idempotents of AX and
AF respectively. Moreover, if e is central, then so is € in A". Conversely the
following proposition holds.

Proposition 5.3 ([36, Theorem 1.14.2], [7, Proposition 1.12]). Let f be an
idempotent of AY'. Then there exists an idempotent e of A such thate = f.
Moreover the following statements hold.

(1) f is a primitive idempotent if and only if so is e.

(2) If f is a central (primitive) idempotent, then there exists a unique cen-
tral (primitive) idempotent e of A such thate = f.

Let 1 =e; + --- 4+ e, be the central idempotent decomposition of 1 in A.
Then 1 = €] + --- + ¢ is the central idempotent decomposition of 1 in A
by Proposition 5.3. These decompositions yield indecomposable direct sum

decompositions
¢

¢
A=Ped, A" =FeaA"
i=1 i=1
as two-sided ideals. We call ;A (or ;A" a block of A (or AT), and e; (or
€) a block idempotent. For an indecomposable A-module or A¥-module M,
there is a unique block idempotent e; such that e;M # 0. Then we say that
M belongs to the block e;A. Similarly, for an indecomposable AF-module L,
there is a unique block idempotent e; such that &;L # 0 and we say that L
belongs to the block e; A or g;A”.

5.2 Semisimplicity

Let (K, R, F') be a p-modular system. For O € {K, R, F'}, let A be an O-free
O-algebra of finite rank, and let M be an O-free A-module of finite rank
n. Let ® : A — Mat,(O) be the corresponding matrix representation, and
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X its character. Choose an O-basis {v;} of A. We define the discriminant
D (0,3 (A) of M with respect to the basis {v;} by
Da ;3 (A) = det(x(viv;))ij-

When O is a field, it is known that the algebra A is separable if and only if
there exist an extension field @ of @ and an A9 -module M such that its
discriminant is nonzero.

Let us now discuss semisimplicity of adjacency algebras. For each L €
IRR(KS), choose its R-form L. Put M = @ gpxs) L (reduced regular
module defined in [6, §59]). Then M = Dremrixs) L is an R-form of M.
Compute the discriminant of M with respect to the basis {o | s € S}. Then

we have
HSGS s

(x(1)?)"
x€lIrr(S) mXX

|DA7,{US}(RS)| = ng!”!

The number Dy, (RS)| is a rational integer and depends only on the
scheme (X, S). This number is called the Frame number of the scheme and

denoted by F (X, 5). It is easy to see that Dyzr oy (FIS) = eF (X, 5), where
e € {—1,1}. The following theorem holds.

Theorem 5.4 ([1, Theorem 1.1], [14, Theorem 4.2]). The adjacency algebra
F'S is semisimple (separable) if and only if the characteristic of F is not a
divisor of the Frame number F(X,S).

Problem 5.5. Let GG be a finite group, F' a field of positive characteristic p.
Then, by Maschke’s theorem, the group algebra F'G is semisimple if and only
if p 1 |G|. Consider the thin scheme defined by G, then the Frame number
is bigger than the group order |G|. Find a good invariant of a scheme which
generalizes the group order.

5.3 Schemes of prime order

One of the major achievements in modular representation theory of schemes is
the theorem that every scheme of prime order is commutative. This theorem
is based on the following fundamental observation.

Theorem 5.6 ([15, Theorem 3.4]). Let p be a prime number, F' a field of
characteristic p, and (X, S) a scheme of p-power order. Then the adjacency
algebra FG is local.
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Theorem 5.6 together with a variation of a famous argument of R. Brauer
[4] is the key in the proof of the following main result of this subsection.

Theorem 5.7 (|26, Theorem 3.3, Theorem 5.3]). Let p be a prime number,
and (X, S) a scheme of order p. Then

(1) (X,S) is commutative.

(2) There exists a positive integer k such that ng =k for any s € S — {1}
and m, = k for any x € Irr(S) — {1s}. Moreover all members of
Irr(S) — {1s} are algebraically conjugate to each other.

(3) If there is an abelian number field which is a splitting field of (X, 5),

then (X, S) is algebraically isomorphic to a cyclotomic scheme.

In [2, §2.7], it was asked whether the minimal splitting field of a com-
mutative scheme is abelian. Although we were able to get much information
about minimal splitting fields of schemes of prime order, we were not able
to show that these fields are abelian. Toru Komatsu constructed examples
of such fields [33]. After that Eiichi Bannai and Komatsu constructed inte-
gral table algebras whose minimal splitting fields are not abelian. However,
whether these table algebras come from schemes seems to be still an open
question.

In a certain sense, Theorem 5.7 generalizes the fact that groups of prime
order are commutative. Since groups of prime square order are commutative,
it is natural to ask the following.

Question 5.8. Are schemes of prime square order necessarily commutative?
The following partial answers have been achieved.

Theorem 5.9 ([19], [24]). Let p be a prime number, and let (X,S) be a
scheme of order p*. Then (X,S) is commutative if one of the following
conditions holds.

(1) (X,S) is Schurian.
(2) There exists a thin closed subset T with ny > p.

(3) There exists a strongly normal closed subset T with np < p.
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5.4 Blocks of modular adjacency algebras

Let (K, R, F') be a p-modular system, and let (X,S) be a scheme. Suppose
KS and F'S are splitting algebras. In this subsection, we consider some
invariants of blocks of RS.

Let BI(S) denote the set of all blocks of RS. For B € BI(S), ep will
denote the central primitive idempotent corresponding to B. For x € Irr(S5),
there is a unique B € BI(S) such that x(ep) # 0. We say that y belongs to B.
We define Irr(B) to be the set of all irreducible characters of S belonging to
B. Similarly, for an irreducible F'S-module M, there is the unique B € BI(.S)
such that egM # 0. In this case, we say that M belongs to B.

Let us first clarify what it means for two irreducible characters to be in
the same block. For x € Irr(S) and o € Z(KS), put

wy(a) = ===,

)

Then w, is an irreducible character of Z(KS) and Irr(Z(KS)) = {w, | x €
Irr(S)}. If @« € Z(RS) = RSN Z(KS), then w,(a) € R. So we can define

Wy : Z(RS)Y — F by w(@) = wy(a). Here we remark that, in general,

x(a)
x(1

Z(RS)F = Z(RS)/rZ(RS) # Z(FS)

Proposition 5.10. Let x, ¢ € Irr(S5)
if and only iof Wy, = W,.

Then x and ¢ are in the same block

Especially, if (X, S) is commutative, then xy = w, for every x € Irr(95).
So we have the following.

Proposition 5.11. Suppose (X, S) is a commutative scheme. Let x,p €
Irr(S). Then x and ¢ are in the same block if and only if X = @.

Note that the block decomposition of Irr(S) depends on the choice of
the p-modular system, though it is independent for group algebras. For
B € BI(S), put wg = w, for y € Irr(B), since w, is independent of the
choice of x € Irr(B).

For the remainder of this subsection, we assume (X, S) to be commu-
tative. Let v, denote the p-valuation on the rational number field Q. For

B € BI(SY), put

t(B) = max{v,(ns) | s € S and wg(7;) # 0}.
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It is easy to see that this number is well-defined. For non-commutative

schemes, the author does not know a good definition of ¢(B) since, in general,
os & Z(RS).
For a non-negative integer ¢, put

Then [, is an ideal of F'S. For B € BI(S), put
t'(B) =min{/ | eg € I,}.
Then we have the following.
Theorem 5.12. For every B € BI(S), we have t(B) = t'(B).

We write

es =Y Ou(s)o.  (Bsls) € R).
seS

Then we have ¢(B) = min{v,(ns) | Bs(s) # 0}. We put Bl,(S) = {B €
BI(S) | t(B) =(} and Sy = {s € S | vp(ns) = {}.

Proposition 5.13. Let B, B' € Bl,(S), x € Irr(B), and x' € Irr(B’). Then
B = B’ if and only if

x(os) = X'(0),

for any s € S;. Moreover {(wg |s,) | B € Bl(S)} is linearly independent
over I, so we have | Bly(S)| < |Sy|.

Theorem 5.12 and Proposition 5.13 impose severe constraints on character
tables of commutative schemes. Let us give one more invariant for a block.
For B € BI(S), we have v,(dimpegFX) > v,(|X]). So

u(B) = vp(dimpepFX) — 1,(|X])

is a non-negative integer. Having looked at many examples we come up with
the following question.

Question 5.14. Is it true that ¢(B) < u(B) for B € BI(S) ? Is it true that
vp(BB(s)) < u(B) — vy(ns) for B € BI(S) and s € S 7
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We have u(B) = v,(85(1)). So, if the second inequality holds in the
above question, then the first inequality holds by putting s = 1.

Example 5.15. Let (X, S) be a group association scheme (conjugacy class
scheme). Then the inequalities in Question 5.14 hold. In this case, ¢(B) =
u(B) and this number is closely related to the defect of the block of the group
algebra.

5.5 Problems

In this final subsection, we state some problems and related facts.

5.5.1 Algebras as adjacency algebras

From the viewpoint of finite dimensional algebras, there is a natural problem.

Problem 5.16. Consider what kind of algebras are obtained as adjacency
algebras or their blocks.

We do not know the answer to this question, even for group algebras.

Let K be an algebraically closed field. For M € IRR(KS), let P(M)
denote the projective cover of M. For M,N € IRR(KS), put cyn =
dimg Homgg(P(M), P(N)) and call this number the Cartan invariant. De-
fine the matrix C' = (cpn), whose both rows and columns are indexed by
IRR(KS), and call this the Cartan matriz of KS. It is known that the alge-
bra is a splitting symmetric algebra, then the Cartan matrix is a symmetric
matrix [36, II. Theorem 8.21].

It is well known that every group algebra is symmetric algebra. Adja-
cency algebras are not necessary symmetric, but their Cartan matrices are
symmetric matrices. This property restricts possibilities of algebras as adja-
cency algebras. For example, every non-semisimple hereditary algebra cannot
be a block of an adjacency algebra.

Problem 5.17. Generalize known facts on Cartan matrices of group algebras
to adjacency algebras.

5.5.2 Representation types

Let K be a field, A a finite dimensional K-algebra. We say that A is of
finite representation type if there are only finitely many isomorphism classes
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of indecomposable left A-modules. Otherwise A is said to be of infinite
representation type.

Problem 5.18. Let K be a field, (X,S) a scheme. Determine when the
adjacency algebra K .S is of finite representation type.

Let G be a finite group, and let K be a field. Then KG is of finite
representation type if and only if p = 0 or a Sylow p-subgroup of G is cyclic,
where p is the characteristic of K (see [6, §64]). We want to generalize this
fact.

Problem 5.19. For a scheme, define something like a Sylow p-subgroup of
a finite group.

Closed Sylow subsets have been introduced for the so-called p-valenced
schemes in [32]. (The definition follows in the next paragraph.) However, we
wish to see a generalization to all schemes.

For a finite group G, if v,(|G|) = 1, then a Sylow p-subgroup of G is
cyclic and the group algebra is of finite representation type. So we con-
sider the condition v,(|X|) = 1. But the adjacency algebra of the group
association scheme (conjugacy class scheme) (X, .S) of the symmetric group
of degree 3 over a field of characteristic 3 is of infinite representation type
though v3(|X|) = 1. So we strengthen our hypothesis and have the following
problem. We say that a scheme (X, .S) is p'-valenced if ng is a p’-number for
every s € S.

Problem 5.20. Let (X, S) be a p’-valenced scheme, K a field of character-
istic p. Suppose v,(|X|) = 1. Is it true that, in this case, KS is of finite
representation type 7

The result on commutativity of schemes of prime order (Theorem 5.7)
was obtained when we were considering this problem, since every scheme of
prime order satisfies the assumptions.

For a finite group G with v,(|G|) = 1, KG is not only of finite representa-
tion type, but also a direct sum of Brauer tree algebras (see [3, §4.18]). Also
for adjacency algebras, all known examples of adjacency algebras of finite
representation type are direct sums of Brauer tree algebras. A special case
of this problem is considered in [22].

Algebras of infinite representation type are divided into those of tame type
and those of wild type. Of course, one would like to know when an adjacency
algebra of a scheme is tame. But this problem seems to be more difficult
than Problem 5.18.
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5.5.3 Standard modules

In [5] and [37], p-ranks of elements in an adjacency algebra were considered.
Here the p-rank means the rank of an integer matrix modulo a prime number
p. The p-rank was used in order to distinguish algebraically isomorphic
schemes.

Let (X,S) and (X’,S’) be algebraically isomorphic schemes with 1 :
S — 5" such that pY, = szZ))w(t)' For o = ) .qas0, € ZS, define ¢(a) =
Y ees @sOy(s) € ZS'. Then it is easy to see that the ranks of o and ¥(«)
are equal. But, sometimes, the p-ranks of a and () are different. This
difference comes from the structures of standard modules.

Let F' be a field of characteristic p. In this case, we have F'S & FS’ as
F-algebras. This isomorphism allows us to view the standard module FX’
of (X', 5") as an F'S-module. Thus, the p-rank of « is equal to the dimension
of @F X, where @ is the natural image of o to F'S. So, if FX 2 FX' as F'S-
modules, then the dimensions can be different. Some examples were given in
27].

In a certain sense, standard modules are similar to permutation modules
of finite groups. Indecomposable direct summands of permutation modules
are called trivial source modules ([36, IV, §8]). Trivial source modules have
some special properties. So we have the following question.

Question 5.21. Does every indecomposable direct summand of a standard
module have special properties 7

Especially, there is the unique direct summand M of the standard module
with the property gM # 0, where og = ) _s0,. We want to know what
is M. If the adjacency algebra F'S is self-injective, then M is isomorphic to
the injective hull of the trivial module.

Finally, there is one more remark. Consider the elementary divisors
{er,ea,--- ,ex)} of @ = > qa,0, € ZS. Then the p-rank of a is equal
to #{i | e; Z0 (mod p)}. So the set of elementary divisors gives more infor-
mation than the p-rank. But we do not know how to find good elements in
ZS to see their elementary divisors.
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