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                                Xntrodllction

    This is the detailed exposition of [7]. The outline of the paper is as follows:

In gl, we define the 2rtlimensional non-abelian de Rham set Hi (M, "'). Here M

is a smooth manifold and fi is the sheaf of germs of smooth matrix valued 1-

forms e such that dO+eAO==O. A bijection between H' (ML a') and a set of special

classes of matrix valued 2-forms on M are also defined. In a sense, these, 2-forms

can be regarded as curvature forms with singularities (singular gauge fields) (cf.

[11], [17], [23], [24], [25]). Since we have obtained 2-dimensional non-abelian

Poincar6 lemma (local integration theorem of the eguation de + 0A e = e, [10]), the

results of this section will be improved in future. In ss2, we define the cohomology

sets H2 (Ml Gt) and H2 (M; Gd), G==GL (n, C). Here Gt and Gd are sheaves of

germs of constant and smmooth G-valued functions on M; respectively. Then we

show the exactness of the following sequence

            oLHo(M; Gt)--!2-,Ho(ML Gd)iHo (M; xi)L' Hi(M; Gt).

                          d* 6 i*                                  xi)-            NHi(M, Gd)-Hi(M,                                         H2(M,                                                  -H2(M, Gd).                                                Gt)

This sequence is derived form the exact sequence of sheaves

                                .                       o -----F GtLGd -!2-,pxi-o,

and the exactness of the first 6-terms of the above sequence are known and used

by several authors ([3], [15], [21], [22], [26]). But the definitions and.exactness

of last 3-terms seem to be new. We note that our definition of H2 (M, Gt) is

dfierent from former definitions ([13], [16], [19]). In fact, in our definition, H2

(M, Gt) is not absolutely determined by the sheaf Gt. Its definition depends on the

above sheaf exact sequence. This is the reason why we have the cohomology exact

sequence (cf. [14]). In g3, we define the characteristic classes of the elements of

Hi(M, X'). These are non-integral generalisation of the Chern classes (cf. [11],

[23], [24], [25]). The characteristic classes of the elements of H2 (M, Gt) and H2
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(M, Gd) are also considered. Although there still remain many problems, we had

some progress for the definition of the characteristic classes of the elements of H2

(M, Gt) and H2(M, Gd) ([9]). The results of ss1-3 are constructed by the differential

operator d and the group G=GL(n, C) and G can be replaced by U(n) or SU(n), In

ss4, we give analogous theory replacing d by D, an arbitrary differential operator

over M. It is a refinement of the appendix of [6] (cf. [1], [2], [5], [8]).

                gg. Nom-abeliam de Rharrifx theory of diryEension 2

    1. Let M be a connected paracompact smooth manifold. On M, we consider

the following sheaves.

Gt : the sheaf of germs of constant G-valued .functions.

Gd : the sheaf of germs of smooth G-valued functions.

gi:the sheaf of germs of compiex (n, n)-matrix valued 1-forms.

Xi : the subsheaf of g' consisting of forms 0 szach that dO+eAe==O.

f2:the image sheaf of gi by the mmp de dofned by deg==dg+gAg.

    Using 2-dimensional non-abelian Poincar6 lemma, we can give an intrinsic

definition of X2. But in this paper, we use thisold definition.

    Note i. If G is a Lie group with the Lie algebra g such that the exponential

map is onto, Then we can define the similar sheaves for G-valued functions and

g-valued forms.

    Note 2. We denote Gtu, Xito, etc., the corresponding sheaves for holomorphic

maps. The similar notations are used for other categories.

   Defilnition 1. We dofne the dofizrential QPerators p and de respectively by

                    p(g)=g-idg, deg = dg + sOAP･

   The induced maps of p and de on the sheaves Gd and g' are also denoted by p

and de respectively.

   Note. p is defined for Lie group valued functions, while de is defined for Lie

algebra valued forms. This is the reason of the inhomogenity of notations. For Lie

algebra valued functions, de is defined by def = p(ef) = tlf+X,oo,..i ((ad f)"df)/(n+1)!

                                                          '([8], [9]).

   By definitions, we have the following exact sequence of sheaves.

  a) o-GtLGd -k.ai --o,
                             ide
  (2) O-"i --･g'-Xe-o.
   The O-dimensional cohomology sets for these sheaves and 1-dimensional coho-

mology sets for Gt and Gd are known. But we need other O-dimensional cohom-
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ology sets for Xi, g' and X2 based on the action of gauge transformations. Fot

these purposes, we take a locally finite open covering U== {Ui} of M. We write ci,

ciJ･, etc., the sections on Ui, Uin[Li, etc.,

   Definition 2. Let h={hi} be an element of CO (U. Gd). Then we dojine the

actions of h on CO (U, g') and on CO (u, X2) by

 (3) h(0)=hi(0i-hi-idhi)him"i, o== {ei} EiCO(u, gi),

 (3)' h(@)=hi(ei)hi-i, e={e}iGCO(u, X2).

   By definitions, we have

   Zeryixscta X. I70r the above actions, the follOwings hold

 (4) h,(h,(e)) -- (h,h,) (0), h,(h, (e)) =: (h,h,) (e),

            e(e) == 0, e(e) = e, e = ei(x), the identity valued junction.

 (5) de (h(0))=h(deO).

 (6) h(CO(U, Xi))=CO(u, fi).

   2. h== {hi}eCO (n, Gd) also acts on (Ci (U, Gd) by the action

 <7) h(g) == higijhjrii, 6-- {gi,･}.

   By definition, we have

 (4)t h,(h,(e)) == (h,h,)(g), e(6) == e･

   Definitioit 3. V'PXe set

            C'a(U, Gd)={{gvj}EC'(U, Gd)lgvi--e, gi,･=giim4S}.

   By definition, we have

 (6)' h(Cia(U, Gd)) :Cia(U, Gd)･

   Defimition 4. Let 6=:{gii} be an element of Ci(U, Gd) and g be one of Xt, gi

or .di'2. Then we dofne the mmp Oe on CO(U, 2g') by

 (8) 6e(c)i,'==ci--&ieigii, c== {ci}･

   By definition, if 6 is in C'.(U, Gd), we get

 (8)' fie(c)ii := ci - g'iicigiii -- ci' - gi,<ci).

   Nete. The ima'ge of ae is not in C'(U, {l3') in general. For example, if 6e C`a

(U, Gd), we have

 (g) de(Se(0))ii := 6e(dee)iti + [p(gi,-) - 6e(0)i,-, gii'0igii]･

Here [q, ip] means gAip-(-1)Pq¢Ag, P=dego, q= dego.
   Hereafter, we denote tii･le or 6gii･k the map giigilegih"'.
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    Lerrrtrrw}a 2. (i). Ilf ae(c)=O, then 6ep(c) is opual to O if and only if

  (10) hi,'cih,'i == c,-, e== {gij･} and 8' == {hiygii･},

    (ii). lf 6EiiCia (n, Gd) and Oe(c) is equal to O, then

  (11) tiikHlcitij･le =ci.

   (iii). ife is in CO(n, M2) and 6ee=rO, then ah(e) (h(e)) is eqeral to O. U0 is

in CO(U, g') and 6e(0) =:O, then 6h(e) (h(e)) is equal to O if and only if

  (12) 6e(p(h))=O.

   (iv). If 8={gid}EC'a(U, Gd) and 6e(0) =O, then 5e(dee) is equal to O ifandonly

if

  (13) [p(,gVj), 0i]=O･

    Proof. (i) and (ii) follow from the definitions. Since

            6h(e) (h(@))ii = hj(6e(e)i,')hdm',

we have the first assertion of (iii). The second assertion follows from 6h(e) (h(0))ij･==

h,･(6e(e)ii-6ep(h)i,･)hit"i. Since gii'eigi,' == e,･ if tie(0)=O, we have (iv) by (9).

    Note. If h satisfies (12) for 6GC'.(U, Gd), then we have

            -p(hi)Ap(hi･) = -[p(gii'), gij-'p(hi)gii] - gii-'ip(hi)gi,･Agiiip(hi)giJ･.

Hence we have

            [p(gii), p(h,-)]= o.

By this equality, if Se(aeO) = tih(e) (h(e)) = O, then we have 6h(e) (de(h(e)) == O.

   Definition S. We assume #== {g?j} EiiC'.(g, Gd). Then we set

     Zod(u, .di'i)={eECO(u, .te'i)I6ee=O for some 6 such that [p(gii'), 0ti]==O}.

     ZOd(u, gi):= {0GCO(U, gi)l6ee=::O for some 6 such that [p(gii), ej] =O}.

     ZOd(u, "2)== {eECO(U, .di'2)16e@==O for some 8 such that p(6)=tie(e),

                         e=:dee, and tiile'`ieiti]`le =ei}.

   Definition 6. .Fbr 0EZOd(n, X') or ZOd(U, gi), we call hGCO(U, Gd) is an admi-

ssible action if

            6e(p(h)) == O, 6eO == O.

   Befinition 7. Fbr eEZOd(U, f2), we calt h is an admissibie action if

            6e@=O, p(hi) =tiJ'ktd'p(hi)ti,'k.

   Since we have
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            p(h,h,) == p(h,) + h,mip(h,)h,,

            Se(p<hih2))i,' = 6gp<h2)i,' + h2,jHi<6h2(e)p(h2))ijh2, j,

these actions are well defined.

   Definitiom 8. The limit sets of ZOd(U, Mi), Zed(U, gi) and ZOd(U, X2) with

resPect to the rofnement of the covering U, are denoted by ZOd(M, xi), ZOd(M, gi)

and ZOd(M, M2) respectively.

   By definitions 6, 7, admissible actions are defined on ZOd(M, .di'i), Zed(M; gi)

and ZOd(M, x2). ･
   Definition 9. The quotient sets of ZOd(M, Xi), ZOd(M; g') and ZOd(M, X2) by

the admissibte actions are denoted HOd(M Xi), HOd(M, g') and HOd(M; .4i12). They

called the O-dimensional cohomolgy sets.

   By the definitions and Lemma 2, we have the following exact sequence

                            i de
                                       ----+Zed(M; "2).            O-ZOd(M, vditi)-                              ZOd (M                                     'gi)

By (5) and Lemma 2, de also induces the map de:Hed(M, g')-HOd(M; x2).

   3. Definitioit XO. Let {z be a' or gi an eGC'(U, Gd). Then we dofne the mmp

Se on Ci(U, {ig') by

  (14) 6e(a))itik = w,'le - a)ile + {lllej(viJ'8k, 6= {gVd}･

   Note. In general, 6E(Ci(U, Xi)) is not contained in C2 (U, "i).

   By definition, Se(5ee) is equal to O if and only if gleieigilewu-glejgjieigijgyle for any

i, 7', le. If6GCi.(U, Gd), then

  (14)' 6e(to)i,'k == toi'k ' toik + 8feMitoiiElik･

   Definitiext 11. Let e be in Ci.(U, Gd). Then we set

     Zi(u, xi) :{w E Ci(u, Xi)]to == p(gi,･) and fieto == O for some 6={gii'}},

     Zi<u, gi) = {tu E Ci(U, gi)l6e to = O for some g} . .

    Defimition 12. The elements to and to' of Z'(U, M') are said to be cohomologous

and denoted to--tu' if there exists h == hieCO(U, Gd) such that

  (15) d(hitiikhi-') ==O for any i, i le, wi,'=p(gij･),

            g={gi,･}eCi.(U, Gd) and 6e(to) =O.

  (16) tuig' =: hi(toii - 6ep(h)ii)hia･

   Note. By (16), we have toii' = p(higidhi-i). This w' satisfies 6et(to') == O, where

6' == {higii'hj-'} E C'a (U, Gd)･

   Definitiert g3. The elements o and o' of Zi(U, g') are said to be cohomologous

and denoted tu--to' if there exist h== {hi} E Ce(U, Gd) and e== {0i} ECO(U, gi) such that
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  (15)' tij･hr-iOitig'k==0i, for any i, i le, 6eto=O, 6== {gid},

  (16)' toi/ = hj(toi,' - Se(0)1,')hi-"'.

   Defimkiom X4. II' (U, Xi) and H`(U, gi) are dojined to be the quotient sets of

Zi(u, xi) and Z`(U, gi) by the cohomology relations.

   Note. The sets of coboundaries are given by Bi(R, X') =={tuIto=6e(0), 0ECO

(tt, Mi), to == p(e)} and Bi(n, gi) -- {ofw=6E(0), tifk-iOitiih=0i}･

   Note. If toECi(U, Mi) satisfies tuih- tuile+ g:ile-itoiigyle = O, bli]' =p(gid) for some

{gij'}, then we have

(i) g)le"itui,･gyk does not dopend on the choice of {giti},

(ii) toii =O and {vii- = -stituiigii".

By (ii), we may assume to := p(g), eEii Ci.(U, Gd).

   Proposition ft. (i) Let e={gii} be in Ct. (U, Gd). Then p(e) belbngs to Zi(U, X`)

if and only if tiile == (tie)ii･le is a constant mmp for any i, 7L k,

   (ii) Zi(U, g') is equal to B'(U, g').

   Proof. Since we have

            tiikHid(tiik) = gik(stkm-itoiig)le + caj･le - toik)gikHi,

d(tiife) is equal to O if toGZi(n, X'). On the other hand, if d(ti,･k) is equal to O, to

== p(g) satisfies 6eto = O. Hence we have (i).

   Since we have gik-igii'M"`tohigii'gik = gyk-i(toki- tois')gik == -tuik+(tuis-- toih)=:'toik::::

gik-itokigile if 6ete=O, we get tiilediwhitii'k == tohi if Setu == O. Hence to take a smooth

partition of unity {ei} subordinate to U,

            ei= ]2ill] ehwki

                 UknU`pt

satisfies (15)'. Then, since

            0i-giJ･riiOigiJ'= X ele(tohl'-giim"ituleigis-)=:tuii,

                         UknUinUJ#

to is equal to 6e(e). Therefore we obtain (ii).

   Corollary 2. For elements of Zi U, Xi), (15)' follows fhom (15).

   Proof. Since ti]･h is a constant, we get hi-i(d(hiti.ikhi-'))hi=p(hi)tij'k - tiikp(hi) ==

O. Hence wehave Corollary.

   Corollary 2. Hi(U, g') is equal to {O}.

   Note. Corollary 2 does not hold in another category. For example, Hi(11, g'te)

may not be equal to {O} (cf. [6], [7], [22]).

   Pefinition IS. VVla set Ci,(U, Gd)={{gij･}GCi.(E, Gd)16gii'k is a constant forany

i' 1" le}'

   Let ng := {Vjly' E! J} be a refinement of U={UiliEi} and T, r': J>E the maps
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such that V)c:Ur(i)nUr,(i). Then {hi} = {g?(i)T,(i)} gives a chain homotopy between

r* and T'*.

   Definition Z6. We set ffi(M, fi) the limit set lim {Hi(U, a')IT*}.

   Note. Hi(M, g') is defined ay the same way. But by Coro!lary 2 of proposi-

tion 1, we have

            Hi(M; gi) = {o} .

   4. Defixtitioit 17. Let e and O' be eiements of HOd(M, M2). e and e' are coho-

mologous if they have relbresentatives e={ei} and @' ={ei'} such that 6ee ==O, Oe,

e'=o, eim-deoi, eir=deei', p(6) =6eo, p(e')=:6e, e', 6==:{gi,･} and 6'={ci)･giJ･}, where

cii is a constant mop.

   Note. p(6) =::6eO if and only if 0j-gi,'-"'(0i)=O.

   Definitiom 18. H2dR(M, g) is derined as the qasotient set of HOd(M, X2) by the

cohomology relation.

   Theorem 1. There is a bi7'ection between H2dR(M, g) and Hi(M, .di").

   Proof. We denote <e> theclass of eEZOd(U, X2) in H2dR(M, g). Then we

tiee=O, p(g)=6ee, 8Gi!C'.(U, Gd) and 0ECO(U, g'). Then, since tij-k-'0itij'k==0i, we

obtain

            6e(p(e)) == 6e(6eO) == O･

Hence p(6) betongs to Zi(U, Mi). If e' is another representative of <@> such that

6e, e'=:O, set 6=:{gii} and e'=={gii'}, we have

            gii' == hiciJ･giJ･hil,

where ci]･ is a constant and {hi} is admissible. Then, since p(ciigii):==p(gij'), we may

assume gi/== higi]-hr'. Hence we have p(6')ii' =hj･(p(6)ii-6ep(h)ii)hJ'-i and d(hitiilehiH')

==O. Therefore p(e)t--p(g') and we can define the map e:H2dR(M, g).H`(Ml .ee'i) by

            e(<e>) =<p(g)>: the class of p(g) in H'(M] .di'i).

Since 0i mu- p(giJ')+g･]･diOigi]' if p (e)= 6e(e), we have 6edeO=O if p(6) == 6e(0). Hence

we have

            dej -- -p(gii)Ap(gi,･) - p(gii gii'eigii + giim'ideigif.

Therefore deOj---giiideOigii･, that is 6gdeO==O. Let <to> be an element of H'(M, xt).

Then we set to= p(e), gEC',(U, Gd). By Proposition 1, (ii), we can set p(e)=6e(0),

eECO(U, g'). Then by the above calculation, dee belongs to ZOd(U, X2). If w-vto',

we set to'=p(h(6)). Then hECO(U, Gd) defines an admissible action of deO. Hence we

can define the map rc:H'(M, Xi)-H2dR(M, g) by

            rc(<to>) = <deo>, to == p(6) == 6eO･
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By the definitions ofcand rc, erc is the identity map of H2dR(M, g) and rcc is the

identity map of Hi(M, .afi1i). Hence we have Theorem.

   Note U. The kernel of the surjection 6:HOd(M, M2)-H'(M, f') is given by

de(Het(M, gi)), HOt(M, gi)= {<0>GHOd(M, gi)16eO=:O for some eECi.(U, Gt)}. Here

Ci.(U, Gt) means C'(U, Gt)nC'a(U, Gd).

   Note 2. In holomorphic category, H`(M, gito) may not be epual to {O} and we

have the following exact sequence

                  i* de i*                      Ot(M; gito)-HOd(M, .di'2to)-Hi(M] xito)-Hi(M, gi.)  O-HOt(M', .Xi.)-H

The image i"(<to>) of <tu>EgHi(M, "ito) is the obstruction class of <w> to be in 6

image. Especially, if ca=p*(6), 6EH`(Ml Gto), i"p*(6) is the obstruction class of 6

to have a holomorphic connection.

             S2. The cohomaology sets ff2(M, Gt) amd es2(if,Gd)

   s. Definitiom a9. Let g=={gij} be in C'a(tt, Gd). Then we dofne a mmp 6e on

C2(U, Gt) (resp. on C2(U, Gd)) by

  (17) (6ec)ioiii2i3 = gieiiciti2i3gioii"icioiii3cioi2i,mici,iii2Hi.

   By definition, we have

   Lerwtmaa 3. (i) 6e mmps C2 (U, Gd) into C3(U, Gd).

   (ii) 6e c=e if and only if

  (18) Cieiii2Cioi2i3 = gloiiCiii2i3gtoiiPiCioiii3･

   ai)' lf ceC2(U, Gt) satisLlies 6e c= e, gi,i,ci,i,i,gioii"i is a constant mmp.

   (iii) if 6e c=6e, c=e, we get hi,i,ci,i,i,hi,i,pi=:ci,i,i,, where 6={gi]･} and 6'=

{hidgi]'} ･

   (iii)' if 6e c=6e, c, we get hi,i,gi,i,ci,i,i,gi,i,-ihi,i,-"i=gi,i,ci,i,i,gi,i,-i, where

6= {gij･} and e'= {his'giJ-}･

   (iv) ILf c=6e, that is, ci,i,i,==gi,i,gi,i,gi,i,-i, then be(6e)==e.

   (v) Der7ne the action of h ={hi}GCO(U, Gd) on C2(U, Gt) (on C2(U, Gd)) by h(c)==

hiocioiiithioHi, we get

            6h(e)(h(c)) = h(6e(c)), h(a) = hioaioiii2i3hie'`･

   Exarxiple. If 6ec=e and 6 =hihii, then c' =hmi(c) satisfies

            C'iii2i3Ctieiii3C'ioi2i3-iCtioiEi2 == e･

   Defifikiom 20. Let c be an element of C2(R, Gt). Then hECO(U, Gd) is called

c-admissible if h(c) belongs to C2(U, Gt).

   Lerrtrvta 4. Let 6ec=e, 8=={gii} and assume g' :=:{aij'gii} is in C'a(U, Gd), Then
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to set

  (19) cti,i,i2 = aioi,gi,i,aiii2giei,'"icieiii2ai,i2"i,

e,c' :=:e if and only if a=: {ai,･} satisfies

  (20) (gi,i,-15ci,i,i,) (gi,i,ai,i,gi,i,Hl) = (gi,i,ai,i,gi,i2-1) gi,i,dci,i,i2)-

   Proof. By (18), 6e, c'=e if and only if

  (18)' c'i,iii2c'ioi,i3 == ai,i,gioiicti,i2i3gi,iidiiaioiimictioiii3.

   By (19), we get

   c'ioiii2cti,i,i3 == aieiigioiiai,i,gi,ii-ici,iii,aioi2miai,i2gioi, ai2i3gioi,t'icioi2i3aieisdi,

   aioii{lvoiiciiii2i3gtoii'diiaioii-'ictioiii3 = aieiigieiiaiii2glii2, ai2i3giii2"iciii2i3aiii3r'igteii'i

   aioi,'-iai,i,gi,iiaiii3gioi,"i ci,iii,aioi3-i.

Hence (18)' follows from

  (18)" gi,i,Hici,iii2ioi2ai2i3gi,i2-ici,i2i3 = giii2ai2isgiii2hdiciii2iagieii-icioiiig3.

But since gio-icioi,i, == ciii,i,migi,i,-ici,iii2ci,i,i, by (18), (18)" holds if and only if the

equality (20) holds. Hence we have Lemma.

   Note. If c=6e, (20) always holds. In fact, we get(gieii-icioiii2)(gioi2ai2isgiei2-i)

= (gi1i2ai2i3gi1i2m1) (gi,i1t'1cioi1i2) = gi1i2ai,i3gioi2m1･

   6. Defimitiem 21. TiVe set -

            Z2(u, Gt) = [c E C2(U, Gt) 1 6ec == e for some 6 E C'c(U, Gd)].

            Z2(U, Gd)=£c E!i C2(U, Gd)16ec =e for some eEC`c(U, Gd)}.

   Note k. The definitions of Z2(U, Gt) and Z2(U, Gd) depend on the domain of

e. From this point of view, the notations Z2(U, Gt)Gd and Z2(U, Gd)Gd are more

exact. But we do not use these notations.

   Nete 2. In [8], we only assume the domain of e to be Ci.(U, Gd). But the

research on 3-dimensional theory suggests above definitions are more convenient.

   DefiRition 22. c, c' Eii Z2(U, Gt) (resp. Z2(U, Gd)) are said to be cohomologous

and denoted in symbols c--c' if there exists aEiiC'(U, Gt) (resP. C'(U, Gd)) such that

e'={aiJ-giBEC',(U, Gd) satisfies (20) for c and c' is eopressed by (19). Here fie c ==e

and 6={giJ'} ･

   Lenvtttia S. (i) c--c' is ara equivalence relation.

   (ii) ,(f c--c' and h(a)EC'(n, Gt), then h(c)･vh(c').

   Proof. By Lemma 4, if c"vc' and cEii Z2(U, Gt), c' belongs to Z2(u, Gt). By

definition, c-vc. If c-vc', we get

   cieiii2 = gioi,aiii2-igi,iimiaioiimic'iei,i,aioi2

                        ==:ai"ii"i(ai,i,gi,ii)aiii2mi(aieiigiei,)mc'ioiii2(aiei2pi)-i,
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   ((aioiigioii)m"ictioiri2) ((aioi2gioi2)ai2i3-i(aiei2sei2)di)

                       =: aiii2(gioiidiici,iii2giei2) <ai2i3"igiei2-i)aiei2-i,

   ((aiti2giii2)ai2i3"'i(aiii2giti2)-i) ((aioiigvoii)-ic'ieiii2)

                        =aiii2(giii2ai2isdigiii2-i)(gioii-'icieiti2)aioi2)aioi2-!.

Hence we have c'･vc. If ctvc' and c'evc", we set

   c"ieiii2mbioii(aioiigloii)biii2(aieiigleii)-'ictioiii2bioi2-i.

Then we get

   C"ioiii2 =bieii(aioiigieii)biii2(aioiigieii)""iaieiigieiim'icieiii2 aioi2m"ibioi2rii

                         ==:(bi,i,ai,i!)gi,ii(bi,i,ai,i,)gi,i,-ici,i,i, (bi,i,ai,i2)-'i.

On the other hand, since

   (gtioii-ictioi,i2) (g'ioi2bi2is gtioi2-i)=(g'iii2bi2i3gtiii2pi) (g'ioiictioi!i2), g'ii=:aii-gtj-,

we get

   ai,i2gioi,-tci,i,i2gi,i2bi,i,gi,i2dlai,i,ml = ai,i,gr,i,bi2i,gili,-lgi,i,"lci,i,i,ai,i,-1.

Hence we have

   (gi,ii-ici,i,i,) (gi,i2bi2i3gioix'=i) = (gi,i,bi2i,gi,i,-i) (gi,i,"ici,iii,).

Therefore we obtain

   (gi,i,pici,i,i,) (gt,i,bi,i,ai,i,gi,i,Hi)

                         =:(goil"lcioili2) (gioi2bi2i3gioi2-1) (gioi2ai2i3gloi2dl)

                        =:(giii2bi2i3giii2p'i)(gioiimicieiii2) (gv,iiai2i3gioi2"i)

                         =gi,i,bi,i,gi,i2-1) (gi,i,ai,i,gi,i,-'1) (gi,ilm"lci,i,i,)

                         =(gi,i,bi2i,gi,i,dii) (gi,i,ci,iii,)･

Hence c"r-vc, Therefore we have (D. (ii) follows from the following calculation:

   (hi,aioi,hi,"i) (hi,gi,i,hi,m"i) (hi,ai,i,hiipti) (hi,ci,i,i,hi,-i). (hi,aioi2Hihi,mi)

                         =hio(ai,iigieiiaiii2gvoii"icioiii,ai,i2Hi)hie"i

   ((hi,gv,i,hi,-i) (hi,ci,i,i,hi,-')) ((hi,gi,i,hi,-i) (hi,ai,i,hi,-i)･ (hi,gi,i,hi,-i))

                         =hi,((gveiidiicioiii2) (tgeoi,ai2i3gioi,-i))hie-i,

   ((hi,gi,i2hi,-') (hi,ai,i,h!2-') (hi,gi,i,hi,rii)) ((hi,gi,i,hi,Hi). (hi,ci,i,i,hi,"i))

             ' =hii((gi,i2ai,i3gi,i,"i) (gi,i,"ici,i,i,))hi,-i.

   Definitiom 23. VPre denote H2(U, Gt) (resp. H2(U, Gd)) the quotient set of Z2(u,

Gt) (resP. Z2(U, Gd)) bN the relation of being cohomolbgous and adnzissible actions of

the elements of CO(U, Gd).

   Let %={Vjlj' Ei S} be a refinement of U--{UiliEX} and let T, T':J>X the maps

suchthat Vi( Ur(i)AUr,(J'). We denote T(1')==i and r'(7')=i'. We set
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            aieii = CioieiiitCieiiiit-i.

Then we get

   aioiigioiiai,i2gi,iimicioiii2aiei2""i

                   = CioiotiiiCieiiiit-igieii Ciiiiti2iCiii2i2tdigioiiHiCioiii2Cioi2i2tCioioii2i-i.

Since cEZ2(U, G(t) orEZ2(U, Gd), we have

   gioilMICioili2=cili2i21giailriICioili2tCiei2i2t, Cioilti2t=CioililtdlgioilCililti2tgieilPCie!si21･

Hence we have

   CieieiiitCieiiiit-1groitCiiiiti2tCiiiti2i-1gyeiiMCiohi2Cioi2itt Cioioti2rdl

                   =CieiotiitCieiiiitdigioiiCiiiiti2'gioiiMICioiii2t Cioioii2tOt

                   =CieiotiitCieiiti2tCieioti2t-'i.

There fore we have ' '
            aieiigioiiaiii2gioii'"ici,iii2aioi2-i=gioiotciotiiii2tgieiot-'i.

Since g=£gii,} is c-admissible by Lemma 3 (ii)', this shows r*(c) and rt"(c) give the

same element in H2(M, Gt) (or H2(M, Gd)).

   Defimitiom 24. VVe set lim £H2(U, Gt)IT =H2(M, Gt)} andlim{H2(U, Gd)lf ==H2

(M, Gd)}.

   Note. These cohomology sets are not defined absolutely from the sheaves Gt

and Gd. Therefore the notations H2(M, Gt)Gd and H2(M, Gd)Gd are more exact. But

we do not use these notations.

   7. Theerem 2. There are mcips 6=6o:HO(M, .4e")-->H'(M, Gt) and6=6i : H'(M,

.ig"i)-H2(M, Gt) and the following sequence is exact.

 (2i) o-He(M, Gt)LHo(M, Gd)-!21"ll+He(M; xi)iHt(M, Gt)4'

            -Hi(M, G,)L" Hi(M, "i)--I7-H2(M; G,)L' H2(M; G,).

   Proof. The exactness of the first six terms of (21) has been known (cf. [3],

[15], [21]). tio is defined by

(22)o 6o(e) == Chuhv-i}, huriidhu=:olU, oEi! Ho(M, xi).

We define 6i by

(22)i tii(<tuii･>) = {gi,-g)hgih"'}, tuii =: gi,･`"idgii.

By Proposition 1, (i) and Lemma 3, (iv), ciik= gi,'gikgile-i belongs to Z2(U, Gt). If

toil' == p(gii) =p(gi/), set gij' ==ail'gii, ail' is a constant map. We set ciJ･k' =:gi/gki'.

Then we have

                   Cieili2t = aieilgioilaili2gioilh-lcioili2aioi:pl.
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Since (20) holds by the note at the end of Lemma 4, £cis'h'] is cohomologous to

{cijle]. Hence tii is well defined by Lemrna 5, (ii). Then we have leeriSi= £tuii･[toii =:

p(gij'), giigikghi=e}=:image p". If i"(c) vanishes, we have

           cii･le =aii･gitiaikgiiiaiko"i =bii･gilegllejgiigki-ibile-i, bii･ =aij･gii.

Hence feer i* is contained in image 6. Since image 6 is contained in leer i' by defi-

nition, we have Theorem 2.

   Note. If M is a complex manifold, we can define the cohomology sets H2(M,

Gt)tu= ff2(M, Gt)G. and H2(A4, Gw)==H2(M, Gto)G. by the same way. Then we get

the exact sequence

    o-HO(M, Gt)-HO(M, G.)--HO(M, Xi.)-Hi(M, Gt)-Hi(M, G.)-----"-

    -H'(M, .di'ito)-H2(M, Gt)o-H2(M, Gw)ca-

Here, H2(M; ,Gt)to rnay differ from H2(M; Gt).

   If n==1, that is G==C", M' becomes di', the sheaf of germs of closed 1-forms

over M and we have H'(M, .M")= H2(M, C), H'(M, Gd)==:H2(M, Z) and H2(M, Gd)

=H3(M; Z). The exact sequence (21) is rewritten as the following exact sequence

   O-HO(M, C*)-HO(M, C*d)-HO(M, ¢i)-Hi(M, C*)-H2(M, Z)-
   -H2(A4, C) =tP' H2(1va; C*)-H3(M, Z).

This comes from the commutativity of the following diagram of sheaves

           ooo           ili
      O -C*t-C*d-Mi == ¢i- O                         di           le`op ie`tp

      O----Ct ----. Cd - 0i --- O
           111
      o-z-z-o           li

           oo
The corresponding diagramfor GL(n, C), nlll;2, takes the following form

           o o o
           lii
      O-Gt ------ Gd ----Mi - O
           le`.                  ie`tp de 1

      O-go,d- gd - .ditl , o
           ili '
      O-N d-N d-O             tt           li

           oe
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Here go,d and N ,d are defined as l<ernel sheaves of the maps de and exp. Detailed

definitions of this diagram and related cohomology sets are given in [9].

   8. We denote the natural map fromZOd(M, vdi"2)onto H2dR(M, g) by dR. Then

6c dR maps ZOd(M, M2) into H2(M, Gt). By Theorems 1, 2, we have

   Propositiom 2. e =[ei}EiZOd(M, X2) is realized as a curvature form ofa G-

bundle over M if and only if 6c dR(@) = O.

   Corollary. Let {MG, rc, M} be a Principal G-bundle over M and 0 a matrix

valaeed 1-form. Then eEZOd(M, X2) can be written as

  (23) T*(O) == dO+eAO,

if and only if 6e dR(e)==O. Here MG dopends on e.

   Proof. If (23) holds, e is realizecl as a curvature form. Hence we have the

necessity. If @ is a curvature form of e=[gii'} with the associated principal bundle

{MG, rt, M}, we have

            rr*(e)[it""i(Ui) =hi'"iOihi, rc*(gii) =hih,･'mi.

Since @ is a curvature form, we can set ei nd- dei'+0i'AOi'. Then we have e to set

            e1 ftdi(Ui) == hidi(oi' + dhihidi)hi.

   Note 1. Usual de Rham groups are the obstructions of global solvabilities of

the equations dp=¢, dego=1, 2,..., From this point of view, H' (M, X`) is the
obstruction of global solvability of the equation

            deo == e, @ = [ei}, o = coi}, oj -- &i(ei), ej = gii(ei)

where {gi,･} belongs to Ci,(U, Gd).

   Note 2. If dee=dee', set e'=:e+n, rp satifies the equation

  (24) drp+rpArp+[0, v]=O.

Local solutions of this equation and the relation between gauge transformations are

studied in [10] cf. [20].

           g3. Characteristic classes for the ele!nens of H'(M, fi).

                                                                 b
   9. Leivtxna 6. Let e=={ei} be an eiemen of ZOd(M, f2), Then tr(eA...Ae) is a

closed 2P-form on M and its cohomology class is determined by dR(e) for any p.

   Proof. Since ei=giii@igii･, we get tr(ej･A･--Aej)=:tr(gil･-'iOiA･･･Aeigis･)==tr(eiAi-･Aei).

Hence tr(eA･･･Ae) defines a global form on M. Since Oinv-deei, we have the Bianchi

identity de==[e, e]. Then, since

            tr(orAZLeA[o, e]AeAP･:･Ke)=:o,
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 we get

            d(tr(eA..,.e)) =Xtr(eA...eAdeAeA...Ae)=o.

                        r=tl

 Hence tr(eA.･･Ae) is closed, If p(gij) =ei-gii'eigii- =0/-gi]･mdiOi'giti, to set 0i'=0i+vi,

 we have

  (25) 0j=gijny-meigi,･,

  (2s), de(oir) = ei + dei + rpiAvi + [oi, rpi].

 Then, since tr (rpiAvi)=tr [0i, ,rpi] =::O, we get

            tr(de(oi')A,,,Ade(ei')) = tr((ei + d?i)A･･･A(0i + drpi)).

 By (25), to set ¢i,i=ei and ipi,..i=drpi, we have

            tr(g6j, EiA･･･¢i',sp)==tr(¢i,eiA･･･A{bi,ep), Eh == ±1.

 Then, since

                r-1
            tr(eiA･-AOiAdviAg6i,er+iA･･-AeSi,ep)

                r-1
            =d(tr(@iA-･AeiAg6i,er+iA･-Ag5i,ep)), r}l!1,

 tr(de(0i')A.?,Ade(ei')) is cohomologous to tr(eA{･Ae). Hence we have Lemma.

    Corollary. if eGZOd(M, X'2), the coofcients of det (E+(t/2rr,vi-1)e) are closed

 anp their de Rham classes are determined bpt c dr(e).

    Defimkiom 2S. Let <to> be an element of H'(M, Xi), e an element of Zed(M,

 x2) such that e dR(e)==<to>. Then we derine the P-th characteristic class cP(<tu>) of

 <tu> by

            cP(<tu>) = <gb>, the de Rham class of gp,

                      t                         e) == ll + g,t +･･･+ pptP +･･･+ g.tn.            det(X+
                   2rrV-1

    Similarly, we define the P-th Chern character of <to> by

            ch (<to>) =(V2iii)P pi! rt (eA2.Ae).

    Propesitiom 3. (i) cP(<to>) and chP(<to>) aredetermined by <to>.

    (ii) Let 6 be a G-bundle with the P-th Chern class cP(6) and the P-th Chern

character chP(6), i*:H2PM, Z)-H2P(M, C) the mmp induced from the in(clusion i:Z-

C. Then we have

  (26) cP(p'(6)) =: i'(eP(e)),
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  (26)' chP(p*(6)) == chPC6).

   (iii) I]le w={tui,} and each toi,t is an antihermitian matrix valued 1-form, cP(<ca>)

and chP(<to>) belong to H2P(M, R).

   Preof. (i) follows from Lemma 6 and its Corollary. (ii) follows from the theorem

of Chern ([12]) and the definition of the Chern character. If to satisfies the assu-

mption Of (iii), there exists an antihermitian matrix valued eGZed(M, X2) such

that edR(e)= <tu>. Then, since det (X+(t!2rcV-1)e) is a real form coefficients poly-

nomial, we have (iii).

   Corollary. eEZOd(M, X2) can not be reaheed as a curvature form ofa G-

bundle over M if cP(e) is not an integral class for some P.

   Note. For an element e of HO(M, X'), we have defined its characteristic class

PP(0)EH2P-i(M, C) by

            pP(o) == the de Rham class of (Si;t}I)P--"i)p tr (oAa?,-A'e),

([6], cf. [27]). The definitions of PP(0) and chP(e) are parallel. Moreover, PP(0)

comes from the P-th generator of H*(G, Z) and cP(e) comes from the P-th generator

of H*(BG, Z).

   eO. Exawaple 1. If 2 is a complex number, then we have

             de(ze) == RdeO + (22 - 2)0(NO,

Hence we have

                     Pb  (27)' tr(de(2e)A,,,Ade(RO) =zPtr(deoA.,.Adee).

Therefore, if det (I+(t/2rrV-1)dee)==E+pit+･･･+g.t", we have

                       t                           de (RO)) = X+,;lgoit+･･･+RPgoptP+･･･+2"go.t'i.  (27) det (K+

On the other hand, if g is a smooth G-valued function such that

  (28) (cig)g= g(dg),

and gR is defined, then

  (29) p(g2) == Rp(gi.

Hence if 6=[gii･]EH'(M, Gd) satisfies (28) for any gi,･ and for a fixed compiex

number 2, giJ･R is defined for each i, i we get

             p(gi!) == (ROj･) - gii-i(20i)gij･, ej' - giJ･diiOigii- = p(gii)･

Therefore, if each ei satisfies gij･dROigij･R=gii'eigib 2(D==Cp(gii･R)] belongs to Z'(M,

"'). Here ro =Cp(gi,･)}. Then by (27), we have
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             cP(<Res>) = RbcP(<to>),

    Examaple 2. Let M be the m-dimensional complex projective space and {pti,"

., pt.} an arbitrary set of m complex numbers. We set

                    2i( flli,i - fii,i )

                       ･- o

             (oii =: ''' '
                        o-･
                          Rm({ l)lim fi3ii)

             m            ll (1+Rit) :1+ptit+･･･+pt.tM.
             i=1

Then to= Ctoi]'} defines an element <w> of Hi(M, "i) such that

             cP(<(D>) = ApeP, eP is the generator of H2P(M) Z).

   Note. Let U=:U(n) be the unitary group, lj its Lie algebra. Then the sequence

O-Ut.Ud..ifbi-O is exact. Here Xbi is the sheaf of germs of b-valued integrable

connections. By this sequence, we get the following cohomology exact sequence

         O-HO(M, Ut)-HO(M, Ud)-HO(M, fb,)--.Hi(M, Ut)-
         -Hi(M, Ud)-Hi(M; Xb,)----･H2(N; Ut)-H2(M; Ud).

In this sequence, we know Hi(M, Gd)=Hi(M, Ud). But example 2 and Proposition

3, (iii) show Hi(M, X') differes from H'(M, "bi) in general. We also know Hi(M,

Gt) differs from H'(M, Ut). For example, denote ff the generator of rri(C*), the

representation x.= fl 2rr?vt-11 defines an element of Hi(C", GL(2, C)) which is

                LO 1-S ..
not in Hi(C", U(2)).

   Zl. If c=:ci,･k belongs to Z2(U, Gt) resp. to Z2(U, Gd)), det c =Cdet ciik} belong

to Z2(11, C") (resp. to Z2(U, C"d)). Since the cohomology class of det c is determined

by the cohomology class of e, we define

  (30) di(<c>)= <det c>.

By definition, d'(<c>)EH2(M, C*) (resp. H2(M, C*d)) and we have

  (31) emp"(ci(<tu>)) == di(6(<to>)).

   To treat higher dimensional chatacteristic classes for <c>, we set aioiii2 ==

(1/2rrV-1)log (cioiii2). Then a= {ai,i,i,] belongs to C2(U, g). a is not uniquely

deterrnined from c, But we can construct appropriate cohomology theory with
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coefficients in go,d and gd. To use this theory, if a satisfies

 (30) tr(iaU･･･U6a)EZ3P(U, Z),

We can define higher order characteristic classes dP(<c)GH3P-i(M, C") and eP(c)E

HH3P(M, Z), cEH2(M, Gd). For details, see [9].

   Note. Researches on 3--dimensional theory suggest the possibility of the exis-

tence of a matrix valued 3-form (defined relative to gauge and potential) ¢ = ¢(c)

such that

                                            p
            i*(eP(c))==the de Rham class of tr(¢A･･･A¢)･

If this is true, e2P(c) is a torsion ciass for any P, although it exists as an non zero

class.

   ti2. Let Y be a closed subset of M. Then we have the following comrnutative

diagram with exact lines

            Hi(M, G,) !21"ll+ Hi(M, "i) i H2(M, G,)

              iYl p* iYl 6 iYl
            Hi(M-Y,Gd)-Hi(M-Y, fi) sH2(M-Y, Gi).

Hence we have

   Lemaeruta 7. Let <to>be an element of Hi(M, X'). Then iy(<bl>) is in p"-image

 ifand only if iyfi(<to>) is equal to O.

   Corollary. Let eEZed(M, X2). On the tatal space of some G-bundle over M-

Y, e is written

  (23y r*(e) =de +eAe,

if ix.r6edR(e) == O.

   We write r the codimension of Y and assume r22. We also assume M and Y

are cooriented and Y is a smooth submanifold (in the case M is a smooth manifold)

or a real analytic subvariety in the case M is a real analytic manifold). Then we

have the following commutative diagram with exact lines and columns

                                     ,                           Hp(M, z) -el':-Hp(M-z z)

                       6y li* iy li* res

           ･･･-RP-r(Y)-HP(M, C)-HP(M-Y, C)-RP-r,i(Y).
                             Iesp' i. Ie`ep"

                                 C*)nyHP(M-X C*)                           HP(M,

Here RP(Y)==HP(Y, C) if Y is topologically non-singular ([4]). By this diagram, we

obtain
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   LerrtywEa 8. Letcbe an element of HP(M, C). Then iy(c) is in i*-image if and

only if iye tip"(c) == O, and ifc is in 6rimage, iyemp"(c) == O.

   By Lemma 8, we have
   PregeDskion 4. Let <to> be an element of H'(Ml ai) such that iy(<to>) is in p"-

image. Then we have -
  (33) iye`tp*(cP(<to>)) == O, P }ll l.

(33) holds if we have

  (34) cP(<to>) == 6y(<ctp>), <ap> G l?2Pdr(Y).

   Corellary. ,ILf ff"(e)==dee on (M-Y)G, the total space of some Principal bundle

over M-X then

  (33)' iyemp*(cP(e)) = O, Plll l.

(33)' holds if we have

  (34)' cP(e) = 6y(<ap>), <ap> e R2Pmr(Y).

   Note. we denote Gd [Y] and a' [Y] the sheaves of germs of smooth G-

valued functions and integrable connections over M with singularities on Y (cf. [4)].

Then we have the following exact sequences of sheaves

  (3s) O-G,-!2't--Gd [Y]-p(Gd [Y])-O,

            O-p(Gd [Y])-Xi [Y]-ResG,y-O.

The stalk ResG,y,x of ResG,y at x given by

            ResG,y,x= lim [6(HO(U(x)- Y; ai))].

Hence write rci(U- Y)x the local fundamental group of U-Yat x, ResG,y,x is

contained in Hom (rri(U- Y)x,G) and therefore ResG,y ::= O if rlll3.

   By (35), we have the following commutative diagram with exact Iines

     Hi(M, Gd) -!2I*:-' H'(M,vdi") =?-"" H2(M, Gt)

         X>KeY iY p* X,,`Y `Y X,iY
     iyl..H'(M, Gd[,Y,1) r Hi(M･ p(G,d [Y])) t7H2(M･ Gt)･

                                                   Gt)                                xi) -H2(M-Y,     HS(M-Y, Gd)                    -Hi(M- Y,

If Y is smooth and r is even, H'(M, Gd [Y])==H'(M-Y, Gd). In this case, cy(<di>)

is not in p"-image if <to> is not in p"-image although iy(<to>) is in p"-image.

Therefore, if the equivaience of iy(<to>) and an element in p*-image is given by

Chi3, {hi} is not defined using open covering of M-Y obtained to restrict an open

covering of M to M-Y. It also suggests H'(M, X' [Y]) may differ from Hi(M-



                    Curvature forms with singularities 163

Y, xi).

                        g4. TEie general case

   Z3. We fix a differential operator D : Coo(M, E)-Cco(M, F), where E, F are

complex vector bundles over M. We take a G-vector space H. Then Di(g)IH : Cco

(Ui, E<g>H)-,Cco(Ui, F(g)H) is a differential operator on Ui. Here D==[Di] and E

and I7 are both trivial on each Ui. By assumption, a smooth G-valued function g

on Ui acts on Coo(Ui, E(E9H) and on Coo(Ui, F(E9ff). We set

                                        '           pD(g) =r g-i(Di(g)IH)g - Di (g) IH.

If pD(g) =O, g is called a c(D)-class function ([6], [8]). The sheaf of germs of c(D)

-class G-valued functions is denoted by Gc(D). pD(Gd) is denoted by M'D (in [6],

this sheaf was denoted by LG,D). By definitions, we have the following exact

sequence

                     iD                          - MID - O. (1). O.G,(.)- Gd
   By the definition of pDt we have

           pD(gh) = h-'pD(g)h + pD(g), pD(e) == O, e = IH.

Hence we have

           pD(gi,･glikgih"'i) == gik(pD(glik) - pD(gik) + glik-ipD(gii･)gik)gi le-i.

By this formula, we can define the cohomology sets Hi(M; f'D) and H2(M, Gc(D))

as follows;

   DefinitioTis alD and 21D. We set

        Z'(U, f'D)=={£toi,-}ECi(11, XiD)]6eca=O, w=pD(6), gEiCia(U, Gd)},

        Z2(U, G,(D))=tceC2(U, G,(D))l6ec=O, for some 6EC',(D)(U, Gd)}.

Here Ci,(D)(U, Gd) is {8eCi.(U, Gd)l(tig)i,'le is a c(D)-class ft{ction for anyi, i h}.

   Definitions 12D and 22D. The cohomologous relations on Z`(U, "`D) and on

Z2(g, G,(D)) are deijined as follows:

 (15)D [(tiii''}--[a)ii'3 if toi/ == hj'(a,ii' - pD(hi') + gii'pD(hi)gij･)hii,

                               £hi} e CO(u, Gd), tiikpD(hi)ti]･le = pD(hi),

and

  (19)D [ci]'k}--Chicij･lehi-i}, {hi}ECO(U, Gd),

           {ci]'h}-vCaii'gij･aj･kgii'cii･feaile"'}, {aii･] Eii Ci(U, G,(D)).

Here {aiJ'gii'} belongs to C',(D)(U, Gd) and satishes the following condition

           (gi,i,-ici,i,i,) (gi,i,ai,i,gi,i,di) = (gi,i,ai,i,gi,i,-i) (gioi,di ci,i,i,).
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   Hi(M, M'D) and H2 M, Gc(D)) are defined by these relations. Then we obtain

   Theorem 2D. The following sequence is exact

 (2i)D o-Ho(M, G,(D))LHo(M, Gd)U91'l,Ho(M, "iD)-Hi(M, G,(.))L'

                     * i*           Hi(M, Gd)-e2'l;Hi(M, Mi.) ,H2(M, G,(.))-H2(M, Gd).

   ExaEwiple. If D=O, Gc(D,) is the sheaf of germs of holomorphic G-valued

fuctions on M and fD is the sheaf of germs of matrix valued (O, 1)-forms e such

that eO+eAe=O ([18]). If G=C*, (21)D reduces to

        O-HO(M, C*.)-HO(M, C*d)-HO(M, ¢O･i)-Hi(M, C*.)-
        -Hi(M, C*d)-Hi(M,diO,i)-H2(M, C*.)-H2(M, C*d).

Here die't is the sheaf of germs of O-closed (O, 1)-forms. If M is a compact Kaehler

manifold, this sequence is rewritten to

        O-HO(M, C*.)-HO(M, C*d)----HO(M, ipO,i)-Hi(M, C*.)-
                            e tp"
        -H2(M, Z)-HO,2(M, C) ,H2(M, C*.)---.H3(M, Z).

On the other hand, if M is a Stein manifold, i':Hi(M, Gto)-H'(M, Gd) is a dijec-

tion. Hence the sequence O.Hi(M, f'b)-H2(M, Gto)-H2(M, Gd) is exact.

   14. In this nO, we assume E=F, and the principal symbol a(D) of D does

not vanish on any open set of M. We consider a smooth G-valued function g on

U to be a linear operator acting on COe(U, E(g)H). For differential operators L,

Li, L2:Cco(U, E(g)H).Coo(U, E(E9H), we set

           Lg = g- 'Lg, [Li, L21 = LiL2 + L2Li･

   Definitiom 26, Let U be an open set of M and L:Coo(U, E(g)H).Cco(U, EopH)

a dij72?rential operator of order k-1, le=ord D, on U. Then we dofne a dijXlarential

operator De(L):Cco(U, E(g)H)-Cco(U, E(g)H) by

 (36) De(L)=(DQI.+L)2-D2 op 1.=L2+[Doplu, L].

   De(L) was denoted by pD(L) in [6]. The following Lemma is also given in [6].

   Lernma 9. De has following Properties

 (37, i) De(cL) == cDe(L) + (c2 - c)L2, c is a constant,

 (37, ii) De(Li + L2) = De(Li) + De(L,) + [Li, L2],

 (37, ii)t De(L, - L2) = De(Li) - De(L2J - [Li - L,, L2],

 (37, iii) De(Lg) = De(L)g - [p.(g), Lg],

 (37, iv) De(pDg) == pD2(g)-
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   Proof. (37, i) and C37, ii) follow from Definition, (37, ii)' follows from (37, i)

and (37, ii). Since we have

            De(Lg) = (D(g)IH)Lg + Lg(D (g) 1.) + (L2)g

                 == ((D(g)IH)Lg + Lg(D(E91u) + L2)2 + [D(E91H - (D(g>IH)g, Lg],

we get (37, iii). (37, iv) foollows from Definition.

   Corollary X. VVe have

  (3s) De(Lg + pD(g)) = De(L)g + pD2(g).

   Proof. By (37, ii) and (37, iv), we get

            De(Lg+pD(g)) == De(Lg) + pD2(g) + [pD(g), Lg].

Hence we have (38) by (37, iii).

   Corollary 2, ILIC pD(g) is L2-Lig, De(L2) is equal to De(Li)g+pD2(g). .l!lspecially,

if D2=O, De(L2) is equal to De(Li)g.

   Proof, Set L2=Lig+pD(g) and apply (38), we have Corollary.

   Note. The reason of notational inhomogenity of pD and De was exposed in nOl.

For functions, De(f) is defined by pD(ef) (cf. [8]). We also note if f is a g-valued

function, we say say f to be a c(D)-class function if f<D (El) IH) ==: (D ([9 IH)f(cf [6],

[8]).

   The next Lemma generalizes gauge transformation

   Lerrirna 10. Let gbe a smooth G-valued fttnction on U and L:Coo(U, E(g)ff)

-Coo(U, E(!DH) a doferential QPerator. We set

 (39) gD(L) = Lg-' + pD(g-i) == g(L - pD(g))g"i.

Then gD is a G-action and we have

 (40) De(gD(L)) = gD2(De(LJ).

   Proof. Since eD(L) == L, to show gD to be a G-action, we need only to show

gD(hD(L)) = (gh)D(L). But this follows from g(hLh-'-hpD(h)h-i)g-'-gleoD(g)g-' =(gii)L

(,gh>-'-gheD<h) (gh)-'-,gloD(g)g-':=(gh)LC,g;h)-i-,ghpD(gh) (gh)"'. Since gD is a G-

action, (40) follows from (38).

   We set gS-op'H the sheaf of germs of differentiai operators L : Cco(U, E(29 H) -+

Coo(U, E(E9H) with the order at most le-1. By definition, X'D is a subsheaf of

gk-x'H. De induces a sheaf map (also denoted by De) on gSboiH. Then X'D2 is a

subsheaf of De(E2Tk-oo'H). We set MiD# =(De)-'(.di"D2), By (37, iv), fiD is asubsheaf

of "iD#. If D2==O, XiD# is the kernel sheaf oe De. By the actions gb and gD2'

(gk-opiH). and De eleE'ed' H) are the Gd-sheaves and De is an equivariant map by

Lemma 10. Since fiD2 is a Gd-subsheaf of De (enkmoo'H), "iD# is a Gd-subsheaf of



166 AKIRA ASADA
gk'xNiH and XiD is a Gd-subsheaf of X`DS.

   Defimitieza 27. The quotient sheaves of f'D-, gkmx'H and De (eSpxiH) by Gd-

actions are denoted by MiD#, gk-@iH, and a2D.

   By Definitions, De induces the sheaf map D" : eS"Q"H -- a2D and the following

sequences are exact

 (2)D o-xiD#-gg-duL' f2D-o,

 (41), O-XiD---aiD"-XiDij-O,

  (41), O-f!D2-De(gig-xiH)-f2D-O.

   Note. If D2==O, f'D2 is the O- sheaL But X2D may be different from De

(9SHesH) since the Gd-action on De (gS-&'H) may not be trivial unless n =1. But

the following sequence is exact if D2=O.

                              De  (2)D' O- "iD#-9S-opiH. De (gS-du)-O.
           '
   15. If LE HO(M, (gS-@`H), Z has a resentative {Li3 E COU, (tzer S-xiH) such that

Lj--gii,D(Li), Cgii}EiiC'(n, Gd). For e ={gij}, we set 6e,D(L)ii'=Lj-g)i,D(Li).

   Definition 28. Let g=£gi,･} be in Ci.(U, Gd). Then we set

   HOdM, (eS'xiH)=[LEHO(M, gS-x'iH)]L=Li, 6e,DL==O and Li'iJ'k==Li for some 6}

   De induces a map from HO(M, ek-x'H) into HO(M, X2D), We set

 (42) HOD(M, x2D)=De(HOd(M, .Ezik'&'iH)).

   F]rheorewa ZD. There is a suijection dRD:HODCM, X2D).H'(M, X'D).

   Proof. If eGHOD(M) X2D), e is represented by CDe(Li}, £Li3EHed(M; gkE-afH)

Hence there exists £gii･}ECia(U, Gd) such that to set tuii'= Lj-Ligji=rpDgii, we get

tujk=toik+toiJ'gjk==O. That is, £tois'} defines an element of Hi(M, "iD). If £De(Li')}

is another representative of e, we have Li'==hi,D(Li). Hence £toii'} giues the same

element of H'(M, f'D) Therefore we can define the map dRD : HOD(M, X2D)--H'

(M, aiD). If {gii･}Ei!C'.(U, Gd) and [toii･}=={pD(gi]･)} is in Zi(U, XiD), by the same

calculation as in the proof of Proposition 1, we get tokigiJ'gjkgki=calei. Hence we

have

           oij･ == Lj - LigiJ', Li = = ele tufei.

                              UknUt7Ap

Therefore {Li} represents an element of HOd(M, gk"esH) and we have dR(CLi}) =

<to>. Hence we have Theorem.
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   Note k. If 6=[gii'} is a G-bundle, then above decomposition of tui,･ gives a

connection of D with respect to g(cf. [1], [2], [5], [6]).

   Note 2. If D=:O, denote gi,O and gO,i the sheaves of germs of smooth matrix

valued (1, O)-and (O, 1)-type forms, we have the following commutative diagram

with exact lines and columns

                   ooo                   1 1 be 1
            O. XIE - gO,1 ----,ke M2ss O
              rro,i i rO,i i O'ilte i

            O - Mi -- gi - f2- o
            o -ifl i,o..ai.!gi,od-' .i2i2 - o

                   iii
                   ooo
Hence <to>GH'(M, "i) is in i"-image if and only if there exists eEZOd(M, X2)

such thatc clR(e)=<to> and rcO,2@==O (cf. [18]).

   16. We assume C,(D) admits the following resolution (cf. [6])

                      i dD dD
            OeCc(D)- Cd-Cl,D-C2,D-.......

We define the map 7':fiD-f'dD by 1' (pD(g)) = pdD(g). Then 1' is abijection and

therefore induces a bijection j*:Hi(M, "`D).H'(M, .di'idD). By the definition of

XidD, e=={ei}EiZOd(U, M2dD) is regarded to be eieHO(Ui, C2,DXg). Hence we

                p
may consider tr(eA,･･Ae) to be a dD-closed 2P-form on M. The dD-cohomology class

       p
of tr(eA･i･Ae) is determined by edRdD(e)EiHi(M, aidD). Since dRD is onto, we can

 define the P-th D-Chern class cPD(<to>) and the P-th D-Chern character chPD(<to>)

by

                                                               '
            cPD(<ca>) = the class of cPD E H2P(M, Cc(D)),

        chp.(<ca>) = the class of ("/i.1 )P pl! tr (eAe,,Ae)GH2p(M, c,(.)).

Here, we set det (g +(2r/A/- 1)) =g+ciDt +･･･+ cPDtP +･･･+ c"Dtn. Then, denoting

iD:Z-Cc(D) the inclusion, we have

 (26)D cPD(pD*(6)) = iD*(CP(e)),

  (26)'D chP.(pD*(e)) = iD*(chP(6)).

In [6], the right hand side of (26)D was called the P-th c(D)-characteristic class of

e G Hi(M, Gd)i

                           r
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   Example. If M is a compact Kaehler manifold and D==O, cPs(<w>) is a (O, 2P)

-type class. If <(v>=toD'(6), cP5(<ua>) is the (O, 2P)-type part of cP(6), theP-thChern

class of e･

   By definition and (26)Dt we have

   Propositiom 3D. Let <to> be an element of H'(M, /liD). Then <w> can not be

in pD"-image if cPD(<te>) is not an integral class for some p.
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