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Abstruct: Solutions to the Cauchy problem for Schrédinger equations with
cubic convolution are considered. Conditions on the initial data and the potential
are given so that the energy of solutions blows up in finite time.
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1. Introduction
In this note we shall consider the Cauchy problem

(1) i0m=Ju+ flu), x&R" and >0

) u(x, 0)=p(x),

n
where { =a/—1, 0,=0/01, A:Z}aﬁ (0j=0/0x;), flu) represents a cubic convolu-
tion nonlinearity: =1

® Fa=(Vlulhu= ([ Vis—s) als)idy)utx)

(all integrals are taken over R%), and V(x), o(x) satisfy the following properties.
(A1) V{x) is real valued and V(—x)=V{x);
(A2) [V@I<Clxl (0<o<n) or V(x) eL?=LP(R") (1<p<Lo0);
(A3) ex)esH N2, r=max{3, [(»+1)/2]}.

Here H*=H®R" (k>0 integer) is the Sobolev space with norm

@ lollze=( 23, [1Do0t)dx) 7

lal<k
(@=(a, @z, ++++++, ) being a multi-index and D“=6“i‘8%2---3“n"), 2= {o;lxle(x) L% and
[q] is the largest integer <{g.

As we see in Ginibre-Velo [1], the above problem has a unique local solution
in time, and since (A3) is rather strong, it belongs to C' ([0, .T%); H™™% N
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C(0, Ty); H'NYY) for a To>0. (In[1] is treated only the case V(x)eL?. In case
V(%) |<Clx|7?, the Young inequality should be replaced by the generalized Young
(Hardy-Littlewood-Sobolev) inequality to show e.g., Lemma 2.1 of [17.)

In this note we investigate conditions under which this solution may blow
up in finite time. Such a blow up problem has been studied by Glassey {2] in
case of the power nonlinearity flu)=glu|?"'u with >0 and p>1. We shall show

n
similar blow-up results requiring x-/V{ix)= Z} x;0;V ()< —cV(x) for some ¢>2. In
7=1

case ¢>2, his line of proof can he followed to our problem without any essential
modification. On the other hand, the argument of Glassey-Schaeffer [3]can be
applied to the critical case c¢=2.

2. The Blow-up Theorems
We begin with a lemma giving several identities which will be used in
the proof of Theorems.
Lemma. Let u be a solution of (1), (2) on an interual 0<t< Ty. Then

) = [ iz, BPaz) 2=l 1%

© [ (trutz, 0 — 5+ uutz, 07 de=const=E;

(7) d;‘;J'lxlzlu(x, Hdx= —4Im‘[u(x, Dx-Fulx, fidx;
d S

®) g o [ PPl

= — 2 [(Fute, D2+ (e PVsluf®luts, 017 d;
©) Sl ()] +Re J U, D P, Hdx=0.

Proof. We multiply (1) by 24 and take the imaginary part. Then since V{(x)
is real, the same proof of [2; Lemma] yields (5) and (7). Next we multiply (1) by
20;% and integrate the real part of this identity. Then since V{ix—y)=V{(y—x) (A1),
we have

[V umodulrds=5; [(V+iulurds

and (6) follows. To derive (8), we multiply (1) by 2x-F# and integrate the real part
of this identity. Then noting the equality
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[epv st urdz=F [(w-rvstuuras

which also results from (Al), we can follow the proof of [2; Lemma]. Finally, (9
is easily obtained if we integrate the identity

27 ()= Ll + Red(x-ra). |

With these identities we can establish our blow-up theorems.
Theorem 1. Let u be a solution of (1), (2). Assume that
(Ad) E,<0;
(A5) Im J G Pp(x)dx>0;
(A6) There exists a ¢>2 such that x-FPV(x)<—cV{x).
Then theve exists a finite time T such that

Proof. We briefly repeat the proof of [2; Theorem]. Put
(11) =Ttz .
Then by (6), (8) of Lemma and the above (A4), (A6) we have
(12) Y2l —2)[|Pul'de—cEs>(e—2)|I7ut)] [720.

Moreover, by (A5) we see ¥0)>0 and ¥'(0)>0. So the function y(f) is positive and
increasing whenever u# exists. It follows from (7) of Lemma that (Jlxizlulzdx)’(t)
= —4y{1)<0. Therefore,

[ eiuaz<atlprax=ay<oo,

and the Schwarz inequality applied to (11) yields »{#)<d,!|Fu(#)]]. Using this and
(12), we obtain the differential inequality
Y () >(c—2do (R, 3(0)>0.
Integrating gives the estimate
a1 >do y(t) > y(0)do/ {do® —(c —2)3(0)¢t},
which implies (10).
Theorem 2. Let u be the solution of (1),(2). Assume that

E,<0, or
Ey=0 and Im JgE(—x)x-Vgo(x)dx>O, or

Ey>0 and Im Jgo(x) wPp(x)dx>a/Ey| x|,

(Ad)
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(A6) x.FV(x)<—2V(x).
Then there exists a finite time T verifying (10).
Proof (cf., [3; Theorem IIT]). Integrate (7) over (0,{). Then we have noting (11)
and the inequality y'(#)>—2E, (12) with C=2),

)| 2=l 1?4 oM<l — (Ot +4E .

Here ||x¢||--15(0)|<eo by (A3) and

E.<0, or

Ey=0 and y(0)>0, or

O\ > Eol[x¢]|
by(A4)'. Thus, there exists a T< oo such that
lim [Jxu(t)]|=O0.

(13) e
On the other hand, it follows from (5) and (9) that
(14) 0l P=1at) P2 n || Fuld) e}

(13) and (14) show the theorem. []
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