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Introduction

This is the detailed exposition of [7]. The outline of the paper is as follows:
In §1, we define the 2-dimensional non-abelian de Rham set H! (M, .#%). Here M
is a smooth manifold and .#! is the sheaf of germs of smooth matrix valued 1-
forms @ such that d6+60,6=0. A bijection between H! (M, .#*) and a set of special
classes of matrix valued 2-forms on M are also defined. In a sense, these, 2-forms
can be regarded as curvature forms with singularities (singular gauge fields) (cf.
[117, [17], [23], [24], [257]). Since we have obtained 2-dimensional non-abelian
Poincaré lemma (local integration theorem of the eguation d0 + 64 6 =6, [107), the
results of this section will be improved in future. In §2, we define the cohomology
sets H? (M, Gy} and H? (M, G,), G=GL (n, C). Here G; and G, are sheaves of
germs of constant and smmooth G-valued functions on M, respectively. Then we
show the exactness of the following sequence

. y R
0—HM, Gi-"oHAM, Go—H0 (M, )M, Gi—
o P P+
—HYM, Gg)—HM, #)y—H M, G)—HM, Gg).

This sequence is derived form the exact sequence of sheaves

i
0 — Gy—msGg ~a'——0),

and the exactness of the first 6-terms of the above sequence are known and used
by several authors ([37], [15], [217, [227], [261). But the definitions and.exactness
of last 3-terms seem to be new. We note that our definition of H? (M, G;) is
different from former definitions ([13], [16], [197]). In fact, in our definition, H?
(M, G is not absolutely determined by the sheaf G;. Its definition depends on the
above sheaf exact sequence. This is the reason why we have the cohomology exact
sequence (cf. [147]). In §3, we define the characteristic classes of the elements of
HYM, .#"). These are non-integral generalisation of the Chern classes (cf. [11],
(237, [24], [25]). The characteristic classes of the elements of H? (M, G;) and H?
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(M, G) are also considered. Although there still remain many problems, we had
some progress for the definition of the characteristic classes of the elements of H?
(M, G;) and H{M, Gg) ([9]). The results of §§1-3 are constructed by the differential
operator d and the group G=GL(n, C) and G can be replaced by U(x) or SU(®). In
§4, we give analogous theory replacing d by D, an arbitrary differential operator
over M. It is a refinement of the appendix of [6] (cf. [1], [2], [5], [8].

§1. Non-abelian de Rham theory of dimension 2

1. Let M be a connected paracompact smooth manifold. On M, we consider

the following sheaves.

G; : the sheaf of gevms of constant G-valued functions.

Gy : the sheaf of germs of smooth G-valued functions.

8l : the sheaf of germs of complex (n, n)-matrix valued 1-forms.
AL the subsheaf of 8! consisting of forms 6 such that d6-+0,0=0.
A2 the image sheaf of §' by the map d® defined by dpo=dp+eone.

Using 2-dimensional non-abelian Poincaré lemma, we can give an intrinsic
definition of .#2. But in this paper, we use thisold definition.

Note 1. If G is a Lie group with the Lie algebra ¢ such that the exponential
map is onto. Then we can define the similar sheaves for G-valued functions and
g-valued forms.

Note 2. We denote Go, .#'s, elc., the corresponding sheaves for holomorphic
maps. The similar notations are used for other categories.

Defilnition 1. We define the differential operators p and d° respectively by

plg)=g"'dg, d°p = dp + prp.

The induced maps of p and d¢ on the sheaves G4 and 6! are also denoted by p

and d* respectively.
Note. p is defined for Lie group valued functions, while d¢ is defined for Lie
algebra valued forms. This is the reason of the inhomogenity of notations. For Lie

algebra valued functions, d¢ is defined by d®f= plef)=d f—i—}:,;o:l ((ad Fy*df)/m+1)1
(C81, [9D).

By definitions, we have the following exact sequence of sheaves.

(1) 0— Gt —— Gy ~ 2t —0,
i de
2 0——r 't ——G ——r A ——0.

The O-dimensional cohomology sets for these sheaves and 1-dimensional coho-
mology sets for G; and G, are known. But we need other 0-dimensional cohom-
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ology sets for .#!, 4! and .#* based on the action of gauge transformations. For
these purposes, we take a locally finite open covering 1= {U;} of M. We write ¢,
cij, etc., the sections on U;, U;nUj, elc.,

Definition 2. Let h={h;} be an element of C° (M. G,). Then we define the
actions of h on C° (1, 84 and on C° (1, Z*% by

(3) o) = hil0; — h;~'dhihi™t, 6= {8:;} €Cu, @Y,
3y WO)=hOph;~t, O=(B};=CU, .#7).

By definitions, we have
Lemma 1. For the above actions, the followings hold

4) hi(heo0)) = (Ruh) (6), Rulhe (©)) = (ko) (O),

ed) =0, eB) =0, e =e¢;x), the identity valued function.
(5) de (n(6)) = h(des).
(6) mC, 21 =C1n, £

2. h={h;}eC (1, Gy also acts on (C! (1, Gy4) by the action

(7) HE) = higish;™, € ={gij}.
By definition, we have
(4) hi(ho(8)) = (hiko)(€), el§) = &.

Definition 3. We set
Ctl, Ga)={{gi} €C1, Ga)lgii=e, gij=gji™"}.
By definition, we have
6) KC'a(1, Gg)) = C'a(ll, Ga).

Definition 4. Let &= {gi;} be an element of C, Gg) and & be one of #*, ¢
or #% Then we define the map d: on C(1, &) by

(8) delc)ij=c;—gjici&ij, ¢=1{ci}.
By definition, if & is in Cl,(1, Gg), we get
(8) dele)i; = ¢; — gjicigii™* = ¢j — gifci).

Note. The image of d¢ is not in C{il, %) in general. For example, if § € C!,
(1, Gg), we have

9) d*(0s(0))i; = 0¢(d®0)ij + Lolgis) — 0el0)is, 8ij~'0:&i7].

Here [, ¢ means pa¢ — (—1)Pgnp, p = degp, q = degd.
Hereafter, we denote #;;r or dg;jr» the map gi;gir&ir™".
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Lemma 2. (i). If de(c)=0, then d¢p(c) is epual to O if and only if
(10) hijcihii = cj, € ={gij} and & = {hi;gij}.

(). If eeCl, (U, Gy) and delc) is equal fo O, then
(11) Lije~tcitiin = ci.

{ii). If O is in CU, #?) and §:0 =0, then dncey (MO) is equal to 0. If ¢ is
in CO, g% and 5¢(0) =0, then dpcey (W(O) is equal 1o O if and only if

(12) de(o(h)) = 0.
(iv). If € ={g:;}C (1, Gg) and 5¢(0) = 0, then 0¢(d6) is equal to O if and only
if
(13) Lolg:), 0;]1=0.

Proof. (i) and (ii) follow from the definitions. Since
Oncey (WO))ij = hjlde(B)ij)h;™",

we have the first assertion of (iii), The second assertion follows from dy¢ey (R(9));;=
hi(0s(6)ij — deph)ij)hi~*. Since gi;7'0:gi; = 0; if d¢(6)=0, we have (iv) by (9).
Note. If & satisfies (12) for £ eCl, (1, Gg), then we have

—plhi)nolhy) = —Lolgis), & 'olhi)&ii] — &is™ ' olhi)gijngii™ olhi)gij.
Hence we have
Lolgii), plhiY]= 0.
By this equality, if de(d®d) = dncey (h(6)) = 0, then we have dpey (d4h(0)) = 0.
Definition 5. We assume &= {g;;} €C.(1, Gu). Then we set
200, #N)={sCW, #Y)|6:0=0 for some & such that [plg:;), 0;]=0}.
241, 8)={9=CU, 6")|3:0=0 for some & such that [p(gij), 0;1=0}.

2011, #Y)={OcCU, #£7)|0:0=0 for some & such that p(€)=35¢(0),
O=d*0, and t;jr'6:tijr="0;}.

Definition 6. For 0Z%(0, #4 or Z°,(1, 8Y), we call heC\, G,)is an admi-
ssible action if
de(p(h)) = 0, 86 = 0.
Definition 7. For O€Z%,(1, #%, we call h is an admissible action if
360=0, plh;) = tijp~ plh)tijk-

Since we have
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p(hlhz) = P(hz) + hz_‘P(hth,
O¢(plhiha))ij = Beplha)ij + ha,i ™ Onacerolhaishes j,

these actions are well defined.

Definition 8. The limit sets of Z°(, .#Y), Z°,(1, 69 and Z°;(N, .#*%) with
respect to the vefinement of the covering \, are denoted by Z°4(M, .#Y), LM, 8%
and Z°4 M, _#7?) respectively.

By definitions 6, 7, admissible actions are defined on Z°%; (M, .#%), Z° (M, &Y
and Z%(M, _#?).

Definition 9. The quotient sets of Z°%4(M, .#%), Z°y(M, ¢) and Z°;(M, .#%) by
the admissible actions ave denoted H'4(M, .#%), H°% (M, 8') and Hy(M, .#%. They
called the O-dimensional cohomolgy sets.

By the definitions and Lemma 2, we have the following exact sequence

. -
0——Z0(M, A ——Z85 (M, 9)-sZM, .a2?).

By (5) and Lemma 2, d° also induces the map d¢:H (M, ¢)\—H’;(M, .#2).
3. Definition 10. Let & be .#' or 6! an E=C' N, Gy). Then we define the map
de on C, &) by

(14) delwijh = wir — oin + Grjwii&ir, &= {8}

Note. In general, d¢(C{(i1, .#") is not contained in C? (1, .#7").
By definition, d8¢(0¢6) is equal to 0 if and only if gx:0;gir=2%;g;i0:8:;8;r for any
i, 7, k. If £€e€C,(1, Gy), then

(14) delw)ijr = wjr — oir + ik~ ®ijgin.
Definition 11. Let & be in C',(1, Gy). Then we set
1, ") ={oe U, 2o =pg)) and dco =0 for some & ={gj}},
71, 81 ={w € C1, 8Y)|dew = 0 for some £}.

Definition 12. The elements w and o' of ZXW, #1) are said to be cohomologous
and denoted w~aw' if there exists h = heCW, Gg) such that

(15) dhitijehi™) =0 for any i, j, k, wij = olg:)),
¢ = {gij} €C, (10, Ggq) and d¢(w) = 0.
(16) wij' = hilo; — deplh)i)hi™.

Note. By (16), we have w;;' = p(h;gi;;7"). This o' satisfies der{0’) =0, where
¢ ={hgijhi't € Cla (U, Gy)

Definition 13. The elements @ and @ of Z'1, 8') are said to be cohomologous
and denoted w~w' if there exist h= {h;} = C11, Gg) and 0= 1{0;} eC, @') such that
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(15) Lijp 0tz =0;, Jor any i, j, k, de0=0, &={gi},
(16) wij' = hijwi; — 0¢(0) hyt.

Definition 14. H! (1, .2*) and H\U, 8Y) are defined to be the quotient sets of
Z, &%) and ZU, 6') by the cohomology relations.

Note. The sets of coboundaries are given by B'(ll, .#") ={w|w =d:0), 8 C°
1, #Y), o=p&} and B\, 8" ={olo=d:0), t;r 0= 0:}.

Note. If weCll, 2" satisfies wjz — wip+ gir gk = 0, ®;; = p(gij) for some
{g:}, then we have
(1) gir 'wi;jgix does wot depend on the choice of {g;;},
(i) @i =0 and w;j = —gjiw;igji™".
By (ii), we may assume o = p(f), €& Cl(1l, Gy).

Proposition 1. (1) Let &= {g;;} be in C'y (I, Gyu). Then pl&) belongs to ZX(\1, .#1)
if and only if tijr = (0¢)ijr is a constant map for any i, j, k.

(i) Z}n, 8Y) is equal to B(1, gY.

Proof. Since we have

tije  d(tin) = &in(gik™'0ijgik + ok — @ir)gir™",
d(t:jx) is equal to 0 if @€Zi(ll, #'). On the other hand, if d{t;;z) is equal to 0, w
= p(€) satisfies d¢w = 0. Hence we have (i).
Since we have gjr™'8i; ' wrigiigik = &jx " ki — wij)8ik = —wjpHwij— wip)=—wip=
gir twpigip if Sew =0, we get f;jp  oritijr = or; if d¢w = 0. Hence to take a smooth
partition of unity {e;} subordinate to U,

bi= 2 erori

UeNU 559

satisfies (15)". Then, since

0;—gii 0:igii= 2 er(wrj— 8ij "' ®rigij) = 0ij,
UxNUNU 34

o is equal to d¢(6). Therefore we obtain (ii).

Covollary 1. For elements of Z' 1, .#Y), (15)" follows from (15).

Proof. Since #;z is a constant, we get ;" Nd(hitiiphi™ Whi=phi)tijr — tijrplh) =
0. Hence wehave Corollary,

Corollary 2. H'(Y, 9') is equal to {0}.

Note. Corollary 2 does not hold in another category. For example, H'(1l, ¢'%)
may not be equal to {0} (cf. [6], [7], [22)).

Definition 15, We set C'(W, Gg)= {{gi;} €C (1, Gg)|ogijn is a constant for any
i, 7, k}.

Let 8={V;|j= J} be a refinement of U ={U;|i€l} and =, v': J >1 the maps
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such that V;cU:;ynU-rriy. Then {ki} = {gri)e'¢iy) gives a chain homotopy between
* and ¢'*.

Definition 16. We set H{(M, #Y) the limit set lim {H{W, .#ZY)|z*}.

Note. HYM, ¢! is defined ay the same way. But by Corollary 2 of proposi-
tion 1, we have

HY{(M, oY) ={0}.

4. Definition 17. Let @ and ©' be elements of HyM, #2. @ and ©' are coho-
mologous if they have vepresentatives © = {0;} and O ={0;'} such that 6¢0 =0, J¢,
0'=0, 0;=d0;, 0;'=d%;', p(§)=0d¢0, pl§)=20d¢, 0', &§=1{gi;} and & =({ci;8i;}, where
cij 1S a constant map.

Note. p(&) =8¢0 if and only if 8; — g;;70;)=0.

Definition 18. H?2;,(M, 9) is defined as the quotient set of Hy(M, .#%) by the
cohomology relation.

Theorem 1. There is a bijection between H%;p(M, 8) and H (M, .21

Proof. We denote <@> theclass of 7%, #2) in H%r(M, 8). Then we
0:0=0, pl€)=20e0, £ Cl{1, Gy) and 6 € C°(1t, 6Y). Then, since #;;2 015k =0, we
obtain

d¢(p(€)) = G¢(0¢6) = 0.
Hence p(€) belongs to ZY1, M*'). If ©' is another representative of <&} such that
de, ©'=0, set &€= {g;;} and & ={g;;'}, we have

&ii' = hicijgijhi™,

where ¢;; is a constant and {k;} is admissible. Then, since plc;;gi))=p(gij), we may
assume g;;' = higi;h;"'. Hence we have p(€')i; = hj{p(€)ij — Seplh)i)h;i~t and d(hitijph;™")
=0, Therefore p(&)~ p(¢') and we can define the map «:H%(M, ¢)—H M, #') by

d<O5) = {ole)>: the class of pl€) in H{M, .2").

Since 0; = p{gi;)+&i;710;8:; if p (€) =0¢(0), we have d¢d®0 =0 if p(f) =3d:6). Hence
we have

do; = —p(ginp(8&ij) — p(&ij): &ii '0igi; + &ij~'d0igij.

Therefore d°0;=g;;"1d®0;g;;, that is 0:d®0=0. Let {w) be an element of HY{(M, .2
Then we set o= p(€), £ C (U, Gu). By Proposition 1, (i), we can set p(£)=de(d),
0=C11, e8Y. Then by the above calculation, d®f belongs to Z°%(11, .#%. If o~o',
we set o =p(h(€)). Then h=Cl, Gy) defines an admissible action of d°¢. Hence we
can define the map &:HY(M, #Y—H%r(M, 8) by

s{ad) = {d®0>, ® = pl(€) = de0.
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By the definitions of ¢ and x, ¢« is the identity map of H2%;5(M, g) and & is the
identity map of H{M, .#'). Hence we have Theorem.

Note 1. The kernel of the surjection é: H% (M, .#%—H\M, .#") is given by
de(H{(M, ¢v), HoM, gY)={<eH% (M, aY)|0:0 =0 for some £ € C',(1, G,)}. Here
Cta(t, G;) means C{ll, G/)nCl (1, Gyg).

Note 2. In holomorphic category, HYM, ¢'s) may not be epual to {0} and we
have the following exact sequence

sk de ok
0—— HY% (M, ')~ HH (M, §a)nHY (M, A f—H (M, 'a)~—HM, g'0)
The image *(Kw)) of {wpsH M, .#'s) is the obstruction class of {w> to be in
image. Especially, if o= p*¢), £ H (M, Gu), i*p*(€) is the obstruction class of &
to have a holomorphic connection,

§2. The cohomology sets HXM, Gt) and HM, Ga)

b. Definition 19. Let &¢={g;;} be in C',(1, Gu). Then we define a map o: on
CHu, Gy) (resp. on CAU, Gg) by

(17) (550)[02'11'21'3 - gioilci1iziagioi1_lcioi1iscioz'zia_lcioz'xiz.-l-
By definition, we have

Lemma 3. (1) de maps C* (1, Gy) into CU, Ga).
(i) J¢ c=e if and only if
(18) CivirieCioizia = &ivirCirieis&ioir™  Civiriae

() If ceC¥Wt, Gy) satisfies 8¢ c=e, LiviiCiriris&ivix™" 1S @ constant map.

(iii) If d¢ c=20¢, c=e, we get RiiiCisizishivi™ = Citiris, Where & ={g;;} and & =
{hijgij} -

(iii) If 0¢ c=d¢, ¢, we gt Nicir8ioiiCirizis8iois Pivii™ = LioirCirinisLioir ™, where
&= {gij} and &= {hi;gij}-

(iv) If ¢c=0¢, that is, Cioisis=8iir&iis&ivia™" then 8¢(08)=e.

(v) Define the action of h={h;} eCU, Gy) on CU, G:) (on CXU, Gga)) by hic)=
RioCioirichin™t, we get

Sncerhlc) = hoele)), Ma) = hisivirizishic™ .

Example. If dec=e and &= h;k;71, then ¢’ = h™Yc) satisfies
€ 1i2isC i0irisC foinis ™ C foinin = €.
Definition 20. Let ¢ be an element of C0, G;). Then heCU, Gy) is called

c-admissible if hic) belongs to CXU, Gy).
Lemma 4. Let dec=e, £=1{gi;} and assume &' ={a;;g:i;} is in C (1, Gy). Then
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to set
(19) ivitiz = ioirBioir@irisivir Civirialioia™ Y,
eic'=e if and only if a={a;;} satisfies
(20) (G101 18Ci0iria) (Gi0inlinisivia™ ") = (€1102@i2is€inia™) Livia Civiria)e
Proof. By (18), ds' ¢’ =e if and only if
(18) ¢ iviriaC iviniy = Gioir&ioirC irizisGioir Bioir ¢ foirige
By (19), we get
Clioilizc/inizia = aioixgioixaixizgioixﬂcioilizaioiz_laioizgioiz aizisgioiz_lcioiziaaioia—ly
ﬂioz’1gz'oi1c’ixz'zz'agt'oil~1diot’x_lclz’oixia = @ivir&ioi1@nia&irise Girisiris 'Civinis@ivis  ivir ™!
al‘ol.l.—lal.ﬂilgiﬂilailiagioil—l Ciahiaaioia_l-
Hence (18)' follows from
(18)” giot'1—lcioi1izio[zaiziagioiz—lcioizia = gi1i2ai2iagixizmlcixiziagioix—lcioiliga-
But since gi"'Cioi1is = Civizis '8ivis ICiviriaCicizis DY (18), (18)" holds if and only if the
equality (20) holds. Hence we have Lemma,
Note. If ¢ =20, (20) always holds. In fact, we get (g1, Cioiyin) (ioiz@izis&ioia™)
=(Zi1i18i2i38iria ") (Giois Civiriz) = Kirializis&ivis L
6. Definition 21. We set
Z0, G ={ceCu, Gy)|dec=e for some € € C {1, G}
20, Gg)={ce CU, Gu)|dec =e for some & = C {1, G\
Note 1. The definitions of Z2U, G;) and Z*(\1, G,) depend on the domain of
& From this point of view, the notations Z¥W1, Gsg. and Z¥W, Gglg. are more
exact. But we do not use these notations,
Note 2. In [8], we only assume the domain of & to be C!, {11, G,;). But the
research on 3-dimensional theory suggests above definitions are more convenient,
Definition 22. ¢, ¢ €Z¥01, Gy (resp. ZXW0, Gg) are said to be cohomologous
and denoted in symbols c~c' if there exists acC\(1, G;) (resp. C'(W, Gg) such that
&'={a;;8:;3C 1, Gy) satisfies (20) for ¢ and ¢' is expressed by (19). Here 3¢ c=e
and £={gij}.
Lemma 5. (i) ¢~c' is an equivalence relation.
(ii) If c~c' and he) e CH1, Gy, then hic)~h(c').
Proof. By Lemma 4, if ¢~c¢ and ¢ e Z¥11, G;), ¢' belongs to Z*1, G;). By
definition, ¢~c¢. If ¢~c', we get
Civitis = Lioir@ivis " Giois @ioir '€ 1oivialini

=Qjgiy N ioir&ioin)isia " N@ioi1&i0in) € iviria@inia™ )
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((aioixgioix)_’clioixiz) ((aioizgioiz)aizis-!(aioizgioiz)_l)
= ailiz(gioil—lciui1izgioiz) (aizia—lgioiz_l)aiuiz-l,
((aixizgixiz)aiziaul(ailizgixl'z)—l) ((aioilgioil)“lclioiliz)
=0a1155(8i1irizia  ivin ™) (Grois " Civiri)Bioin)Bivin ™
Hence we have ¢'~c. If ¢~c¢' and ¢'~¢", we set
c”ioixiz:bioil(aioixgioil)bixiz(aioixgioil)-lclioixizbioiz"1-
Then we get
C"ioixiz = bioil(aioilgioil)bili2(al.01.lgiDil)—!aioilgioil_lcioil1.2 aioiz_lbioiz—l
:(bioi1a[oi1)gioi1(bi1izailiz)gioil—lcioiliz (bioizaioiz)—l-
On the other hand, since
(8100171 10i102) (&' t0ibinia &'ioin™) = (8 1100Dinis & 11i27Y) (&'1001C 10inin), &1 = @ij&ij,
we get
Qiyi28iviy  CioiriaLioializis&ivia WRisia™ = Qiria&iiaDisis&isia ™ Givia Civirialivi ™"
Hence we have
(Giois Civivis) (Giviabirisivia™) = (&irivbizis&iria™) (Gioir™ Civivia)-
Therefore we obtain
(Gioir "Civiria) (Giviahizia@izisioia™)
=(Giois Civiria) (Givializis&ivia™) (8roi2@izis&ivin™)
:(gilizbizt'agixiz—l)(giuil_lcioixiz) (gl'uixaiziagioiz—l)
=girirbivis&ir, ™) (€0102012038i1i07Y) (Gioir ™ Civinin)
:(gixizbiziagiliz—l) (giohcioiliz)-
Hence c¢"~c¢, Therefore we have (i). (ii) follows from the following calculation:
(hioaioilhio_l) (hiogioilhil_l) (hilal'lllzhl.l.‘l) (hiocioilizhio~1)~ (hioaioizulhio_l)
:hio(aioi1gioi1ai1izgioil—lcioixl'zaioiz‘—l)hio_l
((hixgixiohio_l) (hiocioilizhioﬂl)) ((hiogioizh'iz—l) (hizaizizhiz—x)- (hizgl'zfohio_l))
=h;{(8ieiv Cioiria) (ioi:@iria&ivin Nhis™,
((hixgixizhiz_l) (hizaizizh'lz_l) (hizgizilhix—l)) ((hilgixiohio—l)- (hiocioixizhio_l))
:hil((gilizaiziagixiz_l) (gioix_lcioiliz))hio_l-
Definition 28. We denote HXW1, G,) (resp. HAW, Gg)) the quotient set of ZXU,
G;) (resp. Z¥W, Gyg)) by the relation of being cohomologous and admissible actions of
the elements of CY1, Gg)

Let 8={V;lje J} be a refinement of U={U;|i €1} and let ¢, ":J>1 the maps
suchthat V; C Ur¢yaUei¢yy. We denote o(j)=i and «'(j)=i". We set
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@iviy = Cigin’in!Civiriy! ™
Then we get
aioilgioilai1i2gioi1_lcioi1izaioiz—l
=Cisiotir Cioirit! " '8ivir Cirinin!Civiain' " ioir  CioirisCiaizia! Ciniol iz ™
Since ¢ € Z¥1, G(;) or € Z¥U, Gy), we have

Giois Cioiziz=Ciriziz! &ioir 'CioiriaCivizia's Cioit!ia! =Cioiris! " &ivirCirirtia' Gioir Civ'1ia’-
Hence we have

cioio'il'cioixix'—lgioixCiziz’iz’ciiiziz’—lgioz'x—'Cioixizcioizz'z' cioio'l'z'-l

=Cioig! i1 Cioiris!  ioirCiviv! i Gioir MCivivia' Civia’is! ™t
:Cioio'il’cioil'iz'cioio'iz'_l
There fore we have
@ioi18ioir@iriaLioiy Civinia@iois = Gioio! Ciotir' iz Giote' ™
Since g={g;i’} is c-admissible by Lemma 3 (ii)’, this shows 7*(c) and z:*(c) give the
same element in HY{M, G;) (or HXM, Gg)).

Definition 24. We set lim {HXU, G|z =HXM, G;)} and lim {H¥1, Gg)|c = H?
(M, Gg)}.

Note. These cohomology sets are not defined absolutely from the sheaves G;
and Gg. Therefore the notations H{M, Gig. and H¥M, G,)g. are more exact. But
we do not use these notations.

7. Theorem 2. There are maps 6=0,: H\M, .#)—~HM, G;) and =4, : H(M,
AN—HYM, G;) and the following sequence is exact.

i*

: *
(21) O——HYM, G)——HUM, Gg)-CHOM, )2 HI (M, G

£ 3 5 3
—HM, Got—H\M, ) —H:(M, G)——HAM, Gg).

Proof. The exactness of the first six terms of (21) has been known (cf. [3],
[157, [217). & is defined by

(22) 8(0) = {huhy'}, hy~'dhy = 0|U, 6 € HY(M, #1).
We define 4, by
(22) 0ilw; D) = {gisgingirn '}, wij = £ij7'dgi;.

By Proposition 1, (i) and Lemma 3, (iv), c¢ijz = gi;gr8ir~' belongs to Z¥U, G,). If
wij = p(8i)) = p(&ij), set gij = aijgij, aij is a constant map. We set cijz’ = £/ &ri".
Then we have

RS o U DN |
Civirizs = Giovh18ioirGiri8ieir Cioirialioia -
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Since (20) holds by the note at the end of Lemma 4, {c;jz’'} is cohomologous to
{ciiz}. Hence §; is well defined by Lemma 5, (ii). Then we have kerd; = {o;;|w;; =
o(g:), £ii&ik&ri =€} =1image p*. If i*c) vanishes, we have

Cijh = @ijijair&i; ' ain™" = bi;jgirgri&si&ri~'bir™", bij = ai;g&ij.
Hence ker i* is contained in image 8. Since image ¢ is contained in ker * by defi-
nition, we have Theorem 2.

Note. If M is a complex manifold, we can define the cohomology sets HM,
Gio = HY{M, Gy)g, and H M, Gu)=H¥M, Gu)g, by the same way. Then we get
the exact sequence

0—HY(M, G)—HWM, Go)—HUM, A e)—HM, G)—H(M, Go)—

—HY{M, Ay —HY{M, Gpo—HIM, Goo.

Here, HXM, Gio may differ from HM, G,).

If n=1, that is G=C*, _#' becomes ®', the sheaf of germs of closed 1-forms
over M and we have H{M, .#')=H¥M, C), H(M, G,;)=H¥M, Z) and HYM, G,)
=H¥M, Z). The exact sequence (21) is rewritten as the following exact sequence

0—HYM, C*)—HM, C*;)—HM, ¢')\—HM, C*)—HIM, Z)—

ES

e, ©) 2w, ev—HIM, 7).

This comes from the commutativity of the following diagram of sheaves

0 0 0

0 —C*—C*g— A = ¢p!— 0
exp exp d

0—C — C4g — 61— 0

0—% —Z — 0

0 0
The corresponding diagramfor GL{n, C), n=2, takes the following form
0 0 0

0—Gy — Gy —.#' — 0
Iexj) Iexp de I

0 —8o,g —* 8g — A"

I

0—N ,i—N ,¢—0

1]

0 0

» 0
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Here 80,4 and N 4 are defined as kernel sheaves of the maps d° and exp. Detailed
definitions of this diagram and related cohomology sets are given in [97].

8. We denote the natural map from Z°%(M, .#2) onto H%;z(M, 8) by dR. Then
d¢ dR maps Z°%(M, %) into H{M, G;). By Theorems 1, 2, we have

Proposition 2. 0 ={0,}Ys Z%(M, .#% is realized as a curvature form of a G-
bundle over M if and only if d¢ dR(®)=0.

Corollary. Let {Mg, =, M} be a principal G-bundle over M and 0 a matrix
valued 1-form. Then OcZy(M, #%) can be writien as

(23) 7w 0) = df + A0,

if and only if o¢ dR(O)=0. Here Mg depends on @.

Proof. If (23) holds, O is realized as a curvature form. Hence we have the
necessity. If @ is a curvature form of £€={g;;} with the associated principal bundle
{Mg, =, M}, we have

a*O)|wUs) = hi™0ihit wX(8ij) = hih;™".
Since © is a curvature form, we can set 6; =dbf;'+ 0, A0;'. Then we have @ to set
O|lz=\U;) = hi™40;' + dhihi™Y)h;.

Note 1. Usual de Rham groups are the obstructions of global solvabilities of
the equations dp=¢, degp=1, 2,..., From this point of view, H!' (M, .#") is the
obstruction of global solvability of the equation

d9=0, 6={6,}, 0={0i}, 0;=g;i0:), 9;=g;i0))
where {g;;} belongs to CL{U, Gg).
Note 2. If d°0=d°0', set §'=0+7, 7 satifies the equation
(24) dy+yayp+L0, y1=0.

Local solutions of this equation and the relation between gauge transformations are
studied in [[10] cf. [20].

§8. Characteristic classes for the elemens of H{(M, .#%).

9. Lemma 6. Let O={6;} be an elemen of Z°dM, .#?. Then tr(@,\.i.).,\@) s a
closed 2p-form on M and its cohomology class is determined by dR(®) for any p.

Proof. Since 0;=g;;"10;g;;, we get tr{O;n.n0;)=1t7(g:; Oin..AO;8i;)=trO; p...AO;).
Hence t7(Oa.-A0) defines a global form on M. Since ©;=d%);, we have the Bianchi
identity d0=[0, #]. Then, since

7r—1 p—~7r
t#(Op-OAL0, OINOA-AO)=0,
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we get
b b =1 p—r
d(tr(@/\/\@» :Z tr(@,\‘..@,\d@/\@/\.../\@)zo.
r=1
Hence tr(Oa--A0) is closed. If o(gi))=0;—gi;\0:8i;=0; —gi;6: gi;, to set 6; =0;+y;,
we have
(25) 0; = gij~0i8ij,
(25) dqe;') = 0; + do; + pian: + [0i, 7.

Then, since #r (piani)=tr [0, 7i]=0, we get

t(de(0;" )n-nd0:") = tr((0: + dyi)n--Al0; + dy;)).
By (25), to set ¢;,=0; and ¢;,.,=dy;, we have

tr(gs, Ein-Pjep) = t{(iesnnPirep), En = E1.
Then, since

r—1
(Oi A AOIAAD ABiyerir A ABive p)
7r—1
:d(tr(@iA"'A@iA¢i:5r+l/\"'/\¢i’51)))3 721:
» ?
tr{de(0; )n..-.Ad%6;")) is cohomologous to t#(Oa..A0). Hence we have Lemma.
Corollary. If O<Z°% (M, .#%), the coefficients of det (I+(t/2xa/—1)0) are closed

anp their de Rham classes are determined by ¢ dr(©).

Definition 25. Let {w) be an element of H' (M, .#%), © an element of Z°4(M,
27 such that « dR(O)={w). Then we define the p-th characteristic class c?w)) of

{wy by
P(wp) = <ppy, the de Rham class of ¢p,

det (1 -+ O) =14 @it +-++ @pt? +-+-+ @nut™.

_t
28/ —1
Similarly, we define the p-th Chern character of {w) by

ch ((wp) = (“/ —1 )ppi!rt (O rO).

2

Proposition 3. (i) c?(Kw)) and ch?({w)) aredetermined by {w).

(i) Let €& be a G-bundle with the p-th Chern class cP€) and the p-th Chern
character ch?(), i* HM, Z)—~H*?(M, C) the map induced from the iniclusion 1:Z—
C. Then we have

(26) cA(p*(&)) = i*(c(€)),
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(26)' ch?(p*(&)) = ch?(&).

(ii) If e={w;;} and each w;; is an antihermitian wmatrixz valued 1-form, c? ({w))
and ch?({w)) belong to H*?(M, R).

Proof. (i) follows from Lemma 6 and its Corollary. (ii) follows from the theorem
of Chern ([121) and the definition of the Chern character. If o satisfies the assu-
mption Of (iii), there exists an antihermitian matrix valued 0  Z°%{M, .#? such
that (dR(®)=<w)>. Then, since det (I--{t/2rn/—1)8) is a real form coefficients poly-
nomial, we have (iii).

Corollary. ©ecZ°(M, .#?) can not be rvealized as a curvature form of a G-
bundle over M if c?O) is not an integral class for some p.

Note. For an element 0 of HYM, .#'), we have defined its characteristic class
BA(6) e H**~Y{M, C} by

" de Rh (—1)2-1 2p~-1
B2(0) = the de Rham class ofm tr (On--n0),

([6], cf. [27]). The definitions of B2(#) and ch?(@) are parallel. Moreover, B2(0)
comes from the p-th generator of H¥G, Z)and ¢?(®) comes from the p—th generator
of H*(BG, Z).

16. Example 1. If 2 is a complex number, then we have

as(A8) = Adeo + (A* — 2)0A0.
Hence we have

» b
27y tr(de(lﬁ)/\.../\de(,w) = A0ty(d® On..-Ad6).

Therefore, if det (I+(¢/2r/—1)d°0)=1+@.t-+ - +@,t", we have

t
" —_de = )79 . ” n
i (27) det X+ o) — 1d (29)) I—I—ZgoxH- +APpptP 4o 4 Ayt

On the other hand, if g is a smooth G-valued function such that
(28) (dg)g = gldg),

and g? is defined, then
(29) o(g?) = 20(8).

Hence if é={g;;}eH(M, G,) satisfies (28) for any g;; and for a fixed complex
number 2, g:;* is defined for each i, j, we get

olgii?) = (A6;) — i H20:)gi5, 0; — 8ij '0igi; = plgi))-

Therefore, if each 6; satisfies g;;7%0;8:jA=gi;"10:8:;, Aw={p(gi;A)} belongs to Z}(M,
#Y). Here ®={o(gi;}. Then by (27), we have
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cP(QAwp) = Apc?({w)).

Example 2. Let M be the m-dimensional complex projective space and {zu, ..
., pm} an arbitrary set of m complex numbers. We set

(de dz; ) \
(L EL
2; 2;
0

a)ij = ess N

O ven

2 ( dzj dz; )
N "\ 2 oz

m
IT @4ait) = 14t -+ + pt™
i=1

Then w={®;;} defines an element {w> of H{M, .#%) such that
cP{®)) = A,eP, e? is the generator of HH(M, Z).

Note. Let U=U(n) be the unitary group, b its Lie algebra. Then the sequence
O—»U,:—»Ud—w//[)x—ro is exact., Here ‘//!)1 is the sheaf of germs of h—valued integrable
connections. By this sequence, we get the following cohomology exact sequence

0—HM, U—HM, Us—HWM, Ay)—HM, U)—
—HM, Ug)—HM, #y)—HN, U)—H M, Uy

In this sequence, we know HYM, G,)=H'M, U,). But example 2 and Proposition
3, (iii) show HY{M, _#") differes from H!(M, .///I)l) in general. We also know H(M,
Gy) differs from HYM, U). For example, denote ¢ the generator of = (C*), the
representation xdz[l 2n¢——1] defines an element of HYC*, GL(2, C)) which is

0 1
not in HYC*, U(2)). .
11. If c=c¢;j, belongs to ZU, Gy) resp. to Z¥W, Gy)), det c={det c;;»} belong
to Z¥1, C*) (resp. to Z¥\, C*;)). Since the cohomology class of det ¢ is determined
by the cohomology class of ¢, we define

(30) d{c)) = {det c.
By definition, d{{c>)eH¥{M, C¥) (resp. H¥ M, C.4)) and we have
(31) exp*(c'({ap)) = d'(le)).

To treat higher dimensional chatacteristic classes for <{c¢>, we set @i, =
(1/27a/— 1) 108 (Civiris). Then a = {a;,:,1;} belongs to C¥U, §). a is not uniqualy
determined from c¢. But we can construct appropriate cohomology theory with
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coefficients in 8y,4 and 84. To use this theory, if a satisfies
(30) trdaU---Uda) € Z°(1, Z),

We can define higher order characteristic classes d?({c)eH3?-{(M, C*) and e?(c) €
HB*?(M, Z), ccHAM, Gg). For details, see [97.

Note. Researches on 3-dimensional theory suggest the possibility of the exis-
tence of a matrix valued 3-form (defined relative to gauge and potential) @ = &(c)
such that

i*e?(c))=the de Rham class of tr(¢,\..if,\¢).

If this is true, e®?(c) is a torsion class for any p, although it exists as an non zero
class.

12. Let Y be a closed subset of M. Then we have the following commutative
diagram with exact lines

H(M, G 25 WM, 2 -2 HM, Gy
iy P iy P iy
H{(M-—-Y,Gy)—HM-Y, #") — H{M-Y, GY).
Hence we have
Lemma 7. Let {wpbe an element of H' M, .#%). Then iy({w)) is in p*—image
ifand only if iyd({w)) is equal to O.
Corollary. Let OcZ%(M, .#%. On the tatal space of some G-bundle over M—

Y, O is written
(23)' a*(0) = df + 60,
if iyaldR(@) = 0.

We write 7 the codimension of Y and assume »=2. We also assume M and Y
are cooriented and Y is a smooth submanifold (in the case M is a smooth manifold)
or a real analytic subvariety in the case M is a real analytic manifold). Then we
have the following commutative diagram with exact lines and columns

oy l i i* res
—RP-7Y)— HA M, C—HM-Y, C)— RE-7 YY)
l exp* exp*

Here R?(Y)=H2(Y, C)if Y is topologically non-singular ({4]). By this diagram, we
obtain
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Lemma 8. Let ¢ be an element of HP(M, C). Then iy(c) is in i*~image if and
only if ivexp*(c) =0, and if ¢ is in dy—image, ivexp*(c)=0.

By Lemma 8, we have

Proposition 4. Let {o) be an element of H(M, #1) such that iy({®)) is in p*-
image. Then we have

(33) ivexp*(cPKa)) =0, p=1.
(33) holds if we have
(34) cP(lw)) = dyllapy), <apy € R2P-7(Y).

Corollary. If =*(©)=d*0 on (M—Y)g' the total space of some principal bundle
over M—Y, then

(33) iyexp*(c?@) =0, p=1.
(33)" holds if we have
(34) cP(0) = oyllapy), {apy € R2*-7(Y).

Note. we denote G4 [Y] and .#! [Y] the sheaves of germs of smooth G-
valued functions and integrable connections over M with singularities on Y (cf. [4)].
Then we have the following exact sequences of sheaves

(35) 0—— GGy [Y —plGa [Y I— 0,
0——p(Gq [Y ))——.#" [Y ]—> Resg,y— O.

The stalk Resg,y,x of Resg,y at x given by
Resg,v,» = lim [6H(U(x) — Y, .#Y)].

Hence write m(U — Y), the local fundamental group of U — Y at x, Resg,y,. is
contained in Hom (n(U — Y),'G) and therefore Resg,y =0 if »=3.
By (35), we have the following commutative diagram with exact lines

*
H(M, Go) - HWM, .27 -2 HM, G)

Nty iy l o* Y ty ‘ Ny

iyl H{(M, GqLY]) ——— HYM, o(Gq [Y])——H M, Gi).
/ o 5 | v

H{M-Y, Gg) —H\M-Y, #)—--HM-Y, Gy

If Y is smooth and 7 is even, H{M, G, [Y )=H{M-Y, Gg). In this case, cy({o))
is not in p*-image if <{@> is not in p*-image although iy((®}) is in p*-image.
Therefore, if the equivalence of iy{({w)) and an element in p*-image is given by
{h:}, {h} is not defined using open covering of M—Y obtained to restrict an open
covering of M to M—Y. It also suggests H(M, .#' [Y]) may differ from HM-
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Y, ..

§4. The general case
13. We fix a differential operator D : C*(M, E)— C*(M, F), where E, F are
complex vector bundles over M, We take a G-vector space H. Then D;®1x:C*
(Ui, EQH)—C*U,;, FQRH) is a differential operator on U;. Here D ={D;} and E
and F are both trivial on each U;. By assumption, a smooth G-valued function g
on U; acts on C*(U;, EQH) and on C(U;, FRH). We set
oo(8) = &7 (D:i®1p)g — Di ® 1x.

If pp(g) =0, gis called a ¢(D)-class function ([6], [8]). The sheaf of germs of ¢(D)
~class G-valued functions is denoted by Ggupy. pp(Gg) is denoted by .#'p (in [6],
this sheaf was denoted by Lg,p). By definitions, we have the following exact
sequence

1 D
(Un 0—+Gopy— Gg — M'p —— 0.

By the definition of pp' we have
po(8h) = k™ pp(ghh + pp(8), pple) =0, e=1g.
Hence we have
po(&iigir&ir~*) = Girlon(gik) — po(&ik) + &~ o0(&i)85k)Gik ™"

By this formula, we can define the cohomology sets H{M, .#'p) and HY{M, Gy p))
as follows;
Definitions 11p and 21p. We set

Zl(u’ ./ID):{{(UH}EC‘(H, -///IDH‘;&CU:(), w:pD(E): Eecla(u’ Gd)})
220, Gepy)={ceC, Gup))|dec=0, for some £€Cl«pyll, Ga)}.

Here Clupy(Wl, Gg) is {6€C (1, Go)l(08)ijr is a c(D)y-class fuction for anyi, j, k}.
Definitions 12p and 22p. The cohomologous relations on Z*(l, #'p) and on
220, Gupy) are defined as follows:

(15)p {0ij' }~{wi;} if 0if = hjiwi;— eolk;) + gi polhigiih; ™,
{h}eCU, Gg), tireplhitiie = pplhi),

and

(19)p {eijn} ~{hicijphi™'3, {hi} € CU, Ga),
{cijI~{ai;gijamgii cinair™'} {aii} € C1, Gew))
Here {a;;g:;} belongs to ClepW, Gg) and satisfies the following condition

(gioil—lcioixiz) (gioizaizisgioiz-l) = (gili2ai2i3gili2—l) (gioil--1 cioixiz)-
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H\(M, #'p) and H® M, Gyp)) are defined by these relations. Then we obtain
Theorem 2p. The following sequence is exact
i Op r*
(21)p 0——HM, Gupy)—H (M, Gg—HM, .#'p)—HM, Gpy—
z’*

#*
H'(M, Gd)—‘(-)iHl(M, A p)—HAM, Gupy)—H M, Gg).

Example. If D=3, Gepyy is the sheaf of germs of holomorphic G-valued
fuctions on M and .#p is the sheaf of germs of matrix valued (0, 1)}-forms 6 such

that 30 + 8,6 =0 ((187]). If G=C*, (21)p reduces to

0—H(M, C*o)}—HM, C*y)—H(M, ¢"')—H{M, Cto)—
—HY M, C*;)——H'M, ¢*)—HAM, Ct.)—HY M, C*,).

Here @1 is the sheaf of germs of d-closed (0, 1)-forms. If M is a compact Kaehler
manifold, this sequence is rewritten to

0—HYM, C*o)—HY(M, C*;)—HYM, ¢¥1)—H{M, C*to)—
exp*
—Hx M, Z)—H"YM, C)

*HAM, C*.)—H¥M, Z).

On the other hand, if M is a Stein manifold, *:HM, Go)—HYM, Gg) is a dijec-
tion. Hence the sequence 0—H M, .#'5)—H¥M, Gu)—HXM, G,) is exact.

14. In this n°, we assume E=F, and the principal symbol (D) of D does
not vanish on any open set of M. We consider a smooth G-valued function g on
U to be a linear operator acting on C*(U, E®H) For differential operators L,
L, L;:C°U, EQH)~C?(U, EQRH) we set

Lg - g-ngy I:Lh LZ] = L1L2 + L2L1.

Definition 26. Let U be an open set of M and L.C*(U, ERH)-»C*(U, EQRQH)
a differential operator of order k—1, k=ord D, on U. Then we define a differential
operator D(L):C*(U, EQH)-C*U, EQH) by

(36) DL) = (D@1y + L — D*@ 1p = L* + [D®1y, L]

D(L) was denoted by pp(L) in [6]. The following Lemma is also given in [6].
Lemma 9. D*° has following properties

(87, 1) De(cL) = cD(L) + (¢ — ¢)L?, ¢ is a constant,
(37, ii) DLy + Lo) = DLy) + DLs) + [L1, Le],

(37, 1) DML, — Ly) = D¥(L,) — DLy} — [L1 — Ly, L],
(37, iii) De(L#) = DL} — Lpp(g), LF],

{37, iv) D*(ppg) = pp8).
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Proof. (37, i) and (37, ii) follow from Definition. (37, ii)’ follows from (37, i)
and (37, ii). Since we have

Do(L8) = (DR1y)LE + LE(D @ 1g) + (LYE
= (DRLy)LE + LEDR1y) + L2 + [DR®1y — (DQ1y)E, LE],

we get (37, iii). (37, iv) foollows from Definition.
Corollary 1. We have
(38) DL + pp(g)) = DAL)® -+ pp{g).
Proof. By (37, ii) and (37, iv), we get
D(L&+ pp(g)) = DYLE) + ppig) + Lon(g), LZ].
Hence we have (38) by (37, iii).

Corollary 2. If pp(g) is Ly— L%, DYL,) is equal to D¥L,)* + ppdg). Especially,
if D*=0, D¥L,) is equal to D¥L,)8.

Proof. Set L,=L,%-+pp(g) and apply (38), we have Corollary.

Note. The reason of notational inhomogenity of pp and D® was exposed in n°l.
For functions, D°(f) is defined by pp(ef) (cf. [8]). We also note if fis a g-valued
function, we say say f to be a ¢(D)-class function if AD&® 1lg) = (D@ 1) f (cf [6],
L87).

The next Lemma generalizes gauge transformation

Lemma 10. Let g be a smooth G-valued function on U and L :C™U, EQH)
—C*U, EQRH) a differential operator. We set

(39) &p(L) = L&' + op(g~') = &(L — on(g)g™".
Then gp is a G-action and we have
(40) De(gp(L)) = gpD(L)).

Proof. Since ep(l) =L, to show gp to be a G-action, we need only to show
gplhp(L)) = (gh)p(L). But this follows from g(hLh='— hpp(h)h"")g ' — gop(g)g™' =(gh)L
(gh)™' — ghpp(h) (gh)™' — gpolg)g ™ = (gh)L(gh)™ — ghon(gh) (gh)™'. Since gp is a G-
action, (40) follows from (38).

We set .@’E@‘H the sheaf of germs of differential operators L: C*(U, EQ H)—
C*(U, E®H) with the order at most #— 1. By definition, .#!p is a subsheaf of
_@ﬁ{éﬁ. D* induces a sheaf map (also denoted by D¢ on .@f,;(gjﬂ. Then #'p2 is a
subsheaf of D® (.@f;@‘},). We set .# p¥=(D)y".#"p2). By (37, iv), .#'p is a subsheaf
of .#ph. If D*=0, _#'p* is the kernel sheaf oe D®. By the actions gp and gp?
(=2 E@H). and D¢ 9’,‘;'@5;,) are the Ggz—sheaves and D°® is an equivariant map by

Lemma 10. Since .#'p: is a Gg-subsheaf of D° (2 kgly), #'pt is a Gg-subsheaf of



166 AKIRA ASADA

2kgy and #'p is a Gy-subsheaf of .#'p*.
Definition 27. The quotient sheaves of #'p*, @ kg and D* (zkdy) by Gu-
actions are denoted by #'pt, 2%y, and A ’p.

By Definitions, D¢ induces the sheaf map De°: _@EX‘,H — #*p and the following

sequences are exact

(2)p 0— A'pt— é@Hﬂ%ZD—-»o,
{41) 0 —— A p—— M ph——r t pt—r0),
(41): 0 —— A pi——D (D kg y)— M *p—0.

Note. If D*=0, _#'p: is the 0- sheaf. But .#?, may be different from D¢
(2 kg u) since the Gg-action on D¢ (2 kgly) may not be trivial unless »=1. But

the following sequence is exact if D?=0.
DE
@)’ 0— A pt— Zign— D* (2 kgu)—0.

15. If Le HYM, (2%dy), T has a resentative {L;} € C°l, (2 kgy) such that
Li=giiplL), {g::3€CW, Gq). For € ={gi;}, we set de,n(L)i; = L;j — gji,p(Ls).
Definition 28. Let ¢={gi;} be in C,(, Gg). Then we set

HuM, (2 kgn)={LeHM, 2k |L=L;, 6¢pL=0 and Li'iit=L; for some &}
D¢ induces a map from HYM, 2 %dy) into H(M, #%p). We set
(42) H'p(M, #%p)=DH'(M, 2 k3u).

Theorem 1p. There is a surjection dRp:Hp(M, .#%p)—~HY{M, _#'p).

Proof. If OcHy(M, #%p), O is represented by {D(L;}, {L;}eH’ (M, _@%(X’,H)
Hence there exists {g;;3€C(11, G,) such that to set w;j=L;j—L&ii=ppg;;, we get
wjr=w;p+oi;#it=0. That is, {o;;} defines an element of HYM, .#%p). If {D(L;)}
is another representative of ©, we have L; =#h;,p(L;). Hence {o;;'} giues the same
element of H{M, .#'p) Therefore we can define the map dRp: H(M, #?%p)— H!
(M, #'p). If {gij3eCl(, Gy and {o;;}={pn(g:))} is in Z{U, .#'p), by the same
calculation as in the proof of Proposition 1, we get wg;£ii%ir8ri = wp;. Hence we
have

w;j = Lj— L;i#ii, L; = E eLwp;.
UND b
Therefore {L;} represents an element of Hoy(M, gﬁ@‘H) and we have dR({L;}) =

{w). Hence we have Theorem.
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Note 1. If £€={g;;} is a G-bundle, then above decomposition of w;; gives a
connection of D with respect to &(cf. [17], [2], [5], 6.

Note 2. If D=3, denote 8. and g%! the sheaves of germs of smooth matrix
valued (1, O)-and (0, 1)-type forms, we have the following commutative diagram
with exact lines and columns

0 0 0
[ 5 |
0— #l5 — 80! — #%— 0

70,1 70,1 0,2
L] e ]
0 — #'— g8 — 2 — 0

i ] e
0 — ./1:02.///101—’91:0——'.//2 — 0

I

0 0 0

Hence <w>eH M, .#') is in ¢*-image if and only if there exists @ € Z°%(M, .#?)
such that ¢ dR(O)={w) and =%*0=0 (cf. [18]).
16. We assume Cyp) admits the following resolution (cf. [67)

1
00— CC(D)_"_" Cd~—> C,o—(C—s....n .

We define the map j:.#'p— #'yp by pp(g)=pan(g). Then j is abijection and
therefore induces a bijection j*:HY{M, .#!p)— HY{M, .#'4p). By the definition of
AMyp, @ ={0;}=Z%(0, .#2,p) is regarded to be ©; € HYU;, C%PX4). Hence we

?
may consider (7(Oa..A0) to be a dP-closed 2p-form on M. The dP-cohomology class

)
of tr{Ox...A0) is determined by dR;p(@)=HY{M, .#'4p). Since dRp is onto, we can
define the p-th D-Chern class c?p(<w)) and the p-th D-Chern character ch?p(<w))
by

c?pkw)) = the class of c?p € H*2 (M, Ccwpy),

ch?p((wd) = the class of (“/ 2;1 )1’ pil tr O nO)SH2P(M, Comy).

Here, we set det (I + (2n/+/— 1)) = I4cipt + -+ cPpt? +---+ ¢"pt”*. Then, denoting
ip:Z—Cypy the inclusion, we have

(26)p c?p{pp*(€)) = ip*(c?(€)),
(26)' p ch? p{pp™(E)) = ip*(chP(£)).

In [6], the right hand side of (26)p, was called the p-th c¢(D)-characteristic class of
¢ € H(M, Gy).
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Example. If M is a compact Kaehler manifold and D=9, c?3(<op) is a (0, 2p)
~type class. If <w>=pp*(€), c?5( ) is the (0, 2p)}-type part of c?(¢€), the p—th Chern
class of &.

By definition and (26)pr we have

Proposition 8p. Let {w) be an element of H (M, _#'p). Then {w) can not be
in op*-image if c?p{e)) is not an integral class for some p.
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