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Abstract

The ground state spin configuration in Bi,CuQ,-type crystal having two magnetic
ions in the unit cell is studied on the basis of the Heisenberg model with four kinds of
superexchange interaction. The magnetic phase diagram is found to be composed of
five regions : four of wich are collinear spin arrangement and one is of double helical
spin arrangement. The values of exchange integrals of Bi,CuQO, estimated by Ain et al
from their own neutron scattering data are in the region where the observed collinear
spin arrangement is stabilized.

1 Introduction

The discovery of the high temperature oxide superconductors has led to increasing
interest in studies of the physical properties of CuO-based materials. Among the vast
group of CuO-based materials, Bi,CuQ, attracts special attention because of its
interesting crystal structure and magnetic properties, though BizCuO; itself is not
superconducting. The crystal structure of Bi,CuQO, belongs to the tetragonal space
group P4/ncc. In this compound CuQ, units, one of which consists of a square of four
O ions and a Cu®' ion at the centre, are stacked along the c-axis in a staggered
manner, and two adjacent CuQ, units are separated with each other by an intervening
Bi cation.

The crystal structure of Bi,CuO, has been determined by Attfield?, by Ong et al?
and by Yamada et al® from neutron and/or X-ray diffraction experiments. Also, the
magnetic properties of this compound have been extensively studied*~®. Ain et al*
have studied the magnon dispersion relation by neutron-scattering. Furthermore, by
analyzing the result on the basis of two sublattice model with four ‘kinds of
superexchange interaction, they have estimated the values of the superexchange

parameters.

* Present adress: Faculty of Engineering, Gumma University, Kiriu 376, Japan
** Present adress: Department of Physics, Faculty of Science, Okayama University of Science,
Okayama 700, Japan
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The purpose of the present paper is to study theoretically what sort of spin
ordering is realized in the compounds having Bi,CuQ,-type crystal structure, on the
basis of the Heisenberg model. Four kinds of isotropic superexchange interactions are
assumed. We construct magnetic phase diagram as a function of the superexchange
parameters and examine if the result of Ain et al is consistent with the obtained phase ‘
diagram. In §2 the crystal structure and the sites of ions are shown. As for four kinds
of superexchange interaction via -O-Bi~O- bond, each length of Cu-O, O-Bi, Bi-0O,
0O-Cu bond, and each bond-angle of Cu-O-Bi, O-Bi-0O, Bi-O-Cu are given in §2. The
formulation is described in §3, and the phase diagram is shown in §4. The results are
discussed and compared with the spin ordering observed in Bi,CuO,.

2 Crystal structure and superexchange interactions

The crystal structure and the sites of ions have been given, for example, by

Table 1. Coordinates of ions in a unit cell of Bi,CuQO,

cation x/a y/a z/c O ion x/a y/a z/c
OCI-D) | 0.7005  0.6080 0.8301
OCI-2) | 0.3920  0.7005 0.8301

Cu 1 5000 0.5000 0.842

u 0.50 084201 1 oc1-3) | 0.2005 0.3920 0.8301
OCI-4) | 0.6080  0.2995 0.8301

Bi(I1113) | 0.6686 0.8314 0.6710

Bi(I141I2) | 0.8314 0.3314 0.6710

Bi(13I1) |0.3314 0.1686 0.6710

Bi(12114) | 0.168 0.6686 0.6710 |
OCII-1) | 0.1080  0.2005 0.5119
OCII-2) | —0.2005  0.1080 0.5119

Cu I L0000 0. .

" 0.00000.0000 05000\ \ 1y 2y | _ 1080 —0.2005 0.5119
OCII-4) | 0.2005 —0.1080 0.5119
OCm-1) | 0.6080  0.7005 0.3301
OCm-2) | 0.2995  0.6080 0.3301

Cu I 5000 0.5 .

: 0.50 000 03420\ | 5epgy | 03920 0.2005 0.3301
OCl-4) | 0.7005  0.3920 0.3301

Bi(M1NV3) | 0.8314 0:6686 0.1710

 Bi(II41V2) | 0.6686 0.1686 0.1710

Bi(I3V1) | 0.1686 0.3314 0.1710

Bi(l2IV4) | 0.3314 0.8314 0.1710
O(V-1) | 0.2005  0.1080 0.0119
O(V-2) | —0.1080  0.2005 0.0119

Cuw .0000 0.0000 0.

! 0.00 0-0090 1 ow-3) | —0.2005 ~0.1080 0.0119
OWv-4) | 0.1080 —0.2005 0.0119

(According to Yamada et al,¥ «=0.8502nm and ¢=0.5820nm)
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Fig. 1. Crystal structure of Bi;CuQ,. @ :Cu; 0:0; O, @: Bi
(a) Projection on xy-plane ©  (b) Projection on xz-plane

Yamada et al®. A unit cell includes four Cu ions, named as Cu 1, Cull, Culll and CulV,
sixteen O ions, nemed as O(II-3), and eight Bi ions named as Bi(II3W1). O(II-3)
represents the O ion located in the third quadrant among the four O ions surrounding
the Cull. Bi(llI3V1) means Bi ion whose nearest neighbouring oxygen ions are
O(I-3) and OCIV-1).
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Taking the position of CulV to be the origin and @ and ¢ to be the lattice constants
of the tetragonal lattice, we have specified the positions of ions as shown in Table 1
based on the data given by Yamada et al®. The projections on the xy and zz planes are
shown in Fig. 1.

The sublattice consisting of the Cu ions is pseud-body centred tetragonal, CulV
and Cull being at coners (z=0 and ¢/2), and Culll and Cu I being at positions slightly
deviating from the centres along the c-axis (z=(c/4)+ 3¢ and (3¢/4)+ ¢, with
§=0.092).

As seen from the crystal structure, of which the sublattice of Cu ions is shown in
Fig. 2, there are four main types of superexchange interaction :

J: between Cul (z2/c=-—0.158) and Culll, CulV and Cull, Culll and Cul, and Cull
and CulV (z/c¢=1.000),

J2 between Cul (2/c=-—0.158) and CulV, and Culll and Cull,

Js between CulV and Culll, and Cull and Cul, and

Js between Cul (z/c=—0.158) and Cull, and Culll and CulV (z/c=1. 000)

Typical paths connecting two Cu ions, between which the direct distance is shown
in the spuare brackets, of these superexchange interactions are as follows:

Ji: CuN—O(V-1)—Bi(llI3V1)—0(II-1)—Cull [0.291 nm]
J2: Cul—0O(I-3)—Bi(lI3NV1)—0O(V-1)—CulV [0.608 nm]
Js: Cull—0O(IV-1)—Bi(llI3V 1)—OI-3)—Culll [0.664 nm]
J:Cul—0O(I-3)—Bi(lI3NV1)—0O(II-1)—Cull [0.713 nm]

Table 2. Bond-length and bond-angles in the paths of four types of superexchange

interaction

ion Cuv | O(v-1) |BiGmaw1)| OCIm-1) | Cum
bond-length (in nm) 0.194 0.213 0.233 0.194
Ti bond-angle (Cu-O-Bi) 109.0° 119.6°
bond-angle (O-Bi-0) 88.5°
ion Cul I OC(1-3) |Biausvy | Ow-1 | Culv
bond-length (in nm) 0.194 0.233 0.213 0.194
Je bond-angle (Cu-O-Bi) 119.6° 109.0°
bond-angle (O-Bi-O) 76.5
ion Cuv | O(wv-1) |Bi(m3wy) | o(m-3) | Cull
bond-length (in nm) 0.194 0.213 0.213 0.194
J2 bond-angle (Cu-O-Bi) 109.0° 109.0°
bord-angle (O-Bi-0) ‘ - 87.8"
” ion CuTl | OCI-®) |Bi(U3vD] OUr-1) | Cull
bond-length (in nm) 0.194 0.233 0.233 0:194
J1 bond-angle (Cu-O-Bi) 119.6° 1196
bond-angle (O-Bi-0O) 159.1°




Magnetic Phase Diagram of Bi,CuO, 59

From the data given in Table 1, we

have estimated the bond-length and bond-

angles of the four paths above as shown
in Table 2. ’

" It should be noticed that the O-Bi-O
angle in /. is near 180° and ones in other

J’s are near 90° as already pointed out by

Ain et al?. So, we expect for J, to be most

essential. : Fig. 2. Arrangement of Cu?* ions and exchange

. interactions between them.
3 Formulation

The exchange energy E of a crystal lattice, whose unit cell contains several
magnetic ions, can be written as

E= 422 2]<Rma,nﬁ) Sma‘Snﬂ, ‘ (1)
mn apf :
where Roune,ns= Rmna— Fnp, Sna is the classical spin vector of the a-th magnetic ion in the

unit cell and Ry its position. We assume the same magnitude S for the spin vectors of
all magnetic ions in the unit cell. Using the Fourier transformation of J (Rua,ns) and Sye

Caﬂ(Q) == %] (Rma,na)exp(iq- Rma,nﬁ) @
Uqa:%% Smanp(_iq'Rma), ) ) @)

where N is the number of unit cells, eq. (1) becomes

=3 T P00 | @

Our problem is to look for the lowest minimum of the exchange energy given by (4)
subject to the condition

Sna’=58% for all m and «. 6))
This condition can be written as

Zq} Gaya * O-qa=1, (62)

Zq} Ogya ® Oqr—qa=0 for all ¢'#0. (6b)
Minimizing £/NS? of eq. (4) under the condition (6a), we have the eigenvalue equaiton:

;Caﬂ(qogqa:/]dqﬂ;‘ ‘ ‘ o D
where A represents the Lagrange multiplier. -

If we take a spin configuration represented by a pair of inequivalent wave vectors
q and —g, namely ¢=+0 or ¢+K/2 (K being a reciprocal lattice vector), and take
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account of condition (6b), then we have
an:%<7*i]?) Uqa, <8>

where 7 and j are 6rthogona1 unit vectors which are independent of ¢, and from eq.
(6a) |uq«/=1. When g and — ¢ are equivalent to each other, ¢=0 or g=K/2, 04 takes
the form L

Oga™— l?uqa, . (9>
where £ is unit vector and |2¢4,«|=1. The ratio of 24 and ugs is determined from the
equation similar to (7), i.e. from '

;Caﬁ(Q)Zlqa:/iuqﬁ- (10>

Now, we apply the above method to the case of Bi:CuQ; and discuss the spin
arrangement of this compound. Two kinds of magnetic ions are contained in the unit
cell and they arenoted as 1l and 2. 1 represents ion at the corner corresponding to Cuw
and Cup in Fig.2 and 2 that at the deviated centre corresponding to Cuy and Cu;. If we

take into account the four types of superexchange interaction, /i, /2, /3 and /s as shown
in Fig.2, the matrix {C.(q)} becomes '

Cu(q) = sz(q) =27 COS?C‘]Z

Ci{g)=Cy*(g)= 74€XD(*iaCC]z)COS% C]xCOS_g“ gy X an

X []gexp(i—i— cqz) +]3exp(—i% cqz) +]4exp(i% cq)]

where 6 =0.092 and dc¢ denotes the deviation of the position of Cup or Cu; from the body
centre position. In this case, the eigenvalue equation (10) is given by

az

Czl(é])*/l Czl(Q) _
Clz((]) sz((I)*A

By solving this equation the lower value of A is obtained as
A= C11((I) - l C12<q)l

= ‘ZJJCOS_g‘QZI4COS%QICOS'S_(]J'X

X JJF I8 E 2 o8 & it 2 wcos S aut 2T wos(ea. (1)

As for the double sign of eq. (13) we must take — sign in the case of cos% qx cos—g—qy

>0, and + sign in the case of cos% qxcos%qy< 0.
The ratio of % and u4: is determined by
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Uqr Caulq)
uqz— Culg)—4" ‘ as

If we consider the case g-= ¢,=0, the ratio is given by

e exp(dcg){Jzexp(—icq/4) +Jsexplicg/4) + Jexp(—idcq/4)}

gz JIZHJE+ T+ 2] sc08Ceq/2) +2] Jscos(cq/2) +2]s]scos(eq)

asy

The spin vector of the lst jon (Cuy ion) and that of the 2nd ion (Cup ion) are
respectively given by

Si=Soguexplqg-Ru) 2—5—% exp(ig- Ru)

S as)
Si=S04:exp(iq* Fu) :7uqzexp(iq « Rm)
Then, the relative angle @ of Su and S is expressed as
exp(if) Z&:Mexp{iqﬂ?n — R} =" expliq (l— e}
St #q Uqz 4
Je2+Jsexplicq/2) + Jexp(—icq/2) an

- VIZ+TE+ T+ 2] o] scosCeq/2) + 2] scos(cq/2) +2]sfwcos(eq)

Judging from the superexchange path (see §2), we assume that /, is most important and
negative. Then, we introduce reduced energy and reduced parameters as follows:

A . ]1 . ]2 _r ]3 .
—_— 6, R e , = y et . 18
17 TP R T2 R 7 g
The reduced energy is written as
1. _
e= —711cos§ q-F COS% qx cos—% gy X
X \/1 +i7 475 —2j:(1—js) cos% q-—27sc0s(cgz) . a9

By differentiating e with respect to ¢z, gy and ¢., we obtain the following relations:

sin%qzcos—gqyx/ 1+ + 78 —27:(1—js) cos% q=—27sc08(cqz) =0,
a_ . .a L3 2 o . ¢ .
cos7q_,;sm?qy\/1 +7+ s —2]2(1*]3)cos7 g=—2jsc08(cqz) =0, 20)

+cosCagz/2)cos Cagy/2) X 2{j2(1— js) +4jscos(cg./2)}
«/1 +j22 ‘|‘f32 - 2]'2(1 *]'3) cos (Cl]z/z) —2jsc08 (Célz)

The wave vector of the spin arrangement of possible stable states are obtained as
0,0,0), 0,027/¢), (n/a, n/a, 0), (x/a, n/a, 2r/c) and (0,0,¢) where ¢ satisfies the
following equation: '

]=0.

sin-sgalji—
2(],2 J1
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Z{jz(l - ]3) + 4j3COS(C(1/2>}

7= V1474 =271 —js)cos(cq/2) —2jscos (cq) @V
The reduced exchange energy ¢ of these five states are given by

&1=€0,0,0 =31 —ljz+js—1l (222)

e2=e(0,0.2n/ ) =ir— o js +1| (22b)

es=e(n/a, n/a, 0)—':“*%_j1 (22¢)

ea=e(r/a, n/a, 2n/c) I%jz 224

es=¢e(0,0,¢)

= ""%“j]COS“‘g‘ q —\/1 +77 477 —25.Q —]'s)cos—g- q—2jscos(cg) (22¢)

Using j, j2 and jz defined by eq.(18), eq.(17) is written as

exp(6) = je+jsexp(icg/2) —exp(—icq/2) 93

V147247 —27:(1—js)cos(cq/2) —2jsc0os(cg)

In the special cases of ¢=(0,0,0) and ¢=(0,0,27/¢c), the relative angles @ of spin 1 and
2 are determined from the following relations:

. Jotja—1 Jetjs—1

e =72 f =(0,0,0 24a
eXD(l ) x/l +].22‘|‘]'32+2]'2]'3‘2(].2 ]3) []2 Ve 1| or ¢=( ) ¢ )
exp(if)= Jz—Jst] _ et for ¢=00,027/c). (24b)

JIH 72+ 2 —2jojs+2Ga—js)  MJz—Jst]]

4 Phase diagram

By comparing the energy of each spin arrangement, we construct the phase diagram as
a function of exchange parameterers j,, j» and js. Apparently ;< ez unless j>=1-js, and
e2< &4 unless j:=—1-475 This means that the lowest energy state has ¢g-=¢y=0, then
all spins in a ¢-plane are parallel as observed. So we consider only ¢;, €2 and es. From
the comparison of ; and &: we have four regions in (js, 7:) plane. The four regions,
together with the lowest energy and the angle 8 given by eq.(24) in each region, are
summarized as follows: '

In the case of j;=1:
region 1: /1 >2(1—7), j2>1—Js ; €1:“%]'1“(]'2+/3_1) ; =0

region 2 1> —2(1— ), ja<1—jo j1>%n elz—%jﬂr(jfrjg—l) C=n
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i/2

i/t

region 3:

region 4 ji<2(1 73, 72>~ A —Jjo), j1<2Jjz; sz:%iz—(jz‘]'ﬁ—l) ; =0

(

<=2 ~j3), 12<—(1—j3) ; €2=

a)

Fig. 3.

i

""""" i1

j1+(]'2‘]'3+1> 3 0=rm

(b)

Four regions in (jz, j,/2) plane.

Four regions in the case of j3<1 are shown in Fig.3(a).

In the case of j3=1:

region 1:

region 2: 1> —2(1—j3), j2<1—Jjs; 512—%j1+(;'2+j3—1) 0=r
region 3: /i< —2—7J3), j2<—A—Jj2), 1< —2J2; &Z%jﬁr(jz—jm%) =

region 4: ]1<2(1_]3), ]'2>“(1‘“].3) ’ 62:‘%—]'1"(7.2_]'34'1) N (9:0

J1>2Q—j3), j2>1—js, j1>—272; e1=—

Four regions in the case of j;>1 are shown in Fig. 3(b).

Next we compare g; or €;in each region with &5 of double helical spin arrangement.

In the cases of ¢=0(0, 0, 0,) and ¢=(0, 0, 27/c), &5 of eq. (22e) becomes
65(61:0): “‘%ﬁ" |].2+]'3*1 l

es(a=2m/c)=ii— | js—js+1|

i Gt is— 1) 5 0=0

Iz

63

@25

Therefore e5(g=0) equals &; in the regions 1 and 2, and es;(¢g=10, 0, 27/¢)) equals
€2 in the regions 3 and 4. From these results we have found that in each region the
boundary curve between the double helical spin arrangement and collinear spin
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i/
4=(0,0,0) s
< 1 -
O=1 D= ; L Fig. 4. Phase diagram for the case of jz=0.
—>

Shaded region represents the phase with double
helical spin arrangement. Four types of collinear

spin arrangement, specified by the wave vector §

5 and the relative angle & between Cum spin and
Cum spin, are described schematically. On the dotted
line in the shaded region, the double helical spin
arrangement with ¢=(0, 0, #/¢) is realized.

w0020 WL 0,020/

arrangement is given by eq. (21) with ¢=0 or ¢=2x/c¢. Then boundary curves are

1= 272 —js) +8js _ 2(1 +ja)?
7 G D) je—= QA —j»)
27:(A—j) +8js 2 +ja)*

+2(1—7s) inregion 1 (26a)

jr= =S o (T= 7y 20 —js) inregion 2 (26b)
2oy =8 2A 4D oy s '

ji [ e M e 2(1—js) in region 3 (26¢)
25— =8 24D o e i

= A N RYAN 2(1—js) in region 4 26d

In (j2, j1) plane, each boundary curve represents a hyperbola.

Asymptotic lines of the hyperbola of (26a) are the boundaries between regions 1
and 2, and 1 and 4, respectively. Those of (26b) are between regions 2 and 3, and 2 and
1, those of (26¢) are between regions 3 and 4, and 3 and 2, and those of (26d) are between
regions 4 and 1, and 4 and 3. The line j;=2j. crosses the hyperbolae of eq. (26b) and
(26d) at jz==2/]js| in the case of js<0. In the region surrounded by these branches of
hyperbolae and separated by the segment connecting (2] s, 4/]75]) and (—2v] s,
*4\/1_]’37 ), a double helical spin arrangement is most stable. The phase diagram for the
case of j3=0 is shown in Fig.4. Fig. 5 (a)~(f) show the phase diagram for the cases of
7s=—0.09, —0.25, —0.5, —1, —1.5 and —1.7, respectively. In the shaded region the
double helical spin arrangement is realized. Here it should be noted that the
introduction of negative j; enlarges the collinear region 2 with (¢=0, =) and 4 with
(g=2r/c, 0=0), and reduces the collinear region 1 with (g=0, #=0) and 3 with (¢g=
27{/ ¢, @=mn). This result is resonable because negative j; is favourable to
antiferromagnetic arrangement between Cuy and Cup or Cup and Cur. Also, the
introduction ofvnegative js narrows remarkably the region of the double lleljéal spin
arréngemnt, and for js=—1 the bouble helical region venishes completely as shown in
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/2
5 |-
i5=-0. 09 i1 L
1 1 L.j 1 1 1 1 1 ] 1 L L-j
5 -5 0 5o
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i5=0, 25 N jg=-1.6 i
1 i { { 1 [ 1 L 1 L 1 ! I L Ja
0 -5 0 5
- -
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Fig. 5. Phase diagram for the cases of (a) j;=—0.09, (b) j,=—0.25, (¢) js=—0.5 (d) j5=—1,
(e) js=—15and (f) j3=—1.7.
Shaded regions are with the double helical spin arrangement. For j;=—1, the double helical
region vanishes completely. The point X in (a) corresponds to the values of the exchange
parameters estimated by. Ain et al, j,;/2=—0.18, j,=—0,32 and j;=—0.09.
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i/ /2

Fig. 7.

Fig. 6. Phase diagram for the case of j;=0.5,
shaded region being with double helical
spin arrangement.

Fig. 7. Phase diagram for the case of j;=1.0,
shaded region being with double helical
spin arrangement.

Fig. 8. Phase diagram for the case of j;=1.5,
shaded region being with double helical
spin arrangement.

Fig. 8.

Fig. 5(d). For j;<—1, the double helical region appears again and enlarges if the
absolute value of js increases. The line 7;=2j; crosses the hyperbolae of eq. (26b) and
(26d) at jo=+2/]7s|. In the region surrounded by the branches of hyperbolae (26a),
(26b) and (26d), and the region surrounded by the branches of hyperbolae (26¢), (26b)
and (26d), which are separated from each other by the segment connecting (2v] /s,
4/175]) and(—2/[js|, —4+/]js]), a double helical spin arrangement is realised.

The values of J’s estimated by Ain et al® from their own neutron scattering data
correspond to j;=—0.36, j>= —0.32 and js= —0.09, and the corresponding point marked
by X in Fig. 5(a) lies in the collinear region 2.

Next we consider the case of 0 </;= 1. In this case the line j,=27, has no crossing
point with the hyperbolae given by eq.(26b) and (26d). Then the double helical region
is enlarged if j; increases toward 1. Also, by introducing positive js; less than 1, the
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collinear region 1 with (¢=0, #=0) and 3 with (¢=2x/c, 0=r) are slightly expanded,
region 2 with (¢=0, d=x) and 4 with (¢g=2xn/c, 8=0) are reduced, and the double
helical region is largely expanded. The phase diagram for the case of j3=0.5, as an
example, is shown in Fig. 6. Fig. 7 shows the phase diagram for the case of j;=1.

Finally we consider the case of js>1. In Fig. 8 we show the phase diagram for the
case of j3=1.5, as an example. When j; increases, the collinear region 2 with (¢=0, 8
=x) and 4 with (g=2n/c¢, 6=0) are reduced, region 1 with (¢=0, §=0) and 3 with (g
=2rn/c, O=r) are slightly expanded, and the double helical region enlarges
remarkably.
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