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We study equivalence classes of boundary conditions in an SU(N) gauge theory on
six-dimensional space-time including two-dimensional orbifolds. For five types of two-
dimensional orbifolds S'/Z> x S'/Zs and T?/Z. (m = 2,3,4,6), orbifold conditions and
their gauge transformation properties are given and the equivalence relations among bound-
ary conditions are derived. The classification of boundary conditions related to diagonal
representatives is carried out using the equivalence relations.

Subject Index: 143
§1. Introduction

Grand unified theories on orbifolds have been considered phenomenologically
since Higgs mass splitting was well realized by the orbifold-breaking mechanism.!):2)»**)
Various types of models have been constructed from a variety of ingredients such as
gauge groups, representations of fields, extra dimensions and boundary conditions
(BCs) for fields. The features of the first three ingredients have been studied inten-
sively, but those of the last one are not yet fully understood with a few exceptions
such as BCs on the orbifolds St/ Zs, T?/Z5 and T?/Z3.

The BCs for bulk fields are classified into equivalence classes using the gauge
invariance. Several sets of BCs belong to the same equivalence class and describe
the same physics if they are related to gauge transformations. Specifically, the
symmetry of BCs is not necessarily the same as the physical symmetry. The physical
symmetry is determined by the Hosotani mechanism after the rearrangement of gauge
symmetry.?) Equivalence classes of BCs and dynamical gauge symmetry breaking
have been studied for gauge theories on S'/Z5,%)6)*%) T2/7,8) and T?/Z3.9 It
is interesting to study the equivalence classes of BCs for gauge theories on other
orbifolds and to construct a phenomenologically viable model based on them.

In the present paper, we study equivalence classes of BCs in an SU(N) gauge
theory on six-dimensional space-time including two-dimensional orbifolds. For five
types of two-dimensional orbifolds S /Zy xSt /Z3 and T?/Z,,, (m = 2,3, 4, 6), orbifold
conditions and their gauge transformation properties are given and the equivalence
relations among BCs are derived. The classification of BCs related to diagonal
representatives is carried out using the equivalence relations.

*) B-mail: haru@azusa.shinshu-u.ac.jp
**) In four-dimensional heterotic string models, extra colored Higgs are projected by the Wilson
line mechanism.®
“**) See Ref. 7) for the breakdown of gauge symmetry on S'/Zs by the Hosotani mechanism.
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In §2, general arguments are given for BCs in gauge theories on S'/Zy x S1/Z,.
Equivalence classes of BCs are defined by the gauge invariance, and the classification
of BCs is carried out using the equivalence relations among BCs. In §3, we study
the equivalence classes of BCs and classify BCs related to diagonal representatives
on T%/Z,, (m = 2,3,4,6). Section 4 is devoted to conclusions.

§2. S'/Zy x S'/Zy orbifold and equivalence classes

2.1. Boundary conditions

We study an SU(N) gauge theory defined on a six-dimensional space-time M* x
S1/ 7y x S' ) Z9,*) where M* is the four-dimensional Minkowski space-time. An extra
space S1/Zy x S'/Zs is obtained by identifying points on T2 = S! x S! by their
parity. Let o and % = (y1,%2) be coordinates of M* and S'/Z x S'/Z5, respectively.
On S x 81, the points ¢+ &, and ¥+ &, are identified with point ¢, where €; and é;
are basis vectors, which we take as the unit vectors & = (1,0) and & = (0,1).**) The
orbifold S'/Zy x S'/Z, is obtained by further identifying (—y1,y2) and (y1, —y2) with
(y1,y2). The fixed lines or points on S'/Z; x S'/Z5 are lines or points that transform
themselves under the Zy transformations § — 61y = (—y1,92), ¥ — 627 = (y1, —y2)
or § — 03y(= 01027 = 0261Y) = (—y1, —y2). There are two fixed lines (0,y2) and
(1/2,y2) for the first Zy transformation and two fixed lines (y1,0) and (y1,1/2) for
the second Zy transformation. There are four fixed points 0(= (0,0)), /2, /2
and (€ + €2)/2 for the third Z5 transformation. Around these lines and points, we
define the following ten transformations:

510 : Y — 017, s11:y— Oy+er, s20:y— 6y, sy — 027+ €,
530 1Y — 03y, s31:9 — O35+ €1, s32:Y — O35+ €,
s33:Y — 03 +é€1+6, hh:y—yter, to:y—y+ea (2-1)
These satisfy the following relations:
2 2 2 2 2 2 2 2
510 = S11 = So0 = S1 = 830 = 531 = 533 = S33 = I,
s11 = t1810, S21 = t2s20, tite = taty,
830 = S10520 = 520510, S31 = S11520 = 520511,
$32 = 510821 = $21810, S33 = S11821 = S$21511, (22)
where I is the identity operation. On S'/Zy x S'/Z,, point 7 is identified by 7 + €;
(t=1,2) and 0;4 (j = 1,2, 3), but not all six-dimensional bulk fields necessarily take
identical values at these points. Under the requirement that the Lagrangian density

should be single-valued on M* x S1'/Zy x S'/Z5, the following BCs for gauge field
Ay (z,9) are allowed:

s10: Anm(z,019) = H%&]PloAM(%Zj)me

) The models on M* x S*/Zy x S'/Z5 were studied in Ref. 10).
**) For the estimation of physical quantities, we use physical sizes such as |e1] = 2mR; and
|€2] = 2w R2. We use integral multiples of the unit vectors as basis vectors for other orbifolds.
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10 _ 10 __ 10 _
for /ﬁ}[“] = ].7 ﬁ[y1] = —1, K[yz] = ].7 (23)

s11: Ap(z, 015+ ¢€1) = /i[lj\l/[}PllAM(xvg)PlTl,

11 11 11
for rpy =1, fpy,) = 1, Ky =1, 24)
s90 : An(x,027) = K%&]P20AM($75)P§07
20 20 20
for /ﬁ}[“] = ].7 ﬁ[y1] = 17 K/[yﬂ = _]-7 (25)

so1 1 Aw (@, 027 + €) = Kty P A (. 9) Py,

21 21 21
for H[“] — 17 K/[yl] - 17 K,[yﬂ — —17 (26)
ss0: Ani(x,059) = ki PsoAns (, 5) P,
30 30 30
for H[“] — 17 K/[yl] - —1, K:[yZ] — —17 (27)

ss1 1 Aw(@, 055 + €1) = kit Pa A (2, 9) Py,

31 31 31
for H[“] - 17 K/[yl] = —1, K:[yZ] - —17 (28)
ss2 1 Am (@, 037 + &) = R?@}P?)zAM(I?g)sz,
32 32 32
for H[“] - 17 K/[yl] = —1, K:[yZ] - —17 (29)
ss3 1 Am(x, 037+ €1 + &) = Ki[))]\:}]P?)?)AM(‘T)g)Pg?,v
33 33 33
for H[“] - 17 K/[yl] = —1, K:[yZ] - —17 <210)
tr: Ay(z, 7+ @) = Uy Ay (z, U], (2:11)
to: Ani(z,§+ &) = UpAps (z, UL, (2-12)

where PlO; P117 PQ(), P21, Pgo, P31, ng, P33, U1 and U2 are N x N matrices. Here,
we take matrices with constant elements to define the BCs for the bulk fields for
simplicity. The counterparts of Eq. (2-2) are given by

P1202P121:P220:P221:P§0:P§1:P§2:P323:I7

Py = Ui Py, Po1 =UsPyy, UUy =UsUi,

Py = P1oPyy = PooPro, P31 = P11Py = Paolry,

Py = PioPo1 = Po1Pro, P33 = Pi11Po1 = Po1 Py, (213)
where I is the N x N unit matrix. Then the BCs in SU(N) gauge theories on
Sl/ZQ X Sl/ZQ are Speciﬁed With (P107 P].].a Pgo, P21, P307 P31, P32, P33, Ul, UQ). Be-
cause any four of these matrices are mutually independent, we choose four unitary

and Hermitian matrices Py, P11, Pyo and P»; as independent matrices and often
refer to them simply as BCs.

2.2. Gauge invariance and equivalence class

Given the BCs (Pig, P11, Pao, P21), there still remains residual gauge invariance.
Under the gauge transformation with the transformation function 2(z,%), A is
transformed as

Ay — Ay = QAN 0T — égaMm, (2:14)
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where Ay, satisfies, instead of Egs. (2:3) — (2:6),

s10+ A7) =y (Plodinle. Dl = - Fiodu Pl ) (215)
S11 ¢ AM($79137+ €1) = K[lz\lﬂ <P1I1A/M($737)Pq1 - éPﬁaMP/L) ) (2-16)
s Ay, ) =y (PloAinle. Dl — - Phodu Pl ) (217)
so1 1 Ayy(z, 007 + €2) = Iﬁ}[M] <P21AM(33 y)P —P218MP’21> (2-18)

Here P|,, P{;, Py, and P}, are given by
Plo() = 2(x,0:15) P2 (z,§), Pi1(§) = Lz, 005+ &) Pui(z,7),
Py (i) = 2z, 025) Po 2" (z,5), Py (i) = 2w, 025 + &) Pn 27 (z, §). (2:19)
Theories with different BCs should be equivalent with regard to physical content
if they are connected by gauge transformations. The key observation is that the

physics should not depend on the gauge chosen. The equivalence is guaranteed in
the Hosotani mechanism® and the two sets of BCs are equivalent:

(P10, P11, Pao, Po1) ~ (Pyo(#), P11 (), Pao (%), Poy (7). (2-20)

The corresponding relations for Pj,, Pj;, Py, and Pj; are given by

Po(y )P 10(017) = P'1o(019) P'10(7) = 1,

P'i(§)P (b +é1) = Plu(0ig+ée)Pu(y) =1,

P'20(§) P'20(029) = P'20(028) P'20(y) = 1,

P'y1(§)P'21(027 + €2) = P'a1(02i] + €2) P'o1 () = 1. (2-21)

In the case that P{,, Pjy, P20 and P21 are independent of ¢, the above relations
reduce to the usual ones, P'3, = P'3, = P'5) = P'5, = I. The equivalence relation
(2-20) defines equivalence classes of the BCs.

We illustrate the change of BCs under a singular gauge transformation using an
SU(2) gauge theory with the gauge transformation function defined by

() = explia(ary + bro)yr + iB(am + br2)ya] , (o, B,a,b € R) (2-22)

where 73, (k = 1,2,3) are Pauli matrices. When we take (Pio, P11) = (73, 73), they
are transformed as

Ply = 2z, 015)Pio$2" (2, §) = explifi(ami + b1 )yo]r, (2:23)
Pl = Q(x,015+ &) P12 (z,7) = explia(ar + bra) + if(ar + bra)ya]ms.  (2:24)
P|, becomes diagonal with 3 = 0 and then P, and Pj; take the following form:
Pllo = T3, (2-25)
P[, = expli(ar + bra)]|m3

b
- <Icos~/a2+b2 Ms'nﬂ/aQ—i—bQ) 73, (2-26)

a? + b?
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where we set o = 1 and I is the 2 x 2 unit matrix. Pj; also becomes the diagonal form
(—1)"73 when va? + b? = nz for an integer n. To obtain a diagonal representative
for both (Pso, P21) and (Pyg, Py;) with the gauge transformation function () =
expli(amy + br2)y1], P and Py should be I or —I. In this way, we obtain the

following equivalence relation:
(73, 73,1201, m211) ~ (73,7 T0) 1y poo I mon T), (2-27)

where 199 and 721 are 1 or —1. In the same way, we obtain the following equivalence
relation:

(mol,m1l, 73, 73) ~ (mol,mi1l, 73, @7 +0m2) 1), (2-28)

where 719 and 717 are 1 or —1. The equivalence relations between diagonal repre-
sentatives are given by

(13,73, m20L,m211) ~ (73, —73,1m201, 1211 ), (2-29)
(mol,m1l,73,73) ~ (mol,n1d, 73, —T3). (2-30)

2.3. Classification of boundary conditions

We classify BCs for bulk fields on the orbifold S'/Z x S'/Zs.

First we show that all BCs are specified by diagonal matrices for the SU(2) gauge
group. (1) In the case that Pjg, P and P are the 2 X 2 unit matrix I up to a sign
factor, P21 can be diagonalized by a global SU(2) transformation. (2) In the case
that Pig and Py1 are I up to a sign factor and Psg has a nondiagonal form, we derive
Pyy = +73 after a global SU(2) transformation. Then P»; = +713expli(ar; + bmo)]
is allowed, but we obtain P»; = +73 by the gauge transformation with 2(x,7) =
expli(aTi 4+ bm2)y2]. (3) In the case that Py is £ and Pj; has a nondiagonal form,
we derive Pj; = +73 after a global SU(2) transformation. We obtain Py = £1I or
:|:7'3 and P21 ==l or :tTg using the relations P11P20 = P20P11 and P11P21 = P21P11,
respectively. (4) In the case that Pjg has a nondiagonal form, we derive Pjg = +73
after a global SU(2) transformation. We obtain Poyg = +1I or £73 and Py = +1
or +73 using the relations PigPyy = PoyoPip and PigPe1 = Po1Pig, respectively.
If Pyy or Py is £73, P11 = £1I or 473 using the relations Pj1Pyy = PyoPip and
P11P21 = P21P11. If both P20 and P21 are :|:I7 P11 = :|:7'3 exp[i(aﬁ —|—b7’2)] is allowed.
In this case, we obtain P;; = £73 after the gauge transformation with 2(z,y) =
expli(ati + bma)y1].

In a similar way, all BCs for the SU (V) gauge group are made of those specified
by diagonal matrices after suitable global unitary transformations and local gauge
transformations on S'/Z x S'/Z,. We here sketch the proof of this. Pygand Pj; can
be diagonalized by a global unitary transformation and a local gauge transformation
using the same argument as that for the case of Sl/ZQ.G) Note that Pjg and P
remain g-independent after the transformations as shown from the equivalent relation
(2'27). From the relations PigPsy = PogPio, PioPo1 = Po1Pio, P11 Pog = PooPi1 and
P11 P>y = Po1 P11, we find that Pyg and P are block diagonal matrices and that Pag
is diagonalized by a unitary matrix that belongs to a subgroup of SU(N). Thus, P
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can also be diagonalized by a suitable gauge transformation following the equivalent
relation (2:28). In this way, we find that there is at least one diagonal representative
of BCs in every equivalent class. The diagonals Pig, P11, Py and Ps; in SU(N) gauge
theories are specified by sixteen nonnegative integers (pg, gk, 7k, sk) (k = 1,2,3,4)
such that

Pro = diag([+1]p,, [+1ps [H1pss [F1pas [F1ars [F1a2s [ g [
r N—p—q—r

[ 1]1”17 [ ]TQv [ 1]1“5’ [ 1]7”47 [*1]81’ [*1]827 [*1]53’ [*1]84)’
Py = diag([""l]pla ["’1]?27 [+1]p37 [+1]p47 [ ]Chv [_1]1127 [_1](137 [_1]6147

[+1]T17 ["‘1]7*27 H’l] ) ["’1]7‘47 [_ ]817 [_1]527 [_1]837 [_1]84)7
Py = diag([+1]P17 H’l] ) [ 1 D3> [ 1]1’47 [+1]q17 [+1]Q27 [_1]%7 [_1]%:
[ [
] ]
[ -

pos [—1]
+1] ) [ 1]7“37 [ 1]7“4’ [+1]817 ["1'1]827 [_1]83? [_1]34),
Py = diag([+1 p1> [—1 P2 [+ 1];037 [— 1]174’ [+1]Q1v (-1 ]QQv [+1]Q3’ [*1]1147

Jr1]7”17 1]7“2’ [+1]T3’ [ 1]1”47 [+1]51’ [*1]827 [+1]83’ [*1]84)’ (2'31)

where N = Zi:l(pk‘ + gk + 7%+ Sk), 0 < Pry @i, Ty Sk < N and [+1],, stands for

[F1]p = +1,- - 41, [—1)g, = —1,-,—1. (2-32)
pP1 S4

Then the symmetry of BC becomes

SU(N) — SU(pl) X - X SU(p4) X SU(ql) X - X SU(Q4)
x SU(r1) x -+ x SU(r4) x SU(s1) % --- x SU(s4) x U(1)¥*71, (2-33)

where [ is the number of SU(0) and SU(1) in SU(p1) x ---x SU(s4). Here and here-
after SU(0) has no meaning and SU (1) unconventionally stands for U(1). We refer to
BCs specified by diagonal matrices as diagonal BCs and denote the above BC (2-31)
S [p1, D2, D3, P43 q1, 425 G3, 445 71, T2, 73, 45 S1, S2, 83, S4]. Note that the symmetry of a
BC is not necessarily identical to the physical symmetry.
Using the relations (2-27) and (2-28), we can derive the following equivalence
relations:

[P1, D2, 3, P43 41, Q25 G3, Q43 71, T2, T3, T45 S1, 52, 53, S4]
~[p1 — 1,p2,p3,pa501 + 1,q2,q3, qa; 71 + 1,72, 73, 745 51 — 1, 52, 53, 54]

for p1,s1 > 1,
~ [p1+1,p2,p3, 1501 — 1,G2,43,qa; 71 — 1,72, 73,745 81 + 1, 82, 53, 54]

for q1,7m1 > 1,

~ [p1,p2, 3, P14 — 1;q1,G2,43,qa + 171,72, 73,74 + 1; 51, S2, 83, 54 — 1]
for ps,s4 > 1,
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~ [p1,p2, 3, P4+ 1;q1, 62,43, 91 — 171,72, 73,74 — 1; 51, S2, 83, 54 + 1]

for qq,r4 > 1,
~[p1—1,p2 4+ 1,p3+ 1,p4 — 1541, 92,43, qa; 71,72, 7'3, 45 51, 52, 53, 54]

for p1,ps > 1,
~[p1+1,p2 —1,p3 — 1,ps + 1;q1, G2, G3, qa; 71,72, '3, 745 S1, 2, 53, 54]

for pa,p3 > 1,

~ [p1,D2, 03, P45 Q1,425 43, Qa3 71, 72,73, 74351 — 1,52 + 1,83 + 1,54 — 1]
for s1,84 > 1,
~ [p1,D2,P3, P45 q1, 42,43, Qa3 71, 72,73, 74351 + 1,52 — 1,83 — 1,54 + 1]
for s9,s3 > 1. (2-34)

Hence, the number of equivalence classes of BCs is y4+15C15 — 8 - n+13C15.

When the BCs for bulk fields are given, mode expansions are carried out and the
one-loop effective potential for Wilson line phases is calculated using the standard
method. Y From the minimum of effective potential, the physical symmetry and
mass spectrum are obtained for each model. We do not carry out these calculations
since our purpose is not to study the dynamics of models but to classify the BCs.

As a comment, we can extend our argument to the case with the orbifold S*/Z3 x
.-+ x 8'/Z,. In this case, diagonal BCs are specified by 4* integers and the number
of equivalence classes is y4¢_1Cyr_1 — 47 k- yogx_3Cyn_q, where k is the number
of S 1 / ZQ.

§3. T2/Z,, orbifold and equivalence classes

In this section, we study SU(N) gauge theory on M4 xT?/Z,,, where m = 2,3, 4
and 6. We discuss equivalence classes of BCs and obtain the number of BCs related
to diagonal representatives for each orbifold.

3.1. T?/Zy orbifold

Here we study SU(N) gauge theory s
on M* x T?/Zy.*) Let z be the com- A
plex coordinate of T2/Z,. Here, T? is
constructed using the SU(2) x SU(2)(~
SO(4)) lattice. On T2, the points z +e; e2/2
and z + e are identified with the point
z where e; and ey are basis vectors and
we take e; = 1 and ey = 4. The orbifold
T?/Z, is obtained by further identifying o
—z with z. The resultant space is the e1/2
area depicted in Fig. 1. The fixed points

> €1

Fig. 1. Orbifold T?/Z,.

*) Equivalence classes of BCs and dynamical gauge symmetry breaking were studied for SU (2)
gauge theory on T2/Zs in Ref. 8).




854 Y. Kawamura and T. Miura

2z, for the Z, transformation z — 0z = —z satisfy
zyp = 0zg, + nep + nea, (3-1)

where m and n are integers that characterize fixed points. There are four points:
0, e1/2, e2/2 and (e; + e2)/2. Around these points, we define the following six
transformations:
So:z— —2z, S1:2— —z+ey, S :z— —z+ e,
$3:2— —z+e1+ey, t1:2—>z+e, to:z— 2+ eg. (3-2)
These satisfy the following relations:
Sg = 8% = S% = Sg = I, S1 :tls(), 59 :tQS(),
S§3 — t1t280 = 818082 = S$250S1, tltg = t2t1. (3'3)
The BCs of bulk fields are specified by matrices (Py, P1, P2, P3, U1, Us) satisfying the
relations
P?=Pl=Pi=P; =1, Ph=UPy, P,=UsR,
Py =UUsPy = PLPyPy = PPy Py, UiUs = UsUs. (3-4)
Because any three of these matrices are mutually independent, we choose three
unitary and Hermitian matrices Py, P; and Ps.
Given the BCs (P, P, P,), there is still residual gauge invariance. Under the
gauge transformation with 2(z, z, z), Py, P; and P» are transformed as
Py(2,2) = Q(x, —2,—2) Py (z, 2, Z),
Pl(z,2) = 2z, —z + e1,—Z + &) P12 (2, 2, 2),
Py(2,2) = Q(x, —2z + €3, —Z + &) Po21(x, 2, Z). (3-5)

These BCs should be equivalent:
(P07P17P2) ~ (P(l)(za2)7P1/(272)7P2/(272))' (36)

This equivalence relation defines equivalence classes of the BCs. Let us consider an
SU(2) gauge theory with the gauge transformation function defined by

2(z,2) = exp [ia(aT) + bm2)z + ia(am + b12)Z], (3-7)

where a and b are real numbers. When we take (Py, Pi, Py) = (713,73, 73), they are
transformed as

(737 5, 7_3) R (73’ €2iReOt(aT1+b7'2)7_37 e—QiIma(an-‘rsz)Tg)_ (3'8)

In this way, we obtain the following equivalence relations among the diagonal repre-
sentatives:

(73,73,73) ~ (73,73, —7T3) ~ (73, =73, 73,) ~ (73, =73, —T3). (3:9)
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We classify BCs for fields on the orbifold T%/Z,. Tt is shown that all BCs are
specified by diagonal matrices for the SU(2) gauge group. As shown in Ref. 8),
the 2 x 2 matrices that satisfy (3-4) are given by (Fo, P1, P2) = (I,1,1), (I,1,73),
(I,73,1), (I, 73,73) and (73, r3e2Re(@mibm2) 7 p=2itma(ami+b72)) yp to a sign factor for
each component using a global SU(2) transformation. In the case that (Py, P, P2) =
(73, Tge2imealamiHbre) oy p=2imalani+m2)) e obtain (Py, P, Py) = (73,73,73) up to a
sign factor for each component after the gauge transformation with {2(z, ) given by
(37).

For the SU(N) (N # 2,3) gauge group, there are BCs specified by matrices that
cannot be diagonalized simultaneously by global unitary transformations and local
gauge transformations. Here we give an example. The following set of 4 x 4 matrices
satisfy (3-4):

(™ 0 A 0 _ L To et a5l
Po—<0 T3>7P1—<0 _72)7132—\/5( " ol , (3:10)

where ( is an arbitrary real number. In the case with ( # nw (n € Z), these
matrices cannot be transformed into diagonal ones simultaneously. These BCs have
no symmetry because there are no 4 x 4 traceless diagonal matrices simultaneously
commutable with the above matrices. Not every component in an SU(N) multiplet
necessarily becomes a simultaneous eigenstate of Z, parities if the BCs contain off-
diagonal elements. As an example, we consider the SU(N) gauge field Ay = A3, T,
which satisfies the BC for the Zy transformation z — —z + ea,

Ay (T, —2 + ez, —z + &2) = kP2 Ay (z, 2, E)PQJr , (3-11)

where k) = 1, k) = —1 and K[z = —1. In terms of components Af,, the above BC
(3-11) is written as

Aff(z,—z +ex,—Z + é2) = Z C[‘}VﬂbA’]’VI(w, z,Z),
b
Chyp = 260 Te(RTPPIT?) (3-12)

where we use the relation Tr(7%7T?) = §%°/2. The A%, do not have a definite Z, parity
for the components, that become mixed with others through the mixing matrices
C[CM »- In this way, the rank of gauge group can be reduced using BCs including off-
diagonal elements, which would be useful for the model-building of grand unification
or gauge-Higgs unification.

Hereafter, we classify BCs specified by diagonal matrices. The diagonals Py, P;
and P are specified by eight non-negative integers (p;, g;, i, $;) (i = 1,2) such that

P q r N—p;q—r
Py = diag( +1] [+1]P27 [

’[ P1>
Pl = diag([+1]p1’ [+1]P27 [*1]%7 [71]112’ [+1]7”17 [+1]7"2’ [71]31’ [71]82)’
P, = diag([+1]p1’ [*1]1727 [

+
—_
=
<
2
J—
+
S
=]
[ V]
|
—_
=
S
=
|
—_
=
=
[ V)
|
Ml
»
K
|
—_
=
w»
[ V]
S—

+
—
=
_
2
\
=
=]
V)
+
—
=
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=
\
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where 0 < p;, gi, 73, s; < N. Then the symmetry of BC becomes
SU(N) — SU(p1) x SU(p2) x SU(q1) x SU(q2)
x SU(r1) x SU(ry) x SU(s1) x SU(sy) x U(1)™7L. (3-14)
We denote the above BC as [p1,p2;q1,q2;71,72; S1,52]. Using (3-9), we can derive
the following relations in SU(N) gauge theory:
[p1, p2i g1, q2s 71,725 51, 82
~[p1 =1, p2+ 15q1,q2;71, 72581 + 1,52 — 1],
~[pr—1,p2s5q1 + 1,q2;71, 70 + 15 81,82 — 1],
~[p1—1,p2;qi,q2 + 1371 + 1,795 51, 82 — 1], for p1,s0 > 1, (3-15)
~[p1+1,p2 — 15q1,q2;71, 725 81 — 1,52 + 1],
~[p1,p2 — g1+ 1,q2;7m1,m2 + 1581 — 1 82],
~[p1.p2 —Ligi. g2 + 1im + 1,981 — 1, 89, for pa,s1 > 1, (3-16)
~ [+ 1,p2sqn — 1,q25m1,m2 — 181,82 + 1],
~[p1,p2 +15q1 — 1,q2;71,m0 — 1581 + 1, 89],
~ [p1,p25q1 — 1,q2 + 1;7m1 + 1,10 — 15 81, 59], for g1,m2 > 1, (3-17)
~ [p1+1,p2;q1,q2 — 1571 — 1,725 81, 82 + 1]
~ [p1,p2 + 15q1,q2 — 1571 — 1,725 81 + 1, 59,
~ [p1,p2q1 +1,q2 — im0 — 1,m2 + 1551, 89, for gz, > 1. (3-18)

)

Hence, the number of equivalence classes of BCs related to diagonal representatives
is Ny7C7 — 3 - N45C7.

3.2. T?/Z3 orbifold

The BCs for SU(N) gauge theory

on M*xT?/Zs were studied in Ref. 9).*)

For completeness, we explain the results

briefly in this subsection. Let z be the

coordinate of T2/Zs. Here, T? is con-

structed using the SU(3) lattice whose

basis vectors are given by e; = 1 and

ey = e¥™/3 = . The orbifold T2 /Z3 is

obtained by further identifying wz with

Fig. 2. Orbifold T?/Zs. z. The resultant space is the area de-

picted in Fig. 2. The fixed points for

the Z3 transformation z — wz are z = 0, (2e; + e2)/3 and (e1 + 2e2)/3. Around
these points, we define five transformations:

S0:2Z —wz, S1:z—>wztey, Sy:z—wzZ+e+ ey,

*) The six-dimensional extension of the Zs orbifold was initially introduced into the construction
of four-dimensional heterotic string models.’” The models on T2 /Z3 have been utilized in the search
for the origin of three families for quarks and leptons’®? and the unification of gauge, Higgs and
families.'®
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th:z—z+el, ta:z— 2+eq. (3-19)

Among the above operations, the following relations hold:

38 = s:f = sg = 508152 = S18280 = S280S1 = 1,
S1 = tlso, S9 = t2t180, tltg == tgtl. (320)

The BCs of bulk fields are specified by matrices (Og, O1, 2, =1, Z2) satisfying the
relations

OF = 03 = O3 = OyO109 = O10:,0) = 026006, = I,
01 = 516y, Oy = 55,0y, 515, = 525]. (3-21)

Because these matrices are pairwise independent, we choose unitary matrices ©g and
O;.

Given the BCs (©g, ©1), there is still remains residual gauge invariance. Under
the gauge transformation {2(z, z, z), ©p and ©; are transformed as

04(2,2) = Q(m,wz,@Z)QOQT(x, 2, 2),
O(2,2) = R(z,wz + 1,0z + 1)0:21(z, 2, 7). (3-22)
These BCs should be equivalent:
(90’@1) ~ (96(2’2)’@,1(252))' (323)

This equivalence relation defines equivalence classes of the BCs.
Let us consider an SU(3) gauge theory with the gauge transformation function
defined by

2(z,Z) = exp [ia (Yiz + Y_lé)] , (3-24)

where a is a real number and YJ} and Y! are given by

01 0 0 0 1
vi=0o0 1|, Y!=(10 0], (3-25)
1 0 0 01 0

When we take (©g,01) = (X, X) where X is given by

1 0 0
X = 0 w 0 |, (3-26)
0 0 w
Oy and ©q are transformed as
(60,01) = (X, X) — (X, 0 X)), (3-27)

In this way, we obtain the following equivalence relations among the diagonal repre-
sentatives:

(X, X) ~ (X,0X) ~ (X,wX), (3-28)
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where we use the relation

expliaY] = %(e% +2e7)] + %(e%“ —e Y. (3-29)
Here, I is the 3 X 3 unit matrix and Y =Y + Y.

There are BCs specified by matrices that cannot be diagonalized simultaneously
by global unitary transformations and local gauge transformations. For example,
the following set of 3 x 3 matrices cannot be diagonalized simultaneously by global
unitary transformations and local gauge transformations:

1 00 0 €% 0 0 0 el
=01 0], = 0 0 € |, O=| e 0 0 ,
0 0 1 e 0 0 0 e® 0
(3-30)

where a, b and ¢ are arbitrary real numbers satisfying a + b+ ¢ = 2nw (n € Z). The
above BC (3-30) satisfies (3:21). These BCs have no symmetry because there are
no 3 x 3 traceless diagonal matrices commutable with (©1,©3) given in (3-30). The
BCs specified by N x N matrices including off-diagonal elements can be constructed
in the form that the above set of 3 x 3 matrices or their transposes are contained as
submatrices.

We classify the BCs specified by diagonal matrices for simplicity. The diagonal
N x N matrices (O, ©1) are specified by nine nonnegative integers (pj, gj,7;) (j =
1,2,3) such that

P q r=N-p—q

O = diag ([1]1717 [1]1727 [1]1737 [W]lh? [w]thv [W]% (@D s [@]ras [©lrs),
O = diag([l]pn [W]sz [‘D]ps? [1]Q1’ [w]tnv [“_J]Q:s’ ey [Wlras [@]r5)s (3-31)

where 0 < p,q,r < N. Then the symmetry of BC becomes
SU(N) —SU(p1) x SU(p2) x SU(p3) x SU(q1) x SU(q2)
x SU(q3) x SU(r1) x SU(ry) x SU(r3) x U(1)37L. (3-32)

We denote the above BC as [p1, p2, p3; ¢1, G2, q3; 1, 72, 3]. Using (3-28), we can derive
the following equivalence relations in SU(N) gauge theory:

[p1, P2, P35 41, G2, 43571, 72, 73]

~[p1—1,p2 +1,p3;q1,q2 — 1, g3 + 1371 + 1,2, 73 — 1],

~I[p1—1,po,ps+ 1,1 +1,q2 — 1,q3;7m1, 72 + 1,73 — 1], for p1,qo,7r3 > 1, (3-33)

~[p1+1,p2—1,p3q1,q2 + 1,3 — 1571 — 1,72, 73 + 1],

~p1,p2 —L,p3+1;q1+1,q2,q3 — L;71 — 1,ma + 1, 73], for pa,q3,71>1, (3-34)

~p1,p2+1,p3—1;q1 — 1,q2,q3 + 1,71 + 1,72 — 1, 73],

~[p1+1,p2,p3— 11— 1,q2+ 1,g3;71,72 — 1,3 + 1], for p3,q1,m2 > 1. (3-35)
Hence, the number of equivalence classes of BCs related to diagonal representatives
is N48Cs — 2 N45Cs.
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3.3. T?/Zy orbifold

Here we study SU(N) gauge theory €9
on M* x T?/Z,. Let z be the coordi- S
nate of 72/Z,. Here, T? is constructed
using the SU(2) x SU(2)(x~ SO(4)) lat-
tice whose basis vectors are e; and es. €2/2
The orbifold T?/Z, is obtained by fur-
ther identifying 7z and —z with z. The
resultant space is the area depicted in ;
Fig. 3. Then the fixed points on T?/Z4 o * > el
are z = 0 and (e; + e2)/2 for the Z4 e1/2
transformation z — iz, and z = 0, e1/2,
e2/2 and (e; +e2)/2 are the fixed points
for the Z; transformation z — —z. Around these points, we define eight transfor-
mations:

Fig. 3. Orbifold T?/Z,.

So:z—1z, S1:z2—1z+e, Syp:z— —Z,
S91:2 — —z2+e1, S2:2— —2+e€2, S23:2— —2+ e+ e,
ti:z—z+e1, to:z— 2+ eo. (3-36)

These satisfy the following relations:

4 4 2 2 2 2
S0 = 8] = 859 = 831 = 859 = Sp3 = I, s1 =1180, S21 = t1520,

S22 = 12890, 520 = SG, S21 = 5150, S22 = S0S1,

S93 = t1l2820 = $21520822 = S22820821, lita = laty. (3:37)
The BCs of bulk fields are specified by matrices (Qo, Q1, Py, P1, P2, P3, U1, Us) satis-
fying the relations:

Q=Qi=F =P =P =P =1 Qi =UiQ, Pi=UR,

Py =UsPy, Py=Qf, Pr=Q1Qu, P» = QoQx,

Py =UUsPy = PLPyP, = P,PyP, UiUy = UsUy, (3-38)
where @, (m = 0,1) are unitary matrices and P, (n = 0,1,2,3) are unitary and
Hermitian matrices. Because these matrices are pairwise independent, we choose
matrices Qg and P;.

Given the BCs (Qoq, P1), there still remains residual gauge invariance. Under the
gauge transformation 2(z, z, z), Qo and P; are transformed as

Qo(2,2) = Qx,iz,—i2)Qo2' (x, 2, 2),
P{(Z,E) = Q(.Z‘, _Z+€17_2+51)P1~QT($7Z72)' (339)

These BCs should be equivalent:

(Qo. P1) ~ (Qu(z, 2), Pi(2, 2))- (3-40)
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This equivalence relation defines equivalence classes of the BCs. Let us consider an
SU(4) gauge theory with the gauge transformation function defined by

2(z,2) = explia(Y]z + Y'2)}, (3-41)

where a is a real number and YJ} and Y! are given by

0 — 0 0 0 0 0 ¢
0 0 7 0 ¢ 0 0 O
1 _ 1_ .
Ye= o 0 0 — |’ Yo= 0 — 0 0 (3-42)
- 0 0 0 0 0 ¢ O
When we take (Qo, P1) = (X, X?), where X is given by
1 0 0 O
0z 0 O
X = 00 -1 0 , (3-43)
0 0 O i
Qo and P; are transformed as
(Qo, Pr) = (X, X?) — (X, 05D x2), (3-44)

In this way, we obtain the following equivalence relation between the diagonal rep-
resentatives:

(X, X?) ~ (X, -X?), (3-45)
where we use the relation
expliaY] = I cos(v/2a) + %Y sin(v/2a). (3-46)

Here I is the 4 x 4 unit matrix and Y = V! 4+ Y.

There are BCs specified by matrices that cannot be diagonalized simultaneously
by global unitary transformations and local gauge transformations. For example,
the following 4 x 4 matrices cannot be diagonalized simultaneously by global unitary
transformations and local gauge transformations:

0 e 0 0 1 00 O
0 0 e€® 0 01 0 0

@=19 0 0 e | =001 0| G
e 0 0 0 0 0 0 1

where a, b, ¢ and d are arbitrary real numbers satisfying a+b+c+d = 2nw (n € Z).
The above BC (3-47) satisfies (3:38). These BCs have no symmetry because there
are no 4 x 4 traceless diagonal matrices commutable with Qq given in (3-47). The
BCs specified by N x N matrices including off-diagonal elements can be constructed
in the form that the above set of 4 x 4 matrices or their transposes are contained as
submatrices.
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We classify the BCs specified by diagonal matrices for simplicity. The diagonal
matrices Qo and P; are specified by eight nonnegative integers (p;, ¢;, 7, ;) (i = 1,2)
such that

p q T s=N—p—q-r

QO = diag([+1]p17 [+1]p2’ [+i]qy [+i]q27 [*1]1“1’ [*1]7”27 [72.]31? [*i]sz)’
Pl = diag([+1]p17 [*1]p2’ [Jrl]!h? [*1]Q27 [+1]T17 [*1]1“2’ [Jrl]slv [*1]52)7 (3'48)

where 0 < p;, ¢i, 7,8 < N (i = 1,2). Then the symmetry of BC becomes

SU(N) — SU(pl) X SU(pz) X SU(ql) X SU(qg)
x SU(r1) x SU(ry) x SU(s1) x SU(s2) x UL (3-49)

We denote the above BC as [p1,p2; q1,q2;71,72; S1,52]. Using (3-45), we can derive
the following equivalence relations in SU(N) gauge theory:

[P1,P2; q1,5G2; 71,725 51, 52;
~pr—Lpp+ L+ 10— Ly —1rp+ 181 + 1,50 — 1]
for p1,q2,71,52 > 1,
~pr+Lpr =1 — 1,4+ Lir + 1,12 — 1551 — 1,89 + 1]
for p2,qi,7m2,81 > 1. (3-50)

Hence, the number of equivalence classes of BCs including diagonal representatives
is N47C7 — N43C7.

3.4. T?/Zg orbifold

Here we study SU(N) gauge theory €9
on M*xT?/Zs. Let z be the coordinate
of T?/Zs. Here, T? is constructed using
the GG lattice whose basis vectors are
e1 = 1 and ey = (—3+iv/3)/2. The orb-
ifold T2 /Zg is obtained by further iden-
tifying pz with z, where p% = 1. The o ¢€1/2
resultant space is the area depicted in
Fig. 4. The Zg transformation z — pz
is a rotation of 7/3 around the origin
and the basis vectors are transformed as pe; = 2e; + e2, peg = —3e; — e2. Then the
fixed points on 172/Zg are z = 0 for z — pz, z = 0; e2/3 and e3/3 for z — p?z; and
2z =0, e1/2, e2/2 and (e; +e3)/2 for 2 — p3z, and around these points we define ten
transformations:

Fig. 4. Orbifold T?/Zs.

S0 12— Pz, 81052—>P2Z7 81112’—>p22’+€1+62, 81222’—>p22’+2€1+2€2,
520:zﬂp3z, 521:2Hp3z+61, 8222,2—>p32+62, 823:2Hp3z+61+62,
ti:z—2z+e1, to:z— 2+ eo. (3-51)
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These satisfy the following relations:

6 _ .3 3 3 &2 2 2 2,2
so = sty = 811 = Siy = $3) = 85, = S39 = 533 = I, s11 = titas10, S12 = tit3s10,

821 = 11820, S22 = 12820, S23 = 112820 = $21520522 = $22820521 = $1150,

S10 — Sg, S920 — 88, tltg = tgtl. (3'52)
The BCs of bulk fields are specified by matrices (@, @19, ©11, O12, O20, O21, O22, O23,
=1, 5») satisfying the relations

6 2 2 2 2
90 = 810 = 911 = 912 = 820 = 921 = 922 = 823 =
11 = 5152610, O12 = Z152019, O = 5169, 922 = Z969,
O3 = Z152602) = O21020022 = O220206021 = O116),
O19 = O3, Oog = OF, O11 = O9302010, O13 = O230270236090610,

1 Z2. (3-53)

@

[1]
g]
Il

Because any three of these matrices are mutually independent, we choose unitary
matrices Opy, O21 and O9s.
Given the BCs (0g, O21, O22), there still remains residual gauge invariance. Un-
der a gauge transformation 2(x, z, 2), Oy, O21 and Oy are transformed as
0)(z,2) = (=, pz, pz)Oo 2 (v, 2, ),
Oh1(2,2) = Q(z, p°z + €1, p°2 + €1)0n1 21 (2, 2, 2),
Ohy(2,2) = Qx, pP2 + €2, 1°2 + €2)022 021 (2, 2, 2). (3-54)
These BCs should be equivalent:
(@07 O21, 922) ~ (96(2’ 2)’ @él(zv 2)’ 952('27 2)) (3'55)

This equivalence relation defines equivalence classes of the BCs. There are no equiv-
alence relations between diagonal representatives. To illustrate this, let us consider
an SU(6) gauge theory with the gauge transformation function defined by

(2, %) = explia(Ylz +Y12)}, (3-56)

where a is a real number and Y! and Y! = (YJ})T are 6 x 6 matrices. When the
diagonal matrix @ is transformed into the diagonal matrix @) under the gauge
transformation, 6y, 6 and YJ} are determined by

1 0 0 0 0 O 0 bpb 0 0 0 O
0O p 0 0 0 0 0 0 b3 0 0 0
., 100 p 0 0 o0 1] 0 0 0 b 0 O
G==1 ¢ o o P00 Y= 0 0 0 o0 bs 0
00 0 0 p*t 0 0 0 0 0 0 b

00 0 0 0 p° by 0 0 0 O
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up to an overall factor of p* for Oy and ©). Here b; (i = 1,---,6) are arbitrary
complex numbers. It is shown that the diagonal @2 cannot be transformed into a
different diagonal form. All diagonal representatives are independent of each other.
The diagonal matrices ©g, @21 and O for SU(N) gauge theories are specified
by twenty-four nonnegative integers and the number of equivalence classes of BCs
related to diagonal representatives is ny123C23.

§4. Conclusions

We have studied equivalence classes of BCs in an SU (V) gauge theory on six-
dimensional space-time including two-dimensional orbifolds. For five types of two-
dimensional orbifolds S'/Zy x S*/Zy and T?/Z,, (m = 2,3,4,6), orbifold conditions
and their gauge transformation properties have been given and the equivalence rela-
tions among boundary conditions have been derived. We have classified equivalence
classes of BCs related to diagonal representatives for each orbifold. There are BCs
specified by matrices that cannot be diagonalized simultaneously by global unitary
transformations and local gauge transformations on 72/Z,,. Not every component
in an SU(N) multiplet necessarily becomes a simultaneous eigenstate for Z,, trans-
formations if BCs contain off-diagonal elements. The rank of gauge group can be
reduced using these BCs, which should be useful for the model-building of grand
unification or gauge-Higgs unification.

If the BCs for bulk fields are given, mode expansions are carried out and the
one-loop effective potential for Wilson line phases is calculated using the standard
method. From the minimum of effective potential, the physical symmetry and mass
spectrum are obtained for each model. It is crucial to study dynamical gauge sym-
metry breaking and mass generation in a realistic model including fermions. It is also
important to construct a phenomenologically viable model realizing gauge-Higgs uni-
fication'® and Jor family unification!® based on them. The local grand unification
can be realized by taking nontrivial BCs.*) It is interesting to study the phenom-
enological aspects of such models. We hope to further study these subjects in the
near future.
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