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Abstract

Using a computer, we have computed exactly the probability to describe
the statistical properties of a pile of blocks in the case that when a child puts
a block on the topmost block its center of mass is shifted to the right or left
by the unit length with equal probability. The block length is restricted into
positive integers. Two tables are presented relating to the respective
probability of entire falling and partial falling of the pile of blocks.

Probably everyone has experiences of playing piling block games in his/her
childhood. In a previous paper [1], Iwasaki and one of the authors (K.H) have clarified
that this familiar game shows a certain kind of the self-organized criticality [2] and
has properties of scaling and universality [3].

Suppose that, after you have accumulated (z—1) blocks, as soon as the nth block
is placed atop the pile, a part of the pile or the entire pile of blocks falls. We call these
events nth partial falling and #nth entire falling, respectively. Of course the entire
falling is included in the corresponding partial falling. The problem studied here is to
calculate the probability, P(#;L), of the nth partial falling and, @(#; L), of the nth
entire falling for the blocks of length L. The average height of piles is given as 215-1#
P(n+1;L). The probability of piling blocks up to nth step is given by 1—>7-1 P(m; L)
=2 m=ns1 P(m; L).

As shown in [1], the probability P(#; L) has a scaling form, as an asymptotic form
for large » and L,

P(n; L)=L7*f(77), (1)

with a scaling function f(x). After our proposition, Blanchard and Hongler [4] have
suggested, noting the analogy with the fitting problem of random walkers at moving
boundaries, that f(x) is the inverse Gaussian distribution [5], but there exist some
discrepancies between their suggestion and numerical data [4,6]. Therefore the
problem remains to be open. In this paper, as an attempt to obtain the asymptotic form
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of P(n; L), we try to calculate P(xn; L) and Q(»; L) for positive integers of L. If we can
derive some relations among P(»; L), they should be useful to obtain the general term
in an explicit form and from it an asymptotic form of P(»;L) for large » and L will
be easily given. We present two tables of P(»;L) and Q(»; L) computed numerically.
In these we find unpredicted facts in the piling block game itself and propose
interesting problems in relation to the combinatorics.

We define the problem as follows : Suppose we have blocks of length L which are
placed one another upward. Here L is restricted into positive integers, as mentioned
above. When piling, a child cannot place a block exactly atop the topmost block, thus,
the center of mass is shifted to the right or left by the unit length with equal
probability. It is noted that, if we use blocks of fixed length, the shift distance varies
in propotional to the inverse of L. Let y« be the one-dimensional coordinate of the
center of mass of the block in the 4th step and & be a random variable taking the
values of +1 or —1 with equal probability, then

Ye=Yi-1t+ Ek (2)

for £ = 1. We assume g =0 and &=+1 without loss of generality.

In order that the nth partial falling does not occur, the nth block has to be placed
atop the (n—1)th block, that is, y»-1—L/2 < y» < y»_1+ L/2. In addition, the center of
mass of the nth block and the (»—1)th block, that is, (1/2)(y»~+ y»1), should be placed
between y»—2—L/2 and yn.-»+L/2. Similarly, the center of mass of three blocks,
(1/30yn+ yn-1+yn-2), has to be in [yn—3—L/2, y»—s+ L/2], and so forth. Lastly, yo— L/2
<1/ n)yn+ yn-1+yn-—2+-+y1) < yo+L/2 must be satisfied. These conditions are
summarized for m=1,2, -, » as

‘(1/7”):2;9"%_?/71—"1‘ <L/2. (3)

Even if one of the »n inedualities above is broken, a part of the pile falls. On the other
hand, breaking only the inequality for m=# corresponds to the entire falling.
Let us first study the case of the entire falling. Substituting eq. (2) into egs. (3), we

have
|&l < L/2, (k=1,2, -, n), (4)
|2$k+ék+1l < L’ (k:l’ 27 Y n_l)a (5)
13442041+ Exval <3L/2, (k=1,2,-, n—2), (6)

l(n‘l)§k+(n*2)gk+l+'+25k+n——3+<§k+n—2| S(?’Z*I)L/Z (/é':l, 2) (7)
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Lastly the condition of the entire falling is written as
}%51*‘(%'— 1)Ez+(%—2)53+ 28,0+ énl >nl/2. (8)

Computing Q(#; L) is equivalent to count the number A(#n; L) of sequences {&i, &,
&, -, &} which satisfy eq. (4)-eq. (8), that is, Q(n;L)=2A(n;L)/2". The prefactor 2
arises from the result that we have fixed the first step to & =+1. For example, A(7;3)
=1 and A(5;5)=2 because only {1,1,—1,1,—1, 1, 1} for the former and {1, 1, 1, 1, 1} and
{1,1,1,1,—1} for the latter satisfy the conditions, respectively.

With aid of a computer, we have counted A(n;L) for 2<n<27and 2 <L <25 of
which results are summarized in Table 1. Algorithm for computing is as follows. Note
that A(n;L)=0 trivially for <L because even &=§&=--=£&,=+1 cannot satisfy
eq. (8). First we memorize the sequences {&, &, &, ---, £&.} which satisfy eq. (8). Next the
sequences {&, &, -+, &, &.+1} including the subsequences {&, &, -, &} and {&, &, -,
&.+1} which identify with the sequences counted among A(L; L) above are eliminated
and examine that the remaining sequences satisfy eq. (8) for #=L+1, being then
counted among A(L+1; L) after the check. We repeat the similar procedures.

Interesting sequences are embedded in Table 1. For example, for odd L, A(xn;L)
increases exponentially with oscillation of period two. On the other hand, for even L
(except for L=2) it oscillates with period four and increases up to huge numbers. If
A(n; L) is larger than 2* with a positive integer 4, whether the pile falls entirely or not
has been already decided at the (#— k)th step. The general term A(#; L) is expected to
be represented as a function of # and L. Let us investigate some simpler cases.
Case of L=2: For n=2, the condition which should be considered is only |2&+ &]|>

2, which is satisfied by &=¢&;, leading to A(2, 2)=1. For n =3, we have from
eq. (5) such a relation as &= —&x+1 for k=1, 2, -+, n—1, which leads for even = to

|n&—(n—1D&E+n—2)—+2&—&|=n/2 (9)
and for odd # to
|n&—(n—1D&+(n—2)6— -2+ &|=(n+1)/2, (10)

respectively. Both of them do not satisfy eq. (8), then A(#;2)=0 for »n > 3.

Case of L=3: Note that egs. (4) and (5) are satisfied automatically. Let us study a
matter by induction. For #=3 the inequality which should be considered is only
|3&+2&,+ &| >4.5, which has a unique solution &=&=&=+1. Then A(3;3)=
1. For n=4, there are three inequalities which should be considered such as

|35k+2§k+1+ék+2| < 45, (/C:L 2) (H)

|4&1+38&+28&+ & >6. (12
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It is clear from egs. (1)) that the sequences with such a relation as &= &x+1= i+2
(k=1, 2) should be eliminated. Since the sequence which satisfies egs. (1) and
makes the left hand side of eq. (1) maximum is &=£&=—&=4&,, eq. (12) cannot be
always satisfied. Thus A(4;3)=0. By similar considerations we have to exclude
the sequences with following relations for even #,

Ek=CErr1= 6k, (k=1,2,-, n—2) B)

Er="Cr1= — Exr2=Errs= ks, (k=1,2, -, n—4) {19
5k:Ek+1:_§k+z:§k+3:"Ek+4:§k+5:<§k+6, (/le, 2, Ty 1’l“6) (15)
51:52:_532542*55:'“2_En-zzfn—lzén. (15)

Therefore we find no sequences that satisfy eq. (8), that is, A(#n;3)=0 for even
#. On the other hand, for odd #, only the sequence with the relation of eq. (1)
satisfies eq. (8), leading to A(#n;3)=1 for odd =.

Case of n=L : In this case, the inequality which we should take into account is only
eq. (8). Let W(L;&) denote the left hand of eq. (8). Since W(L;&) takes its
maximum value, L(L+1)/2, when &=§&=--=&.= +1, changing signs of some
random variables in {&, &, -+, &.} are allowed within bounds of L(L+1)/2—L?/2
=1./2. We define a positive integer N through such a condition as 4N <L <4
(N+1) for L >5. Suppose that the sign of & with J=L+1—M is replaced from
+1 to —1. Equation (8) remains to be satisfied if M is a positive integer less than
or equal to N (M < N), because this replacement reduces W(L;&x) only by 2M
(< L/2). Moreover suppose that M is represented by a sum of Mi, Mo, -+, Ms which
are positive integers different from each other, M =M+ M.+ -+ Ms. Further
note that changing the sign of & is equivalent for &, &2, -+, &5s to change all
signs of them, where J,=L+1—M, (k=1,2, -+, s). When L is increased by every
4, that is, N is increased by every 1, therefore, A(L; L) is added by g(N), where
g(N) is a number of such cases that N is represented by the sum of positive
integers under the conditions that no integer can occur more than once as a part
and the order of summands is neglected. We allow the sum to have only one
term. For small positive integers, g(1)=g¢(2)=1, g(3)=g(4)=2, g(5)=3 and g(6)=
4. In conclusion, A(L;L)=1 for L <4 and A(L;L)=1+2uMg(M) for L =5,
where the sum Xx is taken from M =1 to M=N.

A partition of a positive integer is a way of writing it as a sum of positive integers,
ignoring the order of the summands [7]. The subject of partitions has a long history
beginning with G. W. von Leibniz (1646-1716) and L. Euler (1707-1783) and has not
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come only from within mathematics itself but also from the outside. It is known that
g(N)=h(N), the latter being the number of the partitions of N into odd parts. The
above derivation of A(L;L) suggests that the general term A(x; L) can be evaluated
through considering the partition under more complicated conditions.

Let us turn to the problem of the partial fallings. Computing P(#; L) is much more
difficult and needs much longer time than computing Q(»;L). Using a computer, we
have also evaluated B(#n; L) which is a number of the sequences satisfying eqs. (3) up
to »—1 but breaking one of corresponding equations for #, thus, P(#; L)=2B(n;L)/2".
Remember that &, has been fixed as &=+1. We note again that B(n;L)=0 if n<L.
Therefore we first search the sequences {&;, &, -+, &} for fixed L satisfying all of
egs. (3) and another sequences breaking one of egs. (3). The number of the latter
sequences is just B(L;L), which is equal to A(L;L). Next we add &.1==*1 to the
former sequences and examine that a new sequence {&), &, -+, &1} does not satisfy one
of egs. (3). If so, the sequence is counted among B(L+1;L). If not so, it is memorized
to compute B(n;L) for n>L+2 further. We repeat this procedure up to a desired
integer, #.

The resulting B(n; L) for 2<n <27 and 2 < L <16 that we have computed are
summarized in Table 2 and P(#n; L) for L=3, 4,5 and 6 are displayed in Fig.1. Similar
to the entire falling, B(n; L) oscillates with period 2 for odd L and with period 4 for

T T T T
L=3
L=4 =-ennn- |
0.25 F L=5
L=6 -------
0.2 F
0.15 F
0.1
0.05 |

Figure 1: Graphs of P(n;L) for L=3(bold solid curve), L=4(bold broken curve),
L=5(thin solid curve) and L=6 (thin broken curve).
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even L and increases exponentially as a whole. The similar oscillation are seen in
P(n; L), meaning that adding a block to the pile can occasionally make it steadier
contrary to our experience. By taking a glance, we can see that B(n;2)=1 for n =2
and B(n;3)=2B(n—2;3)+1 with B(3;3)=B(4;3)=1 for n = 3, the latter giving B(%;3)
—9=22_1 for even #n and B(n;3)=2"""2—1 for odd ». However we have not
succeeded in representing B(x;L) in general as a function of 7 and L.

Provided that a positive integer £ satisfies B(n;L)>2% such destiny of the pile
that a partial falling occurs has been already decided before the (n—k)th step. If
B(n;L)>2*>A(n; L), the destiny is replaced with the one that the entire falling does
not occur but the partial falling does. Any way the destiny cannot be changed how to
pile blocks afterwards.

In conclusion, we have proposed the novel idea that the simple play with piling
blocks can be a subject of physics, mathematics and other related fields such as
computer science. Two tables for the numbers of cases bringing about entire or partial
fallings have been presented, which reveals some facts unpredicted from our
experiences, However, deriving the equation for A(n; L) is required to obtain an
asymptotic form of P(n;L). The authors expect to give rise further studies on this line.

We would like to express our thanks to H. Kamiya and A. Hanaki for their helpful
suggestions. Financial support by Ministry of Education, Culture, Sports, Science and
Technology of Japan is also acknowledged. Finaly we thank cordially the referee for
his affirmative comment.
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