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Abstract

   Magnetic structure of intermetallic compounds of rare earth and 3d transition

metal with the C15 structure is studied on the basis of the classical Heisenberg model.

By making use of the Lyons-Kaplan method, magnetic phase diagram is calculated

with respect to the states with the modulation wave vector Q equivalent to [O,O,O] to

obtain seven types of spin structure, and their stability is compared with screw

structures of Q parallel with [O,O,1], [1,1,O] and [1,1,1]. The stable region of the Q !!

[O,O,O] states is liinited most drastically by the moduiation of Q ll [1,1,O].

                                                'Key words: magnetic structure, intermetallic compounds, the Laves phase, the
                                                                      'classical Heisenberg model, the Lyons-Kaplan method '

1 Introduction

   The stable magnetic structure of a classical spin system is found out by

minimizing the energy with respect to various spin configurations, but the actual

calculations are usually complicated and almost impossible to be carried out. Luttinger

and Tisza [1, 2] developed a method to make the problem tractable for the Bravais

lattice. Lyons and Kaplan [3] generalized the method to treat some non-Bravais

lattices and studied the spin configuration of oxide magnets with the spinel structure.

   In this paper, we investigate the magnetic structure of the intermetallic compound

AB2 with the cubic Laves phase (C15) structure by making use of the Lyons-Kaplan

method, where A is rare earth atom on the 8a site and B 3d-transition metal atom on

the 16d site. It is noted that the the atoms on the 8a and 16d sites make up the same

structure as the magnetic ions in the ferrimagnet of the normal spinel structure. We

investigate the classical Heisenberg model with the exchange couplings between the

nearest A-A pair as well as those between the nearest B-B and A-B pairs. Both the
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ferromagnetic and the antiferromagnetic couplings are considered.

   Even with the aid of the Lyons-Kaplan method, it is difficuit to carry out

calculations to determine the characteristic modulation wave vector Q to specify the

spin configuration at the ground state in general. So we concern ourselves only in the

cases that the ground state is characterized by singie pair of Q and - Q. In section 3,

the magnetic phase diagram for Q equivalent to [O,O,O] is calculated as a function of

exchange parameters. The stability of the states with Qi!i[O,O,O] is examined for the

modulations of Q parallel with [O,O,1], [1,l,1] and [1,1,1] in section 4. A brief

introduction of the theory is given in section 2 and conclusions are summarized in

section 5.

2 The Lyons-Kaplan Method

   The energy of the classical Heisenberg model is

                       Eex=- : fnu,mptSnv"Smpt,
                              {nv,m")

where Snv is the classical spin vector on the site ny specified by the position vector

                    Rnv=Rn+Rv, n== 1 "wN, y== 1 A' 6.

Here N is the number of unit cells and n and u run over unit cells and over atoms in

the unit cell, respectively, as shown in fig. 1 and table, I. The exchange coupling

constant lnv,m" is taken into account for the pairs between the nearest A-A, A-B and

B-B atoms, and denoted by 1)tA, IAB and .A]B, respectively.

   Our problem is to minimize the energy subject to constraints

                         SnvoSnv := S3 for all n. (1)

Table I , Positions of atoms in a unit cell.
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Fig. 1. Unit cell of the C15 structure, The small light

     circles (Nos, 1 through 4) are the 3d transition

     atoms on the 16d site, the large heavy circles

     (Nos, 5, 6) the rare earth atoms on the 8a site.

     The edge of the cubic cell is denoted by a.
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In terms of the Fourier components, Snv is represented as

                        Snv == S. : o+.(q)eiq ' Rnv,

                                q
and the exchange energy is transformed into

                         Eex                  ES' = 3Ailjr.,ls.s, =;Ii] il.] C"yO""(q) " 6v*(q),

                         'where

                          S"Su:nwr'm",nvexp[iq " (Rtnpt th Rnv)]
                C".(q) =- 311AB[SASB '
which is independent of Rn because of the translation invariance. The constraints eq.

(1) become
                                         '
                   ;su (q) e si (q- q') - I 5 Ig r, q,1: g :

In this paper, we consider only the case where the spin configuration is characterized

by a single pair of modulation wave vectors Q and - Q. Then, the energy becomes

                      g=- ill, ii. C"v5" (Q) e 5.*(Q)+c.c. (2)

where c.c. stands for complex conjugate. The coefficients Cny in eq.(2) are expressed

in a matrix from

                           O Ci2 Ci3 Ci4 Cis Cis

                          Ci2 O C23 C24 C2s C2*s

                          Ci3 C23 O C34 C3s C3*s
                   f(k)= c,, c,, c,, o c,, ci,, (3)

                          Ci"s C2*s C3"s C4*s O Cs6

                          Cis C2s C3s C4s Cs*6 O

where the matrix elements are as follows [4]:

            Ci2=scos(ky+ki), Ci3==scos(kx+ky), Ci4=scos(kz+kx),

            C23=scos(kz-kx), C24==scos(kx-ky), C34=scos(ky-kz),

           Cis= +-S {exp[(l)(kx - 3ky + kz)] + exp[(-S-)( - 3k. + ky + k.)]

                                                   '
               +exp[(-S)(kx+k.-3k.)]},

           c2s== I: ± {exp[(-S)(k.+3k,-k.)]+exp[(-g-)(-3k.-k,-k.)]

               +exp[(-S)(-k.-ky+3k.)]},

           C3s = ZF -lr {exp[(-S)(3kx - ky + k.)] + exp[(-S)( - k. + 3ky + k.)]
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               +exp[(-S)(-kx-in-3k.)]}

           as == I-g {exp[(-S-)(3k.+h- k.)]+exp[( S)(- k.-3k,- k.)]

               +exp[(-S)(-kx+ky+3k.)]},

           Cs6 == 2 t {exp ( ikz) cos ( kx - h) + exp( - ikg) cos ( kx + h)}.

The upper and the lower parts of the composite signs correspond to positive and

negative values of .IAB, respectively. Here, we define k=aQ/4. a is the lattice

                   s-- 31311klBsS.gs, ･ t=- - 31JLlrl,iig.Xs, ･

The constraints in the present case are written as

                     25(Q) e o'*(Q)-1,                    (6(Q) " s(Q) == s'(Q) " 6*(Q)-o.

Introducjng a pair of orthonormal vectors IQ and Je, we can represent 5y(Q) as

                               1                        5u(Q) == 2 uv(Q) (IQ ' iJQ),

where LQ===IQ and JrmQ==-JQ. Substituting this expression into eq.(2), we get the

                     g=-li-ill,1.Cptu(Q)upt(Q)uu'(Q)+c.c.

                       '
and the constraints

                        iuv(Q)l2- 1, u= 1- 6. (4)
Lyons and Kaplan [3] treated the complicated variational problem by introducing a

`weak' constraint ' ' '
                         :ilSnu " Snu/B3== :ll]S3/B3,

             '
instead of the `strong' constraint eq.(1), where the values of Bv are chosen so that the

solution on the `weak' condition is consistent with the `strong' constraint [5, 6], The

weak constraint is written in terms of the Fourier compoments as

                       :2o+v(Q) e 5i(Q)/BZ-:1/B3,

                       uv
or

                      :i] uv(Q)uu*(Q)/B3= :l; 1/BZ, (5)
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By means of the weak constraint condition, our problem is reduced to minimizing

               -liT ;Ii.] Cgv(Q) zav(Q) uu* (Q) NA;i] zau(Q)uu* (Q)/B3,

where A is the Lagrange's undetermined multiplier, i.e., we are to solve the eigenvalue

proglem

                      -}-:i] cpv(Q) u"(Q) ='ll/tuv(Q)･

where the eigenvalue corresponds to g/2.

   We will refer by a zero-wave-vector (Qiii[O,O,Oi) mode to the state where the

characteristic wave vector Q is equivalent to - Q, i.e., Q equais to [O,O,O] or a half of

a reciprocal lattice vector. It is noted that, when Qi-Q, the energy is

                  ES' =: C"udipt(O) " 5v(O)=: Cgvup(O)uv(O),

                     P,v pt,u
and the strong constraints ' are simply written as

                      5v(O) ' 5u(0) ==: 1, u== 1 "-. 6,

or
                                   '
                             6(O) == uu(O) Io

                              'with

                              luv(O) l2= 1.

The weak constraint is given by

                   '  /t                        :i]5v(O) e 5:(O)/B3un-41/B3,

or
                                      ttt
                        : u. (O) za .* (O)/B3 -- Zl/BZ.

                         vu
3 The Zero-Wave-Vector Mode

   The matrix 'tr' of eq.(3) for k==O is

                          O s s s IFI TI
                          s O s s 41 :l1
                          ssOs                                           Tl Tl
                   tl '(e)= '                          sssO                                           II                                                F1

                          Tl Tl ll Tl O 4t
                          li ]i1 Fl Fl 4t O

By setting the values of fiv to be 1 for v=1'v4, and to be rs for v =5,6 as done in ref.

[6], we have the eigenvalue equation



12 K. TERAo, T. KoJiMA, Y. TsuBo and A. KATsuKi

where

                    [tv' -Ag] ti(k) - o,

or' is the vector composed of uu(k), v==1--6, and

ca -

1000
OIOO
OOIO
OOOI
oeoo
oooo

 oo
 oe
 oo
 oo
B-2 o

 O B-2

(6)

The secular equation is easily factorized as

                                      3s                                 -A -l-                                             T2                (A + -i;-)3 G, "2`) ,,,2 -Lzy, . 2t = O'

and the eigenvalues A(") and eigenvectors u'(a) are obtained as shown in table II, where

u'(a) is normalized according to the weak constraint eq. (5) and the abbreviation

                             A-me-23s-R(D

is used.

  We leave the eigenstate u'(`) out of cosideration, hereafter, because evidently A('} <

A{`). The eigenvalues A(i), R(2) and A(3) may degenerate into each other, depending on the

values of B. If they are non-degenerate with each other, the strong constraints eq. (4)

cannot be satisfied other than u'(i). In the non-degenerate case, we choose the value of

fi as

                                   2-3s                             B2 ..
                                 4(1 - t) ,

Table II, The eigenvalues and eigenvectors for the Q!ii[O, O, O] mode.
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and get A = 1. Thus we obtain the eigenvalue

                              A(i) == -; s-1

and the state vector

                         u'{i) == (1, 1, 1, 1, ±1, ±1),

which satisfy the strong condition and gives the collinear spin configurations:

                       s..-(.g.BI: igi :l.l,g`,

i. e., the ferromagnetic or Neel type configurations according to the sign of 7AB. In fig.

2(a) the projection onto the (OOi) plain of the examples of these spin configurations

are shown. We refer to the structures by FN, hereafter, and the values of f3 , A by /(3trN

and AFN, respectively.

   If A(i) is forced to degenerate into A(2},

                            B2 =: 1 ==: 1 Eiit2st ,

                                A-f,,

and

                           A(i) .. A(2) .,,, 3St2-t 1.

The eigenvector may be written as

                           u' = M u" (i) + Mu" (2).

From the strong constraints , we have

                                       ,- 1- A2                        2. 2B2+A2                     IMI -                            2B2+1 , IAJIil - 2B2+1,

and

                            AJiM+IVrkM=O.

Then the state vectors become

                     u' = (1, 1, 1, 1, ±e±ie,±eTie) E za"yKA,

where e is defined by cosO :1/2t. This state vector gives a kind of Yafet-Kittel's spin

structure [8] with spin vectors

        Snv = Sv(1, 1, l, 1, ± cos 0,± cos 0)Io + Sv(O, O, O, O, sin 0, - sin 0)Jo.

In fig.2 (b) the examples of these spin configurations are shown. We refer to the

structures by YKA, and denote the state vector u' and the values of B and A by u"yKA,
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(a) FN

(b) YKA

(c) YKB

(d) AF

Fig. 2. Spin structures for the Q

1. The arrows show the spin direction, but the direction with respect to

crystal axis is indeterminate and tentative.
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           E[O, O, O] state, The number of sites are defined in fig.

                                               the

Byl{A and Ayi<A, respectively.

If A{i) is forced to degenerate into A{3),

B2 ..

A-

we obtain

 s2

2(1 - 2st) '

2s

and

The state vector

              A(i) == A(3) =- - -i;･

is obtained in a similar way to the YKA case as

     u÷ =(eie, eie, -eie, -eie ±1,±1) ii tlyKB,

where

cos e == 112s,
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We obtain alternative types of the Yafet-Kittel spin configuration:

             Snv -- (SB cos e, SB cos e, SB cos e, SB cos 0, ±SA, ± SA)Ie

                + (SB sin 0, SB sin 0, - SB sin 0, - SB sin e, O,O)Jo,

which are illustrated in fig.2 (c). We refer to the structures by YKB and denote

state vector ti and the values of B and R by u"yi<B, x9yKB and AyKB, respectively.

  If A(2) =A(3), we choose

                                B2 - -41,T･

and get

                            A(2) = A{3) = - -S-･

The state vector is

                            u'A. = Mza+, + Mbl+,.

In order to satisfy the strong constraints,

                                2B2+1 L
                            M

15

the

                                         1,                                  2

                            A,kV2ffB2M;iU - 1,

hence we get

                               IM12 2t
                               IMI2 - s'

Thus the state vector becomes

                     u" = (e ie, eie, e-ie, e-ie, 1, - 1) !!i ilAF,

where 0 is a phase difference between M and Alh and indeterminate within our

treatments. The spin vector is

             S == (SB cos 0, SB cos 0, -SB cos e, - SB cos 0, SA, -SA)Io

                + (SB sinO, SB sinO, - SB sinO, - SB sinO, O,O)Jo.

An example of this configuration is shown in fig.2 (d). We refer to this structure by AF,

and denote the state vector u' and the values of B and A by u'AF, 194F and AAF, respectively.

  For Lyons-Kapian's parameter of eq. (6), we have obtained the seven configurations

for Q =-= [e,O,O] as shown in fig.2. It is also ciear that the case of A(i) = A(2} = A(3) does not

take place, hence, the configurations YKA and YKB never coexist with each other.

  Now we are going to discuss the phase diagram for the Qi[O,O,O] mode. We

represent one of the values BFN, ByKA, ByKB or X9AF by&, and the corresponding eigenvalue

by Ao (e,X9o). If the spin structure for Ao (O,Bb)･ is of the ground state, the foliowing
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conditions should be satisfied:

                   Ao(O, Bo) <- A(a)(O, Bo), ev =lr- 6,

where A(a}(O, Be) are the eigenvalues A(") in table II into which Bo is substituted for B.

Andsubsidiarily '

                          Ao(O, Bo) < O,

and

                           Bo(s, t) =# O.

In the cases of YKA and YKB, we have to add

                           O<A< 1.

After straightforward calculations, we obtain the field for each spin structure on the

st-plain as follows:

                               11                    (a)FN s<                               2, t< -2-･

                    (b)YKA st<t, t>"li･

                                                           (7)
                    (c)YKB st<t,S>t･

                                1                    (d)AF st>                                  s>O,l>O.                                4'

These fields are illustrated in fig.3.

                       t

st-1/4

s

Fig. 3. Phase diagram for the Q=-[e, O, O] structures,
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4 Stability Relative to Screw Structures

(1) Qll[e,O,1] mocihtlation .

   By substituting k :== [O,O,k] into eq. (3), we have

                              O a b a f f*
                              aOab f"f
                              b a O a f f"
                  V'([O,O,k])== . b a O f* f '

                              f f*f f*Oe
                              f'f f"feO

where

                             '
              a= -i;- cos k, e = 2t cos k.

              b= -li-, f= rm -g- [2 exp(i-2k)+ exp(-i32k )],

The secular equation is decomposed by the similarity transformation with

                         111 10 O
                         1 1 -1 -1 O O
                     11 -1 1 -1 O O
                      21 -1 ･-1 1 O O
                         o o o o V2 V2
                         o o e o V2 -V2

into two submatrices:

                             of(k) x' = Ath,

                             ca (k) y' -- Ay",

where

                     a+bcO AOO
             .of(k)=- c e O , /1(k)-= o ALe2 o,

                      OO -b OOA
                    -a+b-id O
             ca(k)=- id -e O ,
                       O O -b･

17



18 K. TERAo, T. KoJtMA, Y. TsuBo and A. KATsuKi

                S( za1÷ U2÷ U3+ U4) -ii'(Ul -' U2+ U3- U4)

            x"= il}(zas+u6) , y"'= ils(us-u6) ,

                                                          '                -ll(Ul+U2-U3-U4) ±(Ul-U2-U3+U4) .

                     '
and
                                       '
           c =- e(2 cosg+ cos 32k ), d == - g(2 sing Tsin 3i ).

Because the secular equation with respect to ca(k) is equivalent to that with respect

to .of(k+rr), it is enough to study about .of. Three eigenvalues of .of are easily

calculated as

      A(k,B)± = rmll"(2B2t cosk+s cosk + -ll-s) :i -il-((2B2t cosk+s cosk + -ill-s)2

               nt 4B2 [ ts (2 cosk lrr 1)cosk - -li(1+ cosk) (2 cosk+ 1)2])"2,

          A(3) =:=--liTs- '

The stability of each phase of the Q =- [O,O,O] mode is examined with respect to the

lowest eigenvalue A(k,B)- as follows:

   (a) FN strzactzc7k7. The necessary condition for the FN structure to be stable

compared with Q ll [O,O,1] modulation is

                            A,,<A(k, f9,.)rm.

After straightforward but rather tedious calculations, the following boundary for the

FN structure is obtained: '

             t < g2s2 [(2 - 3s) (1 - 2s)i'2+ ss-2] for -g- s{ s < 5

   (b) YKA strztctztre.The condition

                            A,,,,<A(k, ]3,,,,)-

shifts the boundary for the YKA structure to

               , . . .. gT for t> t-

   (c) YKB structure. The condition

                            AyicB<A(k, IByi{B)-

shifts the boundary for the YKB structure to
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Phase boundary limited by screw structures. The curves 1, 2,

3 show the boundaries in cases of Q11[O, O, 1], Q11[1, 1, 1]

and Q 11[1, 1, O] modulation, respectively.
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                        ts <g , for 's<t'

   (d) AF strztctztre. The condition

                           A.,<A(k, /a,,)m

is broken over the whole region on st-plain, i. e., the AF structure is never realized for

any values of s and t. The boundary limited by [O, O, 1] mode is shown by the curve

                                                            tt

(2) Qll[1,1,1] modulation

  The coefficient matrix eq. (3) for k=(rc, rc, rc), rc == klVg, is

                         O a a a f f'
                         a O b b g g"
                         abObg g"
                    c-                         abbOg g" '
                         f" g* g" g" O e

                         f"ggg e*O

where
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             a==-g-cos2rc, e=t(e'k+e-tkcos2k),

             b == =i;, f =:= g -l}- exp(- iK12),

                          g == gF -li- [2 exp(3 iK!2) +exp(-5iK!2)],

the upper and lower parts of the composite signs correspond to the positive and

negative signs of .IAB. The secular equation is easily factorized as

                        -A a f f"
                                             3g"                             -At2b                                       3g                         3a
                 (A+b)2 f* 'g* -Are2 ..=O' (8)

                         f g e* -Are2

Thus the eigenvalues are

                     A(k, B) == --S-, doubiy degenerate,

and

                          A',(k, B), 7-: 1-4,

the roots of 4×4 determinant. Because A(O, f%)<-s/2 for Q ii [O, O, O] mode, it is

enough for our purpose to examine the condition

                            A (O, xil) < A',(k, B) .

This condition is satisfied if the 4×4 determinant obtained by substituting ft and

A(O, 1%) for 13 and A in eq.(8) is positive definite, i. e., all the priRcipal minors are

positive. After straightforward but laborious calculations, we obtain the following

results:

    (a) FN stn(ctu?'e. The first diagonal element is -AFN>O. The upperleft 2×2
principal minor is of a quadratic form for s and positive in the region bounded by eq.

(7). From the condition that the full 4×4 determinant is positive, the FN structure is

instable out of the region

                       t< 3(21i32ss) for -g-<s<t.

The 3×3 principal minor does not add any boundary.
    (b) YKA structure. The same boundary as that for [O, O, 1] modulation is obtained.

    (c) YKB structzare. YKB is instable out of the region

                            st<O fors>-li-.
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    (d) AF structure.The AF structure is completely eliminated by [1,1,'1]

modulation. The boundary limited by [1, 1, i] is shown by curve 2 in fig.4.

(3) Q 11 [1, 1, O] mocin lation

   The coeflicient matrjx for k=(re, rc, O), K == k! V2, is

                           O a12 b a12 f f*
                          a12 O a12 O･g g
                           b a12 O a12 f" f
                   `ts'(k)== a12 c a12 O g 9'

                           f* g.f g O e
                           fg f* geO

where

                a :=: scos rc, e=t(1 + cos 2K),

                b =: -g- cos 2K, f := g -li- (2exp(- irc) + exp ･irc),

                c=Ss', ' g =' 4t (1 +2cos 2K),

and the upper and lower parts of composite signs correspond to the p6sitive and

negative signs of lkB, respectively. The secular equation is factorized [4] after a

                                       t ttsimilarity transformation by ' ' '
                           1 O. 1OOO
                           1O-1 OOO
                        1010100
                       V2 o 1 o-1 o o

                           OOOOII
                           OOOO1-1

into three factors as

                               * -b-A f+f" a            (-c-A) 7*b:fA -fe--'-E, ".'" eEt3' .2ndg, =O' (9'

                       '          '                                                              'Because -c-Ao>O for Ao K-s!2, our problem is reduced to consider the condilion

that both the 2×2 and 3×3 determinants those are obtained by substituting Pb' and

A(k, ,(3b) are positive definite, as discussed in the case of [1, 1, 1] modulation. It is noted

that the first 2×2 principal minor of the 3×3 determinant is always positive.

    (a) FN structzave. The stable region is given by

                            t<e .for s'E{ so,
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and

                                 '                  t< 4ts(7g? (6i lE,8)(i+ S) , for so < s < -li-,

where so ::= O.41251, which is numerically calculated from the condition that the 3×3

determinant is positive definite.

    (b) YKA stntcimre. The stable region is limited by

                      s< (st)o=O.20625 and t>e,

where (st)e is obtained numerically from the condition that the 3×3 determinant is

positive definite.

   The field of of YKB and AF structures is eliminated by Q II [1, 1, O] modulation.

The boundary limited by Q ll [1, 1, O] modulation shown by the curve 3 in fig.4.

5 Summaries

   In this paper, the seven types of spin structure for the intermetallics with the C15

crystal are deduced on the basis of the classical Heisenberg model by making use of

the Lyons-Kaplan method in the case of Qi-[O, O, O]. The QE[O, O, O] spin structure

becorpes unstable compared with the screw spin modulation along [O, 0, 1],[1, 1, 1] and

[1, 1, O] direction in some regions on st-plane. The [1, 1, O] mode gives the most drastic

limitation. It should be emphasized that, at most, the FN and YKA structures are

expected for the Q!E[O, O, O] states as shown in fig.4. The remaining fields for Q!iE[O,

O, O] states are limitted as follows:

(a) FN stntcimre

                           1
                        t < -l2T for s E{ so = O.41251

                                       '                             '                                       '                 t < 4"!iJ(7gi (6i lEi)(i+S) , for so < s < Ll}-,

(b) YKA strucimre

                      t>-ll- for st<(st)o =o.2o62s.
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