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Abstract: The polyunsaturated [10]paracyclophane 4 was synthesized from 

1,4-diacetylbenzene by a four-step sequence involving the modified 

Yasunami azulene synthesis, introduction of two butenone units, and a 

subsequent McMurry coupling reaction. The crystal structures of 4 and the 

synthetic intermediate 8 was determined by X-ray crystallographic analysis 

and the results reveal that 1) the benzene ring of 4 is distorted as a boat form 

with relatively small bending angles and 2) the azulene rings of 8 show large 

out-of-plane deformation along the short azulene molecular axis. 
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Unsaturation at the bridge part of cyclophanes1 is a challenging subject in cyclophane chemistry. 

Recent synthesis of highly unsaturated cyclophanes, such as cyclophynes,2 has been extensively 

studied toward carbon-rich aromatics.3 We have been interested in polyunsaturation of the bridge 

part of [10]paracyclophane (1), particularly with a polyvinyl unit,4 because of its molecular 

distortion and CH-π and π-π interactions between the bridging part and benzene ring. Base on 
DFT calculations, it is predicted that the all-cis- and cis,trans,cis,trans,cis-isomers, 2 and 3, have a 

slightly bent benzene ring, and the CH-π interaction in them is possible in 3 and π-π interactions 
are negligible.5 Toward 2 or 3 as our final goal, we have preliminarily engaged in synthesis of the 

diazuleno derivative 4. Herein we describe the synthesis of the cyclophane 4 and also provide 

X-ray crystallographic analysis of 4 and the synthetic intermediate 8. 
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The synthesis of 4 was accomplished as shown in Scheme 1. The azulene skeleton was 

constructed by the modiefied Yasunami-Takase azulene synthesis.6 Bistrimethysilyl enol ether 57 

of commercially available 1,4-diacetylbenzene was reacted with 

3-methoxycarbonyl-2H-cyclohepta[b]fura-2-one (6)8 in refluxing decaline for 4 hr to give 

1,4-diazulenobenzene derivative 7 in 10% yield.9 Double elongation of a four-carbon unit in 7 was 

achieved by electrophilic substitution with 4,4-dimethoxybutan-2-one under acidic conditions and 

subsequent elimination of methanol under basic conditions10 to afford 8, having all required 

carbons for 4, in 28% yield. Stereochemistry of the formed C-C double bonds in 8 was confirmed 

as trans by the vicinal coupling constant in the NMR spectrum. Final intramolecular McMurry 

coupling11 of 8 using titanium trichloride and lithium aluminum hydride in refluxing THF 

provided compound 4 in 20% yield.12,13 
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The cyclophane 4 was obtained as stable, dark green crystals with a relatively high melting 

point. In the 1H NMR spectrum of 4 in CDCl3, the ethenyl protons in the dimethylhexatrienyl 

bridge appear at 6.62 (Ha in Fig. 1) and 6.92 (Hb) ppm with a coupling constant of 16.0 Hz, which 

indicates that the stereochemistry of the C-C double bonds attached to the azulene ring remains as 

trans. Assignment of the ethenyl protons was confirmed by the results of the NOE experiments 

shown in Fig. 1. Their chemical shifts were deshielded slightly compared with those of 8. Since 

proton chemical shifts of the azulene and benzene rings are similar for 4, 7, and 8, those rings do 

not interact with each other in these compounds, suggesting interplanar distortion between planes 

of those rings (vide infra). In the UV-visible spectrum of 4, the long wave absorption maximum, 

corresponding to the π-π* excitation of the azulene part, exhibited only slight bathochromic shift 
compared with that of 8. 

 

Figure 1. Results of NOE experiments of 4. 
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The crystal structures of 4 and 8 were determined by X-ray diffraction analysis and are shown in 

Figs. 2 and 3. The interplanar angle between the benzene and the azulene rings ring in 4 is 70˚. 

Whereas the benzene ring of 8 is almost planar, the benzene ring of 4 is non-planar, having a 

shallow boat form, as expected. The bending angles, shown in Fig. 4, of 4 are smaller than those of 

tetradehydro[2.2]paracyclophane and are comparable to values of the calculated structures of 2 and 

3.14 The distance of the olefinic Ha proton and the nearest benzene carbon atom is 2.51 Å, evidence 

of the CH-π interaction between them. It should be noted that the azulene ring of 8 shows 
out-of-plane deformation along the short azulene molecular axis. We recently reported such a 

deformation in 1,3-diarylazulenes, 10 and 11.15 Twisted angles16 for C1-C3 of 8 are greater than 

those of 10 and 11 (Table 1), indicating that 8 has the greatest deformation so far. 
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Figure 2. ORTEP drawings and crystal packing of 4  

 

 

Figure 3. ORTEP drawings of 8 with our numbering 
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Figure 4. Bending angles of 4 
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Chart 2. Structures of 1,3-diarylazulenes 10 and 11 with our numbering  
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Table 1. Out-of-plane deformation of crystal structures 
of 8, 10, and 11 as shown by twist angles. 

Compound Twisted angles (in degree) for C1-C3 
 C4-C10 a C5-C9 a C6-C8 a 

8 2.25 9.02 13.30 

10 b 1.39 4.80 6.56 

11 b 3.16 7.27 9.69 
a Numbering is shown in Fig. 3 and Chart 2. b Taken from ref  
15(b) 

 

In summary, we constructed the fully unsaturated [10[paracyclophane framework of 3 annulated 

by two azulene rings by four steps from the commercially available compound. The crystal 

structure of 4 suggests that the benzene ring has a shallow boat form and also provides evidence of 

a CH-π interaction. In addition, it was found that the crystal structure of the synthetic intermediate 
8 showed another example of the azulene ring distortion along its short azulene molecular axis 

with large twisted angles. 
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