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1. Intreduction

By U and T we shall denote the open unit disc in the complex plane C and
the unit circle, respectively. The space of all holomorphic functions in U will be
denoted by H(U). Let ¢:(—o0, o0)—[0, o) be a nondecreasing convex function,
not identically 0, and let Ho(U) (resp. A¢(U)) be the class of all feH(U) whose
growth is restricted by the requirement \

sup (2971[ gllog| F(rei®) Do <o

0<7r<1 —

1 .7
(resp. ™! J 0 J ollog| £ (re'?) |)rdrdg< oo).

If plx)=max(0, x), He(U) is said to be the Nevanlinna space N({U) and Ae(U)will
be denoted by BN(U). If ¢p(x)=e?*, 0< p<loo, then Hp(U) (resp. Aq(U)) are said
to be the Hardy spaces H?(U) (resp. the Bergman spaces AP(U)). By H®({U) we
shall denote the space of all bounded holomorphic functions in U.

In [3], we proved the following theorem:

Theorem A ([3], §1, Theorem 1). Assume that ¢ and ¢ are nonconstant, non-
decreasing, wnonnegative convex functions defined on (—oo, o), and that

St/ plt) — + o0 as §— + oo,

Then there exists an f€ Ho(U) such that 2f & He(U).
If ¢ satisfies the growth condition

Iirr;jgp PE+1)/9() <o,

then Hy(U) is closed under scalar multiplication, so that, the conclusion is simply

Hy(U)SsHp(U).
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On the other hand, J. H. Shapiro [7] proved the following theorem:
Theorem B ([77], Theorem 2.1). Assume ¢ and ¢ are strictly positive, convex,
increasing, unbounded functions defined on (—oo, o0), and that

csup  pt+1)/pl)<oo, sup ¢i+1)/gt)<oo,

—o0 L} < oo —o0 < <00

lim ¢(f) =0, lim ¢{)=0,

}—r—o0 {— o0

lim (0)/p) = 0.

Then there exists an f<Ap(U) with the following property:
If n is a positive integer, be H*({U), ge HU), g0, and
h=(f"+0b)g,

then het Ay, (U), where ¢,(t)=¢{t/n).
(In fact, Shapiro proved this theorem more generally on weighted Bergman spaces. )
Applying Theorem A, we studied in [3] the inclusion relation between the
Hardy spaces H?(U), 0<p<<oo. The purpose of this paper is to study the inclusion
relation between the Bergman spaces A?(U), 0<p<co, the Nevanlinna space N(U)
and the Hardy spaces H2(U), 0<p<<oco. To do so, we need the following genera-
lization of Theorem B:
Theorem 1. Let ¢ and ¢ be nonconstant, nondecreasing, nonnegalive convex
Junctions defined on (—oo, oo). Assume that

fim g(0)/p(t4+1) =0,

and that there exists a number ty&(—oo0, 00) such that ¢(to) >0 and
sup o(f+1)/p(F) <oo.
t=>to

Then there exists an f&Ao(U) with the following property:
If nis a positive integer, be H*(U), ge HU), g2=0, and

h=(f"+b)g,
then some constant multiple of h fails to be in Ay, (U).
2. Preliminaries
It is easily shown that
H*U)ycHYU)cH!U)cNU),
AU AYU)cAP({U)cBN{U)

if 0<p<lg<leo. Here we write A({U)=H>=(U). For each p(0, «), we define
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o-U)= U HUU), HfU)= [ HUU),

p<ag<oo 0<a<p
A= U AuU), A"U)= [\ AYU).
pP<g<eo 0<qg<p

Then
H-(UYcHP(U)CH?*(U),
A (UYC AP(UYC AP (U).

Let feH(U). Take a point ¢as=U. Assume f=£0 in U. Then a power series

oo

fl@)= 2] crlz —a)®
k=m
converges in some neighborhood of ¢ and represents f in this neighborhood. Here
¢»x0. The integer

vrla)=m=0

is called the zero multiplicity of f at a. The integer—valued function vy defined in
U is called the zero-divisor of f.

Let ¢ be a nonnegative integer-valued function defined in U. Then g is called
a positive divisor on U if and only if it is locally the zero-divisor of some holomor-
phic function, that is, for each point a=U there exists a connected neighborhood
V of @ and a holomorphic function f in V such that f==0 and p=vs in V.

We denote by ©*(U) the set of all positive divisors on U. Then we have the
divisor map v from H(U)* into ®*(U) defined by letting »(f) for f in H(U)* be
vr. Here, for any subspace X of H(U) we write

X*={feX; f=£0 in U).

We recall that p=®*(U) satisfies the Blaschke condition if and only if

21 )1 —|z])<eo.
zelU
The set of positive divisors on U which satisfy the Blaschke condition will be denoted
by D, The following classical theorem will be used in §5:
Theorem C (See e. g. Duren [1], §2.2.). For any p(0, oo),

w(HP(U ) =p(HP (U )*)=p(HP*(U)*) =p(H*(U)*) =»(N(U)*) =D,

The following is an immediate consequence of Theorem 1:
Theorem 2. Assume that ¢ and ¢ are as in Theorem 1. In addition, assuwme
that ¢ satisfies the condition lim sup ¢{+1)/¢t)<co. Then
I — oo



14 Yasuo MATSUGU

v(Ag(U)*) Sv(As(U)").

Hence

ApU) S Ae(U).

3. Proof of Theorem 1

Our proof is a modification of the Shapiro’s proof of Theorem B. (cf. Shapiro
(71, pp. 248-251).

Step 1. Without loss of generality, we can assume that
(1) o) =0 if ¢<0.

In fact, when ¢(0)>0, we put

B0 €0
@ ="

0 ({t<0).
Then ¢, has the same properties as ¢ does. In addition, ¢, satisfies (1). Because of

(2), @—¢, is bounded, hence Ap(U)=Ap,(U).
For {0, define

(3) Dt)=op(log 1), Oo(f)=gp(log ¢+1),
Y@)=¢(log ).

Then @, is a continuous nondecreasing nonnegative function on [0, oo) and @,({f)—oo
as t—oo. By (1), @,(0)=0. Since lim ¢({f)/pE-+1)=o00,
t—o0

(4) lim ')/ Dy(t) = oo.

{00

Put

M=sup p(t+1)/0(t).
P31

Since ¢ is nondecreasing, it follows from (3) that
(5) D(s+H)M(O(s) + D)) (s==>50, £>>$0),

where sy=exp(f,). And 1<M< oo, by the hypothesis.
Step 2. We need the following lemma due to W. Rudin [57:
Lemma D (5], pp. 59-60). Suppose
(i) p is a finite positive measure on a set $2;
(i) v is a real measurable function on 2, with 0<v<{l a. e., whose essential
supremum is 1,
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(iii) 4 is a continuous nondecreasing real function on [0, o), with A(0)=0 and
Aty —o0 as t—oo;
{iv) 0<0<oo0,

Then there exist constanis cp< (0, o), for k=1, 2, 3,..., such that

I Alcrv®)dp=4.

2
These cp also satisfy

lim cxr%=0

ko0
whenever || <l

If 0<t<{co and if Yp=Y(t) is the set of all x=2 at which crv®(%)>t, then

nmj Alckt)dp=d.
k—oo J y,

By 2 we shall denote the Lebesgue measure on C=R2?, so normalized that
AU)=1. We now apply Lemma D, for each positive integer %, with (U, 2) in
place of (2, g), and with

v(2)=|z[,
A@)=Dy(8),
5= (k2M)-1

Then the following holds :
Lemma 1. There exist sequences {(Chyn} n=12.3... 0f veal numbers such that

@ | 90 (lermarda=(em);
b) 0<lcri<cre<crs<..., lim cpy=00;

—roa

() lim ¢pr®=0 whenever |r|<1;

Hn—co

() 1imj Bol| Cpnz™ A= (BM)"  for each £>0.

700 I {|cpazn| >}

Lemma 2. There exist four sequences {tr}, {an}, {rr} and {pr} of real numbers,
and one sequence {np} of integers with

St <lto<lt3<..., lim {p=o00,

2 —o0

0la<<a<a;<..., }im QR =00,
f2 00
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0<my<<lmp<ms<..., llim Np =00,

0<n<p<r<lp<l. .., khglo rr=lim pp=1,

k—oo
such that if up(z)=arz"t and Rp=1{2€C;rp <|z|<pr}, then for k>2 the following
conditions hold:

k=1
(@) 15=>4] aj and F()/ Qo) >kM if t>11;

j=1

) | Gulluda=(ed) s

© © | oulurhar>@rm);

) lur@| =ty if |2|=r0;

@ lur@)|<lur1(2)1/5 if n<l|z|<pk-1

Proof. We prove the lemma by induction. Choose any positive integer #, and
any positive numbers £, a;, 7y, pi;, with so<{#;<la;, 0<#;<p,<1. Suppose k>2,

and suppose the five sequences have been successfully chosen for all indices less
than or equal to 2—1. By (4), there exists a positive number #; such that

k-1
tk>t/e-1, tk>k’ tk242 aj,
i=1

V(t) [Pty >kM for t=t.

By Lemma 1, there exists a positive integer n; with #np_;<m, such that, letting
ap=-cCruy, wWe have

(7) ap>tr, ap>ap-, alePZ’il gak—lr?k—l /5,

| olazmsnar= gem,
u

| Dol | arz™ )R> 2k M),
{larzme| >t}

Put
9) rp="_=r/ap) .

Then pp_1<rp<1, by (7). Because of (8) and (9), there exists a positive number gy
with #;<pr<{1 such that
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j Bl | apz™ ) dT> (2k2 M),
{re<]zl<oi}
This completes the proof’ of the lemma.

Step 3. We now define

co

F@)=27 urlz) (2€0).

k=1

The series converges uniformly on compact subsets of U, by (6—e). Hence f&

HU).

Lemma 3.
(10) 1 f1<Blup| /445 upl/4 on {rp<|z2|<ppet},
(11 [f1=url/2 on Ry.

Proof. By (6—a) and (6—d),

(12) g}lujlélukl/zl on {|z|>7z}
=
By (6—e),
(13) fj [ <51 | /4 on {r<|z|<pp.i},
j=k+1
(14) _iﬂlwlsmklﬂl on {r<|z|<pz}.
i<k

(10) and (11) follow from (12), (13) and (14).
Step 4.
Lemma 4. feAoU).
Proof.

| otoglriyar=| a(is)d
u U

o(1 £+ 3 0(| £ |)di.

L|Z|S"l) E=1" {e<] 2] <7en1}

Fix k€ {1, 2, 3,...}. By (10),

(D(lfndzsj 06 )yl /4-+5 s 1] /4)d2

J{7‘1c<|z|$7‘k+1} {re<]z]| <ree}
Put

E = {2€C;7p<|2|<Fpry1, Blutr,1(2) /4250,
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E,=(2€C;r,<)2| <#pu1, Blttn41(2) | /4<50}

By (6—d),
5lug(2) | /42> |up(2) | =t >s0 if |2]>7p.

It follows from (5) that

Eq 5 £y

=M|_pllog|ux| +10g(5/4)di+M| _pllog|ue,| +log(5/4)d2

<M| plloglus|+1)d2-+M| plloglus|+1)d2
) Ey

E,

=M Dl a2t M Bl |)2
On the other hand, by (6—d),

| 06Iul /445l B[ 06 sl A+s0d
Ey

)

DGl /4+18)ds <[ 00w/

£

l

E; Jor

Do(|ur)

=/
j ollog ] +log(9/4))d2<J ollog |us) -+ 1)dA
I,

Thus

@(1 f|)da

J(7'k<|Z|Srk+l}

<M| Oudit M| Oy(lunnlydd+] Oulluidz
1 Y1 L2

gMjU@OUukndqu Do |1 )2,
u

It follows from (6—h) that

J O() f A<k 2+ (k+1)"2
{ri<|z|<7re41}

Hence

| 061ual /445 1unl /AGZM| O6lus|/Adat- M| 0G|l /)2
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[ ploglrnai<| — o(15)da+3] (k2 + 1) <oo
U Hzigry F=1

This means fe&Ao(U).
Step 5. Let n be a positive integer, be H*(U), geH(U)*, and

=(f"+b)g.
Put

a= (x| loglglne™|do,

8 =sup |b(z)|.

Then 0<<B< . Since log|g| is subharmonic in U,

T

(15) —eoa< (2  loglglre)|do<es  (n<r<D).

Choose a positive number ¢ so that
(16) log ¢ +a—nlog 4>>0.

Lemma 8. ch<Ay, (U).
Proof. Define
U, t)=¢nllog )  (t=>0).
Then

[ gultoglerar=| w,(|chl)az
U U

(17 =57 | wullchha

k=1 " R
e &

-2,
r

= 3

ordy (2m)" IJ V(| chire'®) |)do.

—

Fix re({rp, prl. By Jensen’s convexity theorem and (15),

(27r)“‘[ ¥,(|ch(re’?)|)do = (27:)"1J"r ¢ (log | ch(re’) |)do

—7

2gulle [ loglehtre®)1do)

(18)

T

— g (l0g c+(2n)“r log|glre®) |0 +(22)1 | log](f+b) (rei®)|do)

19
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= ullog -ttt | log|(F-+8) (re)d0).

Since lim #,=o0, there exists a positive integer K such that

k—oo
(19) {tr/4)">pB if Z>K.

By (11), (19) and (6—4d),
| fr40| = f 17— B> (e /2) = Er/D " =(ur | /2)" — (lur | /4" =(lur| /4" for k=K,
ze Ry, Hence, for k>K and vy, prl,

n

(2m)"1 [ log| (" b) (reit)|do

n

2(2n)“lj n log|u,(re'®) |do—n log 4.

By (18), (20) and (16), for k>K and 7€ (rr, orl,

9 [ Walichtre) o

n

>¢, (log ct+a—n log 4+(2n)! J n log|u,(re'?) | do)

-

=gullomt | n Toglutre®) d0)

—gi(zm) " | loglurlre™)|do)

=¢(loglarr™s) =¢(log ur(#) =" (ur(r))

—@a) [ W (ualre®) o,

-

It follows from (17) that

E4

o ok
j ?ﬁ'n(|ch|)d222J rdr (27)1 j U(|urlrei®) |)do
U k=K""& -

= 3| Wushar

k=K

By (6-a), (6-c) and (6-d},

[ zzf(gukndzszj Bol|ux ) 2R)F (h=1, 2, 3, ...).
R .

&
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Thus

| walennar= 33 @)1 —co,
U =K

This means cheE Ag,(U). The proof of Theorem 1 is now complete.

4. The inclusion relation between the spaces A?(U)
Theorem 3. For any p=(0, oo)
WAL (U)") su(APU)*) Su(APH(U)*).
Consequently,
ArU)SAYU)SAP(U) (0<p<oo).

Proof (cf. Shapiro [7], Corollary 2.2; Horowitz [27], Theorem 4.6;[3], §3,
Theorem 3).
(i) Theorem 2 with

pl)=e"  (—co<t<e),
te?t (t>0)
o0 =1, (t<0),
implies that
WAL (U)) o Ap(U V) S0 Ap(U)%) =u( AP Y¥),
(i) Theorem 2 with
ile?t t=p™

e <P,
Plt) = (oot <e0),

plt) =

implies that
v(AP(U)*) =v(Ap(U)*) So(Ap(U)*) Cu(APHU)*).
Theorem 4.
H>U)s [ APU).
0<p<oo

Proof. This is an immediate consequence of the following two facts:

) HHU)cAXU)  (0<p<eo),

(i) H>U)= (1 HAU).
0<p<o0
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(See [37], §3, Theorem 4.)
Remark 1. We do not know whether

Dy=yH=U)"=u( [N APU)

0<p<oo0
is valid or not.

Theorem 5.

v( U AU Sy(BNU)Y).
0<p<o0

Consequently,

U AU)SBNU).

0< p<oo
Proof (cf. [3], §3, Theorem 5). Put
p@)=max(0, #)  (—oo<¢Lo0),
{eXD(\/ 1) (=1
e t<1).

Then ¢ and ¢ satisfy the assumptions in Theorem 2. Hence

v( U AU Cu(Ap(U)") Su(Ae(U)*)=v(BN(U)¥).

0<p<o0

5. The inclusion relation between the spaces A?(U), H?(U) and N(U)
Theorem 6. Suppose 0<p<oo. Then

i) HPU)<AU),
@iy HF(U)SAP(U),
) HPH(U)SAPHU).

Proof. Choose g with p<g<leo. Then
H>(U)cA1(U)c A*(U),
so that,
Dy=v(H"(U)* oAU cu(AP(U)*).
On the other hand, by Theorem 3,
»(ANU)*) (AP (U)*) so(AP(U)).
Hence

Dy u(AP(U)Y).
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It follows from Theorem C that
v(HP(U )Y Sv(AP(U)%).

Since HP(U)c A?(U), this implies (i). The same arguments prove (ii) and (iii).
Theorem 7. For any p<(0, o) and any q=(0, o),

AP UYECHUU).
Proof. If AP(U)cHY(U), then
v(AP(UYH) cu(HU(U)Y*) =D,.

But this is impossible.
Theorem 8. Suppose 0<2p<q<oo. Then

HA(U) AY(U).

Proof. Yor zeU, c&(—o0, o0), define

Ic(z):(Zn)“r (1—zeity-1-cqt.

When ¢<0, then I, is bounded in U. When ¢>>0, then there exists a positive
constant M, such that

IR >M(1—|z])¢ (z€U).

(See. Rudin [6], Proposition 1.4.10.)
Choose a with 0<la<{p~'—2¢~!. Put b=p~'—a. Then 0<2¢~1<b<p L.
Define

fR=01-2)"" (z€U).

Then, for re=(0, 1),

(2m)1 J | f (ret) | Pdt = (2)1 j | 1—reit |-bbgt

— -

:(Zﬂ)"lj |1—reit |-t abgt =1 _, ().

Since —ap<0,

sup I.,p(r)<loo.
0<r<l

Hence feH?(U).
We turn to proving that feA?(U). Put ¢ =bg—1. Then ¢'>1, since 2¢7'<b.
For r<(0, 1)
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T

(2m)=1 J | f (re) | 9dt = (2m)~1 J” |1—re’|Pldt=1Io1(r).

Since ¢'>1,

1 1

j Icr(f)drzj Mo (1—#)=C'dr = oo.
0 0

Hence feAIU).
Remark 2. We do not know whether the conclusion of Theorem 8 is valid,

in case 0<p<g<2p.
Theorem 9,

U HU)s U APU).
0<p<o0 0<p<oo
Proof. This follows from the fact
v U BAUM=De=»( |J APU)¥.
0<p<oo 0<p<e
Theorem 10.
APUYENU)  (0<p<o0).
Proof. This follows from the fact
V(N(U)*) =Dy &u(AP(U)%).

Corollary.

U A*U)eNU).

0<p<o0

Theorem 11.

NU)E U AP(U).

0<Dp< o0

Proof. Define

f@=exp(-2)  ev).

Then feNU). (See Rudin [4], §17.19.) A simple computation shows

lzlll_ng L—1z])?[f@)| =00  (0<p<o0).

If feA?(U), 0<p<oo, then
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lim (1—1z])¥?] f(z)| =0.
|z|—1

(See Rudin [6], Theorem 7. 2. 5.) Hence fe& ] A#{U).
0<p<oo
Corollary.

NU)EAU)  (0<p<oo).

Remark 3. We do not know whether

N HYU)s [ APU)

0<p<oo 0<p <o

is valid or not.
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Added in proof
We have proved that the statements in Remark 1 and Remark 3 are both valid (Y,
Matsugu, “On the zero sets of functions in the Bergman spaces and the Hardy spaces”,
to appear) :

WH>UM) sv( () AXU)),

0<H<e0

N HAU)= [ AXUY~

0<H<e0 0<p<o0



