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Abstract

Magnetic structure of intermetallic compounds of rare earth and 3d transition
metal with the C15 structure is studied on the basis of the classical Heisenberg model.
By making use of the Lyons-Kaplan method, magnetic phase diagram is calculated
with respect to the states with the modulation wave vector @ equivalent to [0,0,0] to
obtain seven types of spin structure, and their stability is compared with screw
structures of @ parallel with [0,0,1], [1,1,0] and [1,1,1]. The stable region of the @ =
[0,0,0] states is limited most drastically by the modulation of @||[1,1,0].

Key words: magnetic structure, intermetallic compounds, the Laves phase, the
classical Heisenberg model, the Lyons-Kaplan method

1 Introduction

The stable magnetic structure of a classical spin system is found out by
minimizing the energy with respect to various spin configurations, but the actual
calculations are usually complicated and almost impossible to be carried out. Luttinger
and Tisza [1, 2] developed a method to make the problem tractable for the Bravais
lattice. Lyons and Kaplan [3] generalized the method to treat some non-Bravais
lattices and studied the spin configuration of oxide magnets with the spinel structure.

In this paper, we investigate the magnetic structure of the intermetallic compound
AB, with the cubic Laves phase (C15) structure by making use of the Lyons-Kaplan
method, where A is rare earth atom on the 8a site and B 3d-transition metal atom on
the 16d site. It is noted that the the atoms on the 8a and 16d sites make up the same
structure as the magnetic ions in the ferrimagnet of the normal spinel structure. We
investigate the classical Heisenberg model with the exchange couplings between the
nearest A-A pair as well as those between the nearest B-B and A-B pairs. Both the
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ferromagnetic and the antiferromagnetic couplings are considered.

Even with the aid of the Lyons-Kaplan method, it is difficult to carry out
calculations to determine the characteristic modulation wave vector @ to specify the
spin configuration at the ground state in general. So we concern ourselves only in the
cases that the ground state is characterized by single pair of @ and — @. In section 3,
the magnetic phase diagram for @ equivalent to [0,0,0] is calculated as a function of
exchange parameters. The stability of the states with @=[0,0,0] is examined for the
modulations of @ parallel with [0,0,1], [1,1,1] and [1,1,1] in section 4. A brief
introduction of the theory is given in section 2 and conclusions are summarized in

section 5.
2 The Lyons-Kaplan Method

The energy of the classical Heisenberg model is

Fex=— 2#) ]nu,m;sz/ e Sm,u,

{nw,m
where S is the classical spin vector on the site ny specified by the position vector
Rnu:R71+Ru, n=1 ’\“N, y=1~6.

Here N is the number of unit cells and # and v run over unit cells and over atoms in
the unit cell, respectively, as shown in fig. 1 and table 1. The exchange coupling
constant Juu,me is taken into account for the pairs between the nearest A-A, A-B and
B-B atoms, and denoted by Jaa, Jas and Jes, respectively.

Our problem is to minimize the energy subject to constraints

Sm/ ° Snu = Sﬁ for all n. (1)

Table 1. Positions of atoms in a unit cell.
a is the length of the edge of the
cubic cell.

v R, v R,

1 (,0,0) 5 (3a/8, 3a/8, 3a/8)

2 (0, a/4, a/1> 6 (5a/8, a/8, a/®) <——_*>J—‘——%
3 (a/4, a/4, O
4 (a/4, 0, a/b) Fig. 1. Unit cell of the C15 structure. The small light

circles (Nos. 1 through 4) are the 3d transition
atoms on the 16d site, the large heavy circles
(Nos. 5, 6) the rare earth atoms on the 8a site.
The edge of the cubic cell is denoted by a.
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In terms of the Fourier components, S, is represented as
Sw=S, % 5u(q)elq ’ Rm},

and the exchange energy is transformed into

Lex  _5v51C.6.00) - (),

C = Nl Shse % &

where

_ S#Suszm#,nuexp [Zq ° CRm#“ Rnu)]
C#H(Q) . 3‘]AB(SASB 3

which is independent of R, because of the translation invariance. The constraints eq.

(1) become

1 for ¢=4,
> o K — ) =—
gm(q) &g—q) {0 for ¢+ 0.

In this paper, we consider only the case where the spin configuration is characterized
by a single pair of modulation wave vectors @ and — . Then, the energy becomes

(COP:‘#ZVC#UG')#(Q> ° (.7)3<<Q)+C.C., (2)

where c¢.c. stands for complex conjugate. The coefficients C,, in eq.(2) are expressed
in a matrix from

0 Ciz Cis Cu Cs C¥
Cz 0 Cu Cu Cix Ck
Cis Cs 0 Cy Cs C¥

¢ (k)= , &)

C14 C24 C34 O C45 C‘;Ig
Ck C& C& Ck 0 Cu
Cs Cs Cs Cs C& 0

where the matrix elements are as follows [4]:

Cre=scos(ky+kz), Cis=scos(kx+ k), Cu=scos(kz+kx),
Ca=scosCkz—kx), Cu=scosCkx—ky), Cau=scosChky— k),

Cro= T4 (expl)ox— 3k )]+ exol () (= 3+ - )]
expl() et =3k,

Cos=F 5 {expl () e+ 3k~ )]+ expl (D)~ 3he— oy~ £2))
expl(4 )~ ks +38)1)

Cro= T (expl (D) kot )]+ expl (D)~ ket 3+ 1))
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+exp[(—)( kx—ky—3k2)]}
Co= %{expw—xamm Bl exol( )~ ko3 £2)]

+exp[(7l)( — kst ky+ 3521},
Cso=21{exp(ikz) cos (x— ky) +exp(— ikz) cos (x+ k).

The upper and the lower parts of the composite signs correspond to positive and
negative values of Jap, respectively. Here, we define k=aQ/4. a is the lattice
parameter and

2J58S8
3|]AB|SASB !

JaaS

A AT

S§=—

The constraints in the present case are written as
{26(62) « F*F(Q=1,
6(Q) - 3(Q)=5%(Q) « 6*(Q)=0.

Introducing a pair of orthonormal vectors Ip and Jg, we can represent 3,(Q) as

6U<Q>A uu(Q)(IQ-ZJQD

where I g=Ig and J. o= —Jq. Substituting this expression into eq.(2), we get the

energy

ECM/(Q)Z{A(Q)U (Q>+C C.

and the constraints
lu(@PF=1, v=1~6. (4)

Lyons and Kaplan [3] treated the complicated variational problem by introducing a

‘weak’ constraint

518+ Sl Bi=315Y 8,

instead of the ‘strong’ constraint eq.(1), where the values of 5. are chosen so that the
solution on the ‘weak’ condition is consistent with the ‘strong’ constraint [5, 6], The

weak constraint is written in terms of the Fourier compoments as

226.(Q) - & (Q)/B=21/8,

or

2u(@ui(Q/B=21/4, %)
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By means of the weak constraint condition, our problem is reduced to minimizing

T I (@u Q@ ud(Q—ATu (@ us @)/ 6,

where A is the Lagrange’s undetermined multiplier, i.e., we are to solve the eigenvalue
proglem

IO @ u@ = (@,

where the eigenvalue corresponds to & /2.

We will refer by a zero-wave-vector (@=[0,0,0]) mode to the state where the
characteristic wave vector @ is equivalent to — @, i.e., @ equals to [0,0,0] or a half of
a reciprocal lattice vector. It is noted that, when @=— @, the energy is

g :FZUC,UU(-T)/;(OD © 5;/(0):/%0/114”#(0) uu(());

and the strong constraints are simply written as

(0« 6, (0=1, wv=1~6,
or

0 =u, (DI
with

|uu(0> |2: 1.
The weak constraint is given by
or
S0, ()t (0)/ =21/ B2
3 The Zero-Wave-Vector Mode

The matrix ¢ of eq.(3) for k=0 is

0 s S s F1 *F1
0 s S 1 =F1
s 0 s F1 F1

¢ 0)= .
© s S S 0 F1 F1
F1 F#1 F+1 F1 0 4t
Fl1 F1 F1 F1 4¢ 0

By setting the values of 8, to be 1 for v=1~4, and to be g for v =5,6 as done in ref.
[6], we have the eigenvalue equation
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[%%—MJ} (k) =0,

where # is the vector composed of #.(k), v=1~6, and

1000 0 0
0100 0 0
0010 0 0
Z = 6
0001 0 0 ®
0000 820
0000 0 g°
The secular equation is easily factorized as
By
s/ A 2
</1+4> (—2+2t> =,
2 B B 2
F1 “—B‘g‘ + 2¢

and the eigenvalues A and eigenvectors #‘® are obtained as shown in table II, where
#® is normalized according to the weak constraint eq. (5) and the abbreviation

A=s a0
is used.

We leave the eigenstate #¥ out of cosideration, hereafter, because evidently AV <
A®. The eigenvalues 1, A* and A® may degenerate into each other, depending on the
values of 8. If they are non-degenerate with each other, the strong constraints eq. (4)
cannot be satisfied other than #V. In the non-degenerate case, we choose the value of
B as

2 2—3s
F=qa—n

Table II. The eigenvalues and eigenvectors for the @=[0, 0, 0] mode.

a /i(a) ﬁ(a)
25 3o fepr 3 oy [ 28241
1 ﬁt+45 (Bt 45) ZBZ_I_AZ (1; 1, 1:1, iA, iA)
2 —21p* V28241 (0,0,0,0,1, —D
7 a,1, -1, =1, 0, ®
3 —3S(uriply degenerate) / 2‘; ﬂtl {(1, 21,10 -1 00 09
(, -1, -1, 1,0, 0
1 /z_g_z 26%+1 -2 L2
4 ﬁt+4s+ (B* 43) ZBZH/Az(l, 1,1,1, ¥ ,+A)
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and get A = 1. Thus we obtain the eigenvalue

A =251

and the state vector
W =(1,1,1,1, 1, £,
which satisfy the strong condition and gives the collinear spin configurations:

Sele for v=1~4

Snv :{ ’
+8xdo for =56

i. e., the ferromagnetic or Néel type configurations according to the sign of /5. In fig.
2(a) the projection onto the (001) plain of the examples of these spin configurations
are shown. We refer to the structures by FN, hereafter, and the values of 8, A by By
and Agy, respectively.

If A is forced to degenerate into A%?,

2 __1_3St
18 _1_“ 4LL2 3
-1
A=gp
and
(1) __ (z)zgst_l
A =2 o

The eigenvector may be written as
72 - le?(“ + Nzﬁ(z).
From the strong constraints , we have

28° + A®
265 +1

[N = NP =g
and
NN+ NFN; = 0.
Then the state vectors become
a=(1,1,11,+e**,£e") = fa,

where 4 is defined by cos@=1/2¢. This state vector gives a kind of Yafet-Kittel’s spin
structure [8] with spin vectors

S =5,1,1,1,1, £ cos 8,+ cos D) 1o + S,(0,0,0,0,sin &, — sin 8)Jo.

In fig.2 (b) the examples of these spin configurations are shown. We refer to the
structures by YKA, and denote the state vector # and the values of 8 and A by #iyka,
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J>0 Ji<0
e B = M €
@FN 2O i e |
| =, | ©- |
o+ sor | —oe o :

RO Sh g
g > e oo Ko :_
o7 S oY ea |
(c) YKB E P <6_ E
':' """""" _@"'"""":
(d) AF ? ’

Fig. 2. Spin structures for the @ =[0, 0, 0] state. The number of sites are defined in fig.
1. The arrows show the spin direction, but the direction with respect to the
crystal axis is indeterminate and tentative.

Bren and Avka, respectively.
If AW is forced to degenerate into A®, we obtain

Brm S
21 — 2st)’
A=72s
and
M @ __S
A A o

The state vector is obtained in a similar way to the YKA case as
= e? —e¥ —e+1,+1) = Gy,
where

cos 8 =1/2s.
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We obtain alternative types of the Yafet-Kittel spin configuration:

S = (Sgcos 8, Sgcos 6, Sgcos 8, Secos 8, £ Sa, 2SI
+(Sgsind, Sesin 8, — Ss sin 8, — Sk sin 6, 0,00 J,

which are illustrated in fig.2 (c). We refer to the structures by YKB and denote the
state vector # and the values of B and A by #yxs, Bvxs and Avks, respectively.
If A? =% we choose

2 S
B - 4t,
and get

@ 33 — _ S
A A 5
The state vector is

Uar = Natlo + Nails.

In order to satisfy the strong constraints,

2
’Nz /232+1

Naw2p*+1 ’21,

:1’

hence we get

|Ne* _ 2¢
INsf* — s°

Thus the state vector becomes

0= <€w, e“’, e""", éiio, 1, "1) EZZAF,

where # is a phase difference between N, and N; and indeterminate within our
treatments. The spin vector is

S = (Secosd, Ss cosl, —Ss cos@, —Se cosd, Sa, —Sa)lo
+ (SB Sil’l@, Ss Sil’l&, — Sk sin@, —Sp siné’, 0,0DJo.

An example of this configuration is shown in fig.2 (d). We refer to this structure by AF,
and denote the state vector ¢ and the values of £ and A by #ar, far and Aar, respectively.
For Lyons-Kaplan’s parameter of eq. (6), we have obtained the seven configurations
for @ =[0,0,0] as shown in fig.2. It is also clear that the case of AV = A? = A® does not
take place, hence, the configurations YKA and YKB never coexist with each other.
Now we are going to discuss the phase diagram for the @ =[0,0,0] mode. We
represent one of the values Srn, Byka, Bvxs OF Bar by B, and the corresponding eigenvalue
by A (0, o). If the spin structure for A (0, Bo) is of the ground state, the following
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conditions should be satisfied:
2000, Bo) < A0, B, a=1~6,

where A0, ) are the eigenvalues A'® in table II into which S, is substituted for 8.

And subsidiarily

2000, Bo) < 0,
and
,80(8, f) *+ 0.

In the cases of YKA and YKB, we have to add
0<ALL

After straightforward calculations, we obtain the field for each spin structure on the
st-plain as follows:

~

(a)FN s < <

[N
Y

3

(MHYKA sz‘<%, >
)

b= Do ] b

(Q)YKB st <%, 5 >

(DAF sz‘>%, $>0.¢>0.

These fields are illustrated in fig.3.

t

Fig. 3. Phase diagram for the @=[0, 0, 0] structures.
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4 Stability Relative to Screw Structures

(1) QI|10,0,1] modulation
By substituting k& =[0,0,k] into eq. (3), we have

0 a b a f f*
a 0 a b f* f
» |2 a 0 a f f*
\6 <[0;01k]> - a b a 0 f* f y
o f o
s F fff e 0
where
a:—g—cos/f, e=2tcos k.
b=, f =t [2exp() + exp(— 25,

The secular equation is decomposed by the similarity transformation with

1 1 1 1 0 0
1 1 -1 -1 0 0
1)1 ~1 1 —1 0 0
21 -1 -1 1 0 0
0 0 0 0 J2 V2
0 0 0 0 V2 -2
into two submatrices:
A ()E = AZ,
BT = A7,
where
atbc 0 A 0 0
dE)= ¢ e 0 | A= 0 A% 0 |
0 0 —b 0 0 A
—a+b —id 0
Bk)= id —e 0 |
0 0 —b
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%‘(7414—%2—%—%3—1’%4) %Cul—'uz+uz—u4)
1
= pletw | o=l e-w |
%(ul—*” Us— Ua— Us) %(Ul_ Uz — Us+ Ua)
and
V2 k V2 k 3k

¢ = Qcos+ + cos%k—), d=— T(Z sin+ — sin—+-).

3 2 2 2

Because the secular equation with respect to # (k) is equivalent to that with respect
to & (k+m), it is enough to study about &. Three eigenvalues of &/ are easily
calculated as

Alk,B)s= %<2b’2t cosk+scosk + %Qi%{(zgzt cosk+s cosk -+ _%vsy

—4 5% [z‘s (2cosk+1)cosk — %(H—cos/c) Qcosk+ 1)2]}”2,

A® Z—%s.

The stability of each phase of the @ =[0,0,0] mode is examined with respect to the
lowest eigenvalue A(%,8)_ as follows:

(a) FN structure. The necessary condition for the FN structure to be stable
compared with @/[0,0,1] modulation is

Arn < /K/f, ﬁFN)—-

After straightforward but rather tedious calculations, the following boundary for the
FN structure is obtained:

t< 3-2;7{(2 —3s)(1 —2s)¥2+ 53—2} for —3—3 s <%

(h) YKA structure. The condition
AYKA </1<k) ﬁYKA)—
shifts the boundary for the YKA structure to

2 1
Kl for ¢> R

ts <
(¢) YKB structure. The condition

AYKB </1(llfy ﬁYKB>~

shifts the boundary for the YKB structure to
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|

&\ 3 2

Fig. 4. Phase boundary limited by screw structures. The curves 1, 2,
3 show the boundaries in cases of Q]|[0,0,1], @]|[1,1,1]
and Q||[1, 1, 0] modulation, respectively.

2 for S<L.

l‘S<§ 2

(d) AF structure. The condition

/1AF </1(k; ﬁAF)—-

19

is broken over the whole region on s¢-plain, i. e., the AF structure is never realized for
any values of s and ¢. The boundary limited by [0, 0, 1] mode is shown by the curve

1in figd.
@ QI|11,1,1] modulation
The coefficient matrix eq. (3) for k=C(x, &, &), k= k/J/3,is

0 ¢« a« a f f*

a 0 b b g g*
C— a b 0 b g g*

a b b 0 g gt /|

gt gt gt 0 e

g g g e 0

where
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a —_—%COS 2k, e=t(e*+ e *cos2k),
—S — 7L exp(—i
b—2, f~+zexp( w/2),
1

g= $F[2 exp(3ik/2) +exp(—5ik/2)],

the upper and lower parts of the composite signs correspond to the positive and
negative signs of /3. The secular equation is easily factorized as

-2 a 7 F*
3a —A+2b 3g 3g*

A+ ) =0.

( ) e e Y . 0 ®
f g e* =B

Thus the eigenvalues are
Alk,B)= —-25—, doubly degenerate,

and
Ak, B, y=1~4,

the roots of 4x4 determinant. Because A0, 8)<—s/2 for @ =[0, 0, 0] mode, it is
enough for our purpose to examine the condition

€0, B <A(k, B).

This condition is satisfied if the 4X4 determinant obtained by substituting g8, and
AQ0, B) for g and A in eq.(8) is positive definite, i. e., all the principal minors are
positive. After straightforward but laborious calculations, we obtain the following
results:

(a) FN structure. The first diagonal element is —Apy>0. The upperleft 2X2
principal minor is of a quadratic form for s and positive in the region bounded by eq.
(7). From the condition that the full 4 X4 determinant is positive, the FN structure is
instable out of the region

3U=2s) for i< S <i.

E< 935 9 2

The 3 X3 principal minor does not add any boundary.
(b) YKA structure. The same boundary as that for [0, 0, 1] modulation is obtained.
(¢) YKB structure. YKB is instable out of the region

st<0 fors>—%—.
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(@ AF structure. The AF structure is completely eliminated by [1,1,1]
modulation. The boundary limited by {1, 1, 1] is shown by curve 2 in fig.4.
3 Ql|[1,1,0] modulation
The coefficient matrix for k="C(x, x,0), x = k/ /2, is

0 a/2 b a2 f f*
al2 0 a/2 0 g ¢

b 2 0 2 *
7= af al2 f* f ,
al2 ¢ a2 0 g g
* g f g 0 e
f g9 M g e 0
where
a=SCoSs K, e=1t({1+cos2k),

b :-S—cos 2k, f= i%— (2exp(—ix) + expik),
_ 1 1
c =5, g—+F(1+2c052/c),

and the upper and lower parts of composite signs correspond to the positive and
negative signs of /45, respectively. The secular equation is factorized [4] after a
similarity transformation by

1 0 1 0 0 0
1 0-1 0 0 0
1 0 1 0 1 0 0
200 1 0-1 0 0
0 0 0 0 1 1
0 0 0 0 1 -1
into three factors as
—boA f—f* —b—A f+];* a
— * _A —
(—c—A f*‘f _e*‘ﬁ/iz‘ f+f e :82 29 0. ¢
a 29 c—4

Because —c—A>0 for < —s/2, our problem is reduced to consider the condition
that both the 2X2 and 3X3 determinants those are obtained by substituting /6(; and
ACk, Bo) are positive definite, as discussed in the case of [1, 1, 1] modulation. It is noted
that the first 2 X2 principal minor of the 3 X3 determinant is always positive.

(a) FN structure. The stable region is given by

t<% for s < s,
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and

445 (7—65)—8(1+s)
9s(1—2s) ’

for so<s<i,

t< 5

where s, = 0.41251, which is numerically calculated from the condition that the 3X3
determinant is positive definite.
(b) YKA structure. The stable region is limited by

§ < (5100 =0.20625 and ¢ >
where (st)q is obtained numerically from the condition that the 3 X3 determinant is
positive definite.

The field of of YKB and AF structures is eliminated by @1|[1, 1, 0] modulation.

The boundary limited by Q||[1, 1, 0] modulation shown by the curve 3 in fig.4.
5 Summaries

In this paper, the seven types of spin structure for the intermetallics with the C15
crystal are deduced on the basis of the classical Heisenberg model by making use of
the Lyons-Kaplan method in the case of @=[0,0,0]. The @=[0,0, 0] spin structure
becomes unstable compared with the screw spin modulation along [0,0,1]1,[1, 1,1] and
[1,1,0] direction in some regions on st-plane. The [ 1, 1, 0] mode gives the most drastic
limitation. It should be emphasized that, at most, the FN and YKA structures are
expected for the Q=J[0, 0, 0] states as shown in fig.4. The remaining fields for @=[0,
0, 0] states are limitted as follows:

(a) FN structure

i< % for s < 50=10.41251

4f<7 6s)—8(1+s)

1
95(1—2%) , for sp<s <

2 H

(b) YKA structure

£ > for st< (s = 0.20625.
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