Non-compoct Simple Lie Groups $\mathbb{E}_{6(-14)}$ and $\mathbb{E}_{6(2)}$ of Type \mathbb{E}_{6}

By Osamu Shukuzawa and Ichiro Yokota
Department of Mathematics, Faculty of Science, Shinshu University
(Received May 17, 1979)

It is known that there exist five simple Lie groups of type E_{6} up to local isomorphism, one of them is compact and the others are non-compact. The compact simple Lie group is given by

$$
E_{6}=\left\{\alpha \in \operatorname{Isoc}\left(\Im^{C}, \mathcal{S}^{C}\right) \mid \operatorname{det} \alpha X=\operatorname{det} X,\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\}
$$

where \mathfrak{s}^{C} is the split exceptional Jordan algebra over the complex numbers \mathbb{C} and $\langle X, Y\rangle$ the positive definite Hermitian inner product in \mathfrak{S}^{C}, and it is simply connected and its center is \mathscr{Z}_{3} [8]. Two of the non-compact simple Lie groups are given respectively by

$$
\begin{aligned}
& E_{6(-26)}=\{\alpha \in \operatorname{Ison}(\Im, \Im) \mid \operatorname{det} \alpha X=\operatorname{det} X\}, \\
& E_{6(6)}=\left\{\alpha \in \operatorname{Ison}\left(\Im \Im_{2}, \Im_{2}\right) \mid \operatorname{det} \alpha X=\operatorname{det} X\right\}
\end{aligned}
$$

where $\mathfrak{\Im}$ (resp. $\Im s$) is the exceptional (resp. split exceptional) Jordan algebra over the real numbers R, and their polar decompositions are given respectively by

$$
E_{6(-26)} \simeq F_{4} \times \boldsymbol{R}^{26}, \quad E_{6(6)} \simeq S p(4) / \mathbb{Z}_{2} \times \boldsymbol{R}^{42}
$$

and both centers are trivial [1], [3], [5].
In this paper, we find out explicitly the two other non-compact simple Lie groups. The results are as follows. These groups are given respectively by

$$
\begin{aligned}
& E_{6, \sigma}=\left\{\alpha \in \operatorname{Isoc}\left(\mathfrak{J}^{C}, \Im^{C}\right) \mid \operatorname{det} \alpha X=\operatorname{det} X,\langle\alpha X, \alpha Y\rangle_{\sigma}=\langle X, Y\rangle_{\sigma}\right\}, \\
& E_{6}, r=\left\{\alpha \in \operatorname{Isoc}\left(\Im^{C}, \Im^{C}\right) \mid \operatorname{det} \alpha X=\operatorname{det} X,\langle\alpha X, \alpha Y\rangle_{r}=\langle X, Y\rangle_{r}\right\}
\end{aligned}
$$

where $\langle X, Y\rangle_{\sigma}$ and $\langle X, Y\rangle_{r}$ are the Hermitian inner products in \Im^{C}. Their polar decompositions are given respectively by

$$
\begin{aligned}
& E_{6, \sigma} \simeq(U(1) \times \operatorname{Spin}(10)) / \mathbb{Z}_{4} \times R^{32}, \\
& E_{6}, r \simeq(S p(1) \times S U(6)) / Z_{2} \times R^{40}
\end{aligned}
$$

and both centers are given by the cyclic group $\mathbb{Z}_{3}=\left\{1, \omega 1, \omega^{2} 1\right\}, \omega \in \mathbb{C}, \omega^{3}=1$, $\omega \neq 1$, of order 3 :

$$
z\left(E_{6}, \sigma\right)=\mathbb{Z}_{3}, \quad z\left(E_{6}, r\right)=\mathbb{Z}_{3}
$$

I. Nor-compact simple Lie group E_{6}, σ of type E_{6}

1. Jordan algebras \mathfrak{F} and \mathfrak{S}_{1}.

Let © be the Cayley algebra over the real numbers \mathbb{R}. In this algebra $\mathbb{C}=$ $H \oplus H e$ (where H is the quaternion field over \vec{R}), the multiplication $x y$, the conjugate \bar{x}, the scalar part $\mathrm{t}(x)$, the inner product (x, y) and the norm $|x|$ are defined respectively by

$$
\begin{gathered}
(a+b c)(c+d e)=(a c-\overline{d b})+(b \bar{c}+d a) e, \\
\overline{a+b e}=\bar{a}-b e, \quad \mathrm{t}(x)=x+\bar{x}, \\
\langle a+b e, c+d e\rangle=\langle a, c)+\langle b, d\rangle, \quad|x|=\sqrt{(x, \bar{x})} .
\end{gathered}
$$

Let $\mathbb{C}^{C} C=\left\{x_{1}+i x_{2} \mid x_{1}, x_{2} \in \mathbb{C}\right\}$ be the complexification algebra of \mathbb{C}. In \mathbb{C}^{C}, the conjugate \bar{x}, the scalar part $\mathfrak{t}(x)$ and the inner product (x, y) are also defined naturally:

Let $\mathfrak{\Im}=\Im(3$, (§) be the Jordan algebra consisting of all 3×3 Hermitian matrices with entries in \mathbb{C}

$$
X=X(\xi, x)=\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right), \quad \xi_{i} \in \mathfrak{R}, x_{i} \in \mathbb{C}
$$

with respect to the multiplication

$$
X \circ Y=\frac{1}{2}(X Y+Y X) .
$$

In \mathfrak{F}, the inner product (X, Y), the crossed product $X \times Y$, the cubic form (X, Y, Z) and the determinant $\operatorname{det} X$ are defined respectively by

$$
\begin{aligned}
& (X, Y)=\operatorname{tr}(X \circ Y), \\
& X \times Y=\frac{1}{2}(2 X \circ Y-\operatorname{tr}(X) Y-\operatorname{tr}(Y) X+(\operatorname{tr}(X) \operatorname{tr}(Y)-(X, Y)) E), \\
& (X, Y, Z)=(X \times Y, Z)=(X, Y \times Z), \\
& \operatorname{det} X=\frac{1}{3}(X, X, X)=\xi_{1} \xi_{2} \xi_{3}+\mathfrak{t}\left(x_{1} x_{2} x_{3}\right)-\xi_{1} x_{1} \bar{x}_{1}-\xi_{2} x_{2} \bar{x}_{2}-\xi_{3} x_{3} \bar{x}_{3},
\end{aligned}
$$

where $X=X(\xi, x)$ and E is the 3×3 unit matrix.
Let $\Im^{C}=\mathfrak{F}\left(3, \mathscr{C}^{C}\right)$ be the split exceptional Jordan algebra over the complex numbers C. This Jordan algebra \mathfrak{S}^{C} may be considered as the complexification of
the Jordan algebra \Im. Especially any element X of \Im^{C} can be uniquely represented by the form

$$
X=X_{1}+i X_{2}, \quad X_{1}, \quad X_{2} \in \Im, i^{2}=-1 .
$$

In \Im^{C}, the inner product (X, Y), the crossed product $X \times Y$, the cubic form (X, Y, Z) and the determinant $\operatorname{det} X$ are also defined naturally. Moreover we define a mapping, called the complex conjugation, $\tau: \mathfrak{F}^{C \rightarrow} \mathfrak{J}^{C}$ by

$$
\tau\left(X_{1}+i X_{2}\right)=X_{1}-i X_{2}, \quad X_{1}, X_{2} \in \mathfrak{\Im}
$$

and the positive definite Hermitian inner product $\langle X, Y\rangle$ in $\mathfrak{\Im}^{C}$ by

$$
\langle X, Y\rangle=\langle\tau X, Y\rangle
$$

Next, let \Im_{1} be the Jordan algebra consisting of all $3 \times 3 \Gamma$-Hermitian matrices, i. e. $\Gamma X^{*} \Gamma^{\prime}=X$, where $\Gamma=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, with entries in ©

$$
X=X(\xi, x)=\left(\begin{array}{rrr}
\xi_{1} & x_{3} & -\bar{x}_{2} \\
-\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right), \quad \xi_{i} \in R, x_{i} \in \mathbb{C}
$$

with respect to the multiplication $X \circ Y=\frac{1}{2}(X Y+Y X)$. In \Im_{1} also, the inner product (X, Y), the crossed product $X \times Y$, the cubic form (X, Y, Z) and the determinant $\operatorname{det} X$ are defined by the quite analogous formulae as in \mathfrak{F} (e.g. $\operatorname{det} X=\frac{1}{3}$ $\left.(X, X, X)=\xi_{1} \xi_{2} \xi_{3}+\mathrm{t}\left(x_{1} x_{2} x_{3}\right)-\xi_{1} x_{1} \bar{x}_{1}+\xi_{2} x_{2} \bar{x}_{2}+\xi_{3} x_{3} \bar{x}_{3}\right)$.

Furthermore let $\Im_{1} C$ be the complexification of the Jordan algebra \mathfrak{J}_{1} and also in $\Im_{1} C$ the inner product (X, Y), the crossed product $X \times Y$, the cubic form (X, Y, Z) and the determinant $\operatorname{det} X$ are naturally defined. Finally we define the Hermitian inner product $\langle X, Y\rangle$ in \Im_{1}^{C} by

$$
\langle X, Y\rangle=(\tau X, Y)
$$

where $\tau\left(X_{1}+i X_{2}\right)=X_{1}-i X_{2}$ for $X_{1}, X_{2} \in \mathscr{F}_{1}$.
From now on, we will use the same notations for the same operations in \mathfrak{F} and \mathfrak{F}_{1}, but as occasion demands the notations in \Im_{1} will be indexed by the figure 1 .

Proposition 1. \Im_{1}^{C} is isomorphic to \mathfrak{F}^{C} as Jordan algebra over C by an isomorphism $f: \Im_{1}^{C}{ }^{C} \Im^{C}$ defined as follows:

$$
f X=\Gamma_{1} X \Gamma_{1^{*}}^{*}, \quad \Gamma_{1}=\left(\begin{array}{ccc}
i & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

And f satisfies the following properties.
(i) $(X, Y)_{1}=(f X, f Y)$,
(ii) $\operatorname{det} X=\operatorname{det} f X$,
(iii) $\langle X, Y\rangle_{1}=\langle f X, f Y\rangle_{\sigma}$
where $\sigma: \Im^{C} \rightarrow \Im^{C}$ is the linear involution defined by

$$
\sigma\left(\begin{array}{lll}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right)=\left(\begin{array}{rrr}
\xi_{1} & -x_{3} & -\bar{x}_{2} \\
-\bar{x}_{3} & \xi_{2} & x_{1} \\
-x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right)
$$

and the inner product $\langle X, Y\rangle_{\sigma}$ in \Im^{C} is defined by

$$
\langle X, Y\rangle_{\sigma}=\langle\sigma X, Y\rangle .
$$

Proof. It is easy to see that f is a linear isomorphism over C and satisfies $f(X \circ Y)=f X \circ f Y$. And
(i) $\quad(X, Y)_{1}=\operatorname{tr}(X \circ Y)=\operatorname{tr}(f(X \circ Y))=\operatorname{tr}(f X \circ f Y)=(f X, f Y)$.
(ii) We have immediately $\operatorname{det} X=\operatorname{det} f X$.
(iii) Since we have $f_{\tau} X=\tau \sigma f X$, we have

$$
\langle X, Y\rangle_{1}=(\tau X, \quad Y)_{1}=(f \tau X, f Y)=(\tau \sigma f X, f Y)=\langle\sigma f X, f Y\rangle=\langle f X, f Y\rangle_{\sigma} .
$$

2. Groups of type \boldsymbol{E}_{6} and \boldsymbol{F}_{4}.

The group $E_{6, \sigma}$ is defined to be the group of linear isomorphisms of \Im^{C} leaving the determinant $\operatorname{det} X$ and the Hermitian inner product $\langle X, Y\rangle_{\theta}$ invariant:

$$
\begin{aligned}
E_{6, \sigma} & =\left\{\alpha \in \operatorname{Isoc}\left(\Im^{C}, \Im^{C}\right) \mid \operatorname{det} \alpha X=\operatorname{det} X,\langle\alpha X, \alpha Y\rangle_{\sigma}=\langle X, Y\rangle_{\sigma}\right\} \\
& =\left\{\alpha \in \operatorname{Isoc}\left(\Im^{C}, \Im^{C}\right) \mid(\alpha X, \alpha Y, \alpha Z)=(X, Y, Z)^{\prime}\langle\alpha X, \alpha Y\rangle_{\sigma}=\langle X, Y\rangle_{\sigma}\right\}
\end{aligned}
$$

and $F_{4, \sigma}$ the subgroup of $E_{6, \sigma}$ preserving the inner product (X, Y) :

$$
\begin{aligned}
F_{4, \sigma} & =\left\{\alpha \in E_{6, \sigma} \mid(\alpha X, \alpha Y)=(X, Y)\right\} \\
& =\left\{\alpha \in E_{6, \sigma} \mid \alpha E=E\right\} .
\end{aligned}
$$

Next, to consider the group $E_{6, \sigma}$ we need to define the group $E_{6,1}$ and the subgroup $F_{4,1}$ of $E_{6,1}$:

$$
\begin{aligned}
& E_{6,1}=\left\{\alpha \in \operatorname{Isoc}\left(\Im_{1}^{C}, \mathfrak{\Im}_{1} C\right) \mid \operatorname{det} \alpha X=\operatorname{det} X,\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\} \\
& =\left\{\alpha \in \operatorname{Isoc}\left(\Im_{1}^{C}, \mathfrak{\Im}_{1} C\right) \mid(\alpha X, \alpha Y, \alpha Z)=\langle X, Y, Z),\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\}, \\
& F_{4,1}=\left\{\alpha \in E_{6,1} \mid(\alpha X, \alpha Y)=(X, Y)\right\} \\
& \\
& =\left\{\alpha \in E_{6,1} \mid \alpha E=E\right\} .
\end{aligned}
$$

Finally we shall recall the compact group E_{6} and the compact subgroup F_{4} of E_{6} :

$$
\begin{aligned}
E_{6} & =\left\{\alpha \in \operatorname{Isoc}\left(\Im^{C}, \Im^{C}\right) \mid \operatorname{det} \alpha X=\operatorname{det} X,\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\} \\
& =\left\{\alpha \in \operatorname{Isoc}\left(\Im^{C}, \Im^{C}\right) \mid(\alpha X, \alpha Y, \alpha Z)=(X, Y, Z),\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\},
\end{aligned}
$$

$$
\begin{aligned}
F_{4} & =\left\{\alpha \in E_{6} \mid(\alpha X, \alpha Y)=(X, Y)\right\} \\
& =\left\{\alpha \in E_{6} \mid \alpha E=E\right\} .
\end{aligned}
$$

Lemma 2. The group $F_{4,1}$ is homeomorphic to $\operatorname{Spin}(9) \times \mathbb{R}^{18}$ and a simple (in the sense of the center $z\left(F_{4,1}\right)=1$) Lie group of type F_{4}.

Proof. We define the group $F_{\lfloor(-29)}$ by

$$
\begin{aligned}
F_{4(-20)} & =\left\{\alpha \in \operatorname{Ison}\left(\Im_{1}, \Im_{1}\right) \mid \alpha(X \circ Y)=\alpha X \circ \alpha Y\right\} \\
& =\left\{\alpha \in E^{1}{ }_{6(-26)} \mid(\alpha X, \alpha Y)=(X, \quad Y)\right\} \\
& =\left\{\alpha \in E^{1}{ }_{6(-26)} \mid \alpha E=E\right\}
\end{aligned}
$$

where $E^{1}{ }_{6(-26)}=\left\{\alpha \in \operatorname{Iso} \boldsymbol{R}\left(\mathfrak{\Re}_{1}, \Im_{1}\right) \mid \operatorname{det} \alpha X=\operatorname{det} X\right\}$. Then the argument used in the proof of Proposition 1 of [8] shows that $F_{4(-20)}$ is isomorphic to $F_{4,1}$ by the complexification $\alpha \rightarrow \alpha^{C}$ (which means $\left.\alpha^{C}\left(X_{1}+i X_{2}\right)=\alpha X_{1}+i \alpha X_{2}, X_{1}, X_{2} \in \mathfrak{F}_{1}\right)$. Recall now that $F_{1(-20)}$ is homeomorphic to $\operatorname{Spin}(9) \times \mathbb{R}^{16}$ and a simple (in the sense of the center $z\left(F_{4(-20)}\right)=1$) Lie group of type F_{4} (Theorem 8 and $11[6]$), then results follow.

Proposition 3. The group $E_{6, \sigma}$ is isomorphic to the group $E_{6,1}$ and also $F_{4, \sigma}$ to $F_{4,1}$. In particular, $F_{4, \sigma}$ is homeomorphic to $S p i n(9) \times R^{16}$ and a simple (in the sense of the center $\left.z\left(F_{4, \sigma}\right)=1\right)$ Lie group of type F_{4}.

Proof. By using the isomorphism $f: \Im_{1} C_{\rightarrow} \mathfrak{S}^{C}$ in Proposition 1, we define a mapping $\psi: E_{6, \sigma} \rightarrow E_{6,1}$ by

$$
\psi(\alpha) X=f^{-1} \alpha f X, \quad X \in \Im_{1} C
$$

Then from Proposition 1 it is easily obtained that ψ gives an isomorphism between $E_{6, \sigma}$ and $E_{6,1}$. Furthermore we can readily show that the restriction $\phi \mid F_{4, \sigma}$ gives an isomorphism between $F_{4, \sigma}$ and $F_{4,1}$.

Remark. Let the group $E_{6(-26)}$ and its subgroup $F^{\prime}{ }_{4(-20)}$ be defined respectively by

$$
\begin{aligned}
E_{6(-26)} & =\{\alpha \in \operatorname{Isor}(\Im, \mathfrak{F}) \mid \operatorname{det} \alpha X=\operatorname{det} X\}, \\
F^{\prime}{ }_{4(-20)} & =\left\{\alpha \in E_{6(-26)} \mid(\alpha X, \alpha Y)_{\sigma}=(X, Y)_{\sigma}\right\} \\
& =\left\{\alpha \in E_{6(-26)} \mid \alpha \Gamma=\Gamma\right\}
\end{aligned}
$$

where $(X, Y)_{\sigma}=(\sigma X, Y)$. Then we have already known that

$$
\begin{array}{lc}
E_{6(-26)} \simeq F_{4} \times \mathbb{R}^{26}, & z\left(E_{6(-26)}\right)=1 \quad([1],[3]), \\
F_{4(-20)}^{\prime} \simeq \operatorname{Spin}(9) \times R^{16}, & z\left(F_{4(-20)}^{\prime}\right)=1 \quad([6]) .
\end{array}
$$

Now, define a mapping $g: \Im_{1} \rightarrow \mathfrak{F}$ by

$$
g\left(\begin{array}{rrr}
\xi_{1} & x_{3} & -\bar{x}_{2} \\
-\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right)=\left(\begin{array}{rrr}
-\xi_{1} & -x_{3} & \bar{x}_{2} \\
-\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right)
$$

then g is a linear isomorphism over \mathbb{R} and satisfies the properties $\operatorname{det} X=-\operatorname{det} g X$ and $(X, Y)_{1}=(g X, g Y)_{\sigma}$. We see therefore that the mapping $\psi^{\prime}: E_{6(-26)} \rightarrow E_{6(-26)}^{1}$ defined by

$$
\phi^{\prime}(\alpha) X=g^{-1} \alpha g X, \quad X \in \Im_{1}
$$

gives an isomorphism between $E_{6(-26)}$ and $E^{1}{ }_{6(-26)}$ and that the restriction $\psi^{\prime} \mid F^{\prime}{ }_{4(-20)}$ gives one between $F^{\prime}{ }_{4(-20)}$ and $F_{4(-20)}$.
3. Lie algebra $\varepsilon_{6, \sigma}$ of $E_{6, \sigma}$.

We consider the Lie algebra $\mathfrak{c}_{6, \sigma}$ of $E_{6, \sigma}$:

$$
\mathfrak{e}_{6, \sigma}=\left\{\zeta \in \operatorname{Hom} c\left(\Im^{C}, \mathfrak{S}^{C}\right) \mid(\zeta X, X, X)=0,\langle\zeta X, \quad Y\rangle_{\sigma}=-\langle X, \zeta Y\rangle_{\sigma}\right\} .
$$

Theorem 4. Any element ζ of the Lie algebra $\mathrm{e}_{6, \sigma}$ of the group $E_{6, \sigma}$ is uniquely represented by the form

$$
\zeta=\delta+\widetilde{S}, \quad \delta \in f_{4, \sigma}, S=\left(\begin{array}{ccc}
0 & s_{3} & \bar{s}_{2} \\
\bar{s}_{3} & 0 & 0 \\
s_{2} & 0 & 0
\end{array}\right)+i\left(\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & s_{1} \\
0 & \bar{s}_{1} & \sigma_{3}
\end{array}\right)
$$

where $\sum \sigma_{i}=0, \sigma_{i} \in \mathbb{R}, s_{i} \in \mathscr{E}$ and $\mathfrak{f}_{\{, \sigma}=\left\{\delta \in \mathfrak{c}_{\mathfrak{g}, \sigma} \mid\langle\delta X, Y)=-(X, \delta Y)\right\}=\left\{\delta \in \mathfrak{q}_{\mathfrak{g}_{g}, \sigma} \mid \delta E=0\right\}$ is the Lie algebra of the group $F_{4, \sigma}$ and, for $S, \widetilde{S} \in \operatorname{Hom} c\left(\Im^{c}\right.$, $\left.\Im^{C}\right)$ is defined by $\widetilde{S} X=S \circ X$. In particular, the type of the Lie group $E_{6, \sigma}$ is E_{6}.

Proof. It is easily seen by the analogous argument as in the proof of Theorem 2 of [8].
4. Compact subgroup $\left(\boldsymbol{E}_{6, \sigma}\right)_{K}$ of $\boldsymbol{E}_{6, \sigma}$.

We shall consider the following subgroup $\left(E_{6, \sigma}\right)_{K}$ of $E_{6, \sigma}$:

$$
\begin{aligned}
\left(E_{6, \sigma}\right)_{K} & =\left\{\alpha \in E_{6, \sigma} \mid\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\} \\
& =\left\{\alpha \in E_{6} \mid\langle\alpha X, \alpha Y\rangle_{\sigma}=\langle X, Y\rangle_{\sigma}\right\} .
\end{aligned}
$$

To do this, we need some preparations. Following [8], we first define the subgroups E_{σ} of E_{6} and $E_{\sigma, 1}$ of E_{σ} by

$$
\begin{aligned}
E_{\sigma} & =\left\{\alpha \in E_{6} \mid \sigma \alpha \sigma=\alpha\right\}, \\
E_{\sigma, 1} & =\left\{\alpha \in E_{\sigma} \mid \alpha E_{1}=E_{1}\right\}
\end{aligned}
$$

where $E_{1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. Then we have already known the following

Lemma 5. (Proposition 11 [8]). The group E $\sigma_{1} 1$ is isomorphic to the spinor group $\operatorname{Spin}(10)$.

From now on, we identify the group $E_{\sigma, 1}$ with the group $\operatorname{Spin}(10)$.
We next define the subgroup $U(1)$ of $E_{\sigma, 1}$ by

$$
U(1)=\left\{\phi(\theta)\left|\phi(\theta) X(\xi, x)=\left(\begin{array}{ccc}
\theta^{4} \xi_{1} & \theta x_{3} & \theta x_{2} \\
\theta \bar{x}_{3} & \theta^{-2} \xi_{2} & \theta^{-2} x_{1} \\
\theta x_{2} & \theta^{-2} \bar{x}_{1} & \theta^{-2} \xi_{3}
\end{array}\right), \theta \in \mathbf{C},|\theta|=1\right\} .\right.
$$

It is obvious that the group $U(1)$ is isomorphic to the usual unitary group $U(1)$ $=\{\theta \in \mathbb{C}| | \theta \mid=1\}$. Furthermore we have known that the subgroups $U(1)$ and $\operatorname{Spin}(10)$ of E_{6} commute elementwisely (Lemma 12 [8]).

Finally we denote by α^{*} and $\hat{\alpha}$ the transpose of $\alpha \in \operatorname{Isoc}\left(\Im^{C}, \Im^{C}\right)$ relative to $\langle X, Y\rangle$ and $\langle X, Y\rangle_{\sigma}$ respectively:

$$
\langle\alpha X, Y\rangle=\left\langle X, \alpha^{*} Y\right\rangle, \quad\langle\alpha X, Y\rangle_{o}=\langle X, \hat{\alpha} Y\rangle_{0} .
$$

Then it holds generally

$$
\hat{\alpha}=\sigma \alpha^{*} \sigma, \quad \alpha \in \operatorname{Isoc}\left(\Im^{C}, \Im^{C}\right),
$$

since we have $\langle X, \hat{\alpha} Y\rangle=\langle\sigma X, \hat{\alpha} Y\rangle_{\sigma}=\langle\alpha \sigma X, Y\rangle_{\sigma}=\langle\sigma \alpha \sigma X, Y\rangle=\left\langle X, \sigma \alpha^{*} \sigma Y\right\rangle$, noting that $\sigma=\sigma^{*}=\widehat{\alpha}$.

Proposition 6. The group $\left(E_{6, \sigma}\right)_{K}$ is isomorphic to the group $(U(1) \times \operatorname{Spin}(10)) / \mathbb{Z}_{4}$ where $\mathbb{Z}_{4}=\{(1, \phi(1)), \quad(-1, \phi(-1)),(\mathrm{i}, \phi(-i)),(-\mathrm{i}, \phi(i))\}$.

Proof. First we shall show that $\left(E_{6, \sigma}\right)_{K}=E_{\sigma}$. Let α be an element of $\left(E_{6, \sigma}\right)_{K}$, that is, $\alpha \alpha^{*}=\alpha \hat{\alpha}=1$, then from $\hat{\alpha}=\sigma \alpha^{*} \sigma$ we have $\sigma \alpha \sigma=\alpha$, that is, $\alpha \in E_{\sigma}$. Conversely, let α be an element of E_{σ}, then we have $\alpha \hat{\alpha}=\alpha \sigma \alpha^{*} \sigma=\sigma \alpha \alpha \alpha^{*} \sigma=\sigma \sigma=1$, that is, $\alpha \in$ $\left(E_{6, \sigma}\right)_{K}$. Now, we have already known that a homomorphism $\varphi: U(1) \times \operatorname{Spin}(10) \rightarrow$ $E_{\sigma}=\left(E_{6, \sigma}\right)_{K}$ defined by $\varphi(\theta, \beta)=\phi(\theta) \beta$ induces an isomorphism $\left(E_{6, \sigma}\right)_{K} \cong(U(1) \times$ Spin $(10)) / \mathbb{Z}_{4}$ (Theorem 13 [8]). Thus Proposition 6 is proved.

5. Polar decomposition of $\boldsymbol{E}_{6, \sigma}$.

To give a polar decomposition of $E_{6, \sigma}$, we use the following
Lemma $7([2] \mathrm{pp} .345)$. Let G be a pseudoalgebraic subgroup of the general linear group $G L(n, C)$ such that the condition $A \in G$ implies $A^{*} \in G$. Then G is homeomorphic to the topological product of $G \cap U(n)$ (which is a maximal compact subgroup of G) and a Euclidean space R^{d} :

$$
G \simeq(G \cap U(n)) \times \boldsymbol{R}^{d}, \quad d=\operatorname{dim} G-\operatorname{dim}(G \cap U(n))
$$

where $U(n)$ is the unitary subgroup of $G L(n, C)$.
To use the above Lemma, first of all we show the following
Lemma 8. $E_{6, \sigma}$ is a pseudoalgebraic subgroup of the general linear group $G L(27, C)$ $=\operatorname{Isoc}\left(\mathfrak{F}^{C}, \mathfrak{F}^{C}\right)$ and satisfies the condition $\alpha \in E_{6, \sigma}$ implies $\alpha^{*} \in E_{6,} \sigma$.

Proof. Since $\hat{\alpha}=\sigma \alpha^{*} \sigma, \alpha \hat{\alpha}=1$ for $\alpha \in E_{6, \sigma}$, we have $\alpha^{*}=\sigma \alpha^{-1} \sigma \in E_{6, \sigma}$. It is obvious
that $E_{6, \sigma}$ is pseudoalgebraic, because $E_{6, \sigma}$ is defined by the pseudoalgebraic relations $\operatorname{det} \alpha X=\operatorname{det} X$ and $\langle\alpha X, \alpha Y\rangle_{\sigma}=\langle X, Y\rangle_{\sigma}$.

Let $U\left(\Im^{C}\right)$ be the unitary subgroup of $\operatorname{Isoc}\left(\mathfrak{\Im}^{C}, \Im^{C}\right)$:

$$
U(27)=U\left(\Im^{C}\right)=\left\{\alpha \in \mathrm{Isoc}\left(\Im^{C}, \Im^{C}\right) \mid\langle\alpha X, \alpha Y\rangle=\langle X, \quad Y\rangle\right\} .
$$

Then we have

$$
E_{6, \sigma} \cap U(\Im C)=\left(E_{0, \sigma}\right)_{K} \cong(U(1) \times \operatorname{Spin}(10)) / \mathbb{Z}_{4}
$$

by Proposition 6. Finally we shall determine the dimension of the Euclidean part of $E_{6, \sigma}$. Since $E_{6, \sigma}$ is a simple Lie group of type E_{6} by Theorem 4, the dimension d is obtained by

$$
d=\operatorname{dim} E_{\varepsilon, \sigma}-\operatorname{dim}(U(1) \times \operatorname{Spin}(10))=78-46=32 .
$$

Thus we get the following
Theorem 9. The group $E_{6, \sigma}$ is homeomorphic to the topological product of the group $(U(1) \times \operatorname{Spin}(10)) / \mathbb{Z}_{4}$ and a 32-dim. Eudlidean space \mathbb{R}^{32} :

$$
E_{6, \sigma} \simeq(U(1) \times \operatorname{Spin}(10)) / \mathbb{Z}_{4} \times \boldsymbol{R}^{32}
$$

In particular, $E_{6, \sigma}$ is a connected (but not simply connected) Lie group.
6. Center $z\left(\mathbb{E}_{6, \sigma}\right)$ of $\boldsymbol{E}_{6, \sigma}$.

Lemma 10. For $a \in \mathfrak{C}, a \neq 0$, the mapping $\alpha(a): \mathfrak{S}^{C} \rightarrow \mathfrak{S}^{C}$ defined by $\alpha(a) X(\xi, x)=$ $Y(\eta, y)$ belongs to $E_{6, \sigma}$, where

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\eta_{1}=\frac{\xi_{1}-\xi_{3}}{2}+\frac{\xi_{1}+\xi_{3}}{2} \cosh |a|+\frac{\left(a, x_{2}\right)}{|a|} \sinh |a|, \\
\eta_{2}=\xi_{9}, \\
\eta_{3}=-\frac{\xi_{1}-\xi_{3}}{2}+\frac{\xi_{1}+\xi_{3}}{2} \cosh |a|+\frac{\left(a, x_{2}\right)}{|a|} \sinh |a|, \\
\left\{\begin{array}{l}
y_{1}=x_{1} \cosh \frac{|a|}{2}+\frac{\overline{a x_{3}}}{|a|} \sinh \frac{|a|}{2} \\
y_{2}=x_{2}+\frac{2\left(a, x_{2}\right) a}{|a|^{2}} \sinh ^{2} \frac{|a|}{2}+\frac{\left(\xi_{1}+\xi_{2}\right) a}{2|a|} \sinh |a|, \\
y_{3}=x_{3} \cosh \frac{|a|}{2}+\frac{\overline{x_{1} a}}{|a|} \sinh \frac{|a|}{2} .
\end{array}\right.
\end{array} . \begin{array}{l}
\mid a
\end{array}\right)
\end{array}\right.
$$

Proof. Since, for $F_{2}(a)=\left(\begin{array}{ccc}0 & 0 & \bar{a} \\ 0 & 0 & 0 \\ a & 0 & 0\end{array}\right), \widetilde{F}_{2}(a)$ is an element of $\mathfrak{e}_{6, \sigma}$ by Theorem 4, it follows $\alpha(a)=\exp \widetilde{F}_{2}(a) \in E_{6, \sigma}$.

Theorem 11. The center $z\left(E_{6, \sigma}\right)$ of the group $E_{6, \sigma}$ is isomorphic to the cyclic group \mathbb{Z}_{3} of order 3:

$$
z\left(E_{6, \sigma}\right)=\mathbb{Z}_{3}=\left\{1, \omega 1, \omega^{2} 1\right\}, \quad \omega \in \mathbb{C}, \quad \omega^{3}=1, \quad \omega \neq 1 .
$$

proof. Let $\alpha \in z\left(E_{6, \sigma}\right)$. From the commutativity with $\sigma \in E_{6, \sigma}$, we have $\sigma \alpha=\alpha \sigma$, that is, $\alpha \in\left(E_{6, \sigma}\right)_{K}$. Hence there exists an element $(\theta, \beta) \in U(1) \times \operatorname{Spin}(10)$ such that $\alpha=\varphi(\theta, \beta)=\phi(\theta) \beta$ by Proposition 6. Moreover we see that β is an element of the center $z(\operatorname{Spin}(10))$, noting that the groups $U(1)$ and $\operatorname{Spin}(10)$ commute elementwisely. In fact, it holds $\phi(\theta) \beta \beta^{\prime}=\beta^{\prime} \phi(\theta) \beta=\phi(\theta) \beta^{\prime} \beta$, hence $\beta \beta^{\prime}=\beta^{\prime} \beta$ for all $\beta^{\prime} \in \operatorname{Spin}(10)$. Now, as is well known, the order of $z(\operatorname{Spin}(10))$ is 4 and obviously $\phi(\varepsilon) \in z(\operatorname{Spin}(10))$ for $\varepsilon= \pm 1, \pm i$, therefore we have

$$
z(S p i n(10))=\{\phi(1), \quad \phi(-1), \phi(\mathrm{i}), \quad \phi(-\mathrm{i})\} \subset U(1) .
$$

Hence $\alpha=\phi\left(\theta^{\prime}\right) \in U(1)$ for some $\theta^{\prime} \in C,\left|\theta^{\prime}\right|=1$. Next, from the commutativity with $\alpha(a) \in E_{6, \sigma}$ as in Lemma 10, we have $\alpha \alpha(a) E=\alpha(a) \alpha E$, that is,

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\lambda \cosh |a| & 0 & 0 \\
0 & \mu & 0 \\
0 & 0 & \mu \cosh |a|
\end{array}\right) \\
& \quad=\left(\begin{array}{ccc}
\frac{\lambda-\mu}{2}+\frac{\lambda+\mu}{2} \cosh |a| & 0 & 0 \\
0 & \mu & 0 \\
0 & 0 & -\frac{\lambda-\mu}{2}+\frac{\lambda+\mu}{2} \cosh |a|
\end{array}\right)
\end{aligned}
$$

where we denote θ^{\prime} by λ and $\theta^{\prime-2}$ by μ. Hence we have $\lambda=\mu(=\omega)$, that is,

$$
\alpha E=\omega E
$$

where $\omega \in \mathbb{C}$ and $\omega^{3}=\operatorname{det} \alpha E=\operatorname{det} E=1$. Since $\omega 1 \in z\left(E_{6, \sigma}\right)$, we have $\omega^{-1} \alpha \in z\left(E_{6, \sigma}\right)$ and $\omega^{-1} \alpha E=E$, hence $\omega^{-1} \alpha \in z\left(F_{4, \sigma}\right)$. Therefore it follows that $\omega^{-1} \alpha=1$, that is, $\alpha=\omega 1$, since $z\left(F_{4, c}\right)=1$ by proposition 3. Thus the proof of Theorem 11 is completed.

II. Non-compact simple Lie group $\boldsymbol{E}_{\sigma_{1} r}$ of type \boldsymbol{E}_{6}.

7. Split Jordan algebra \Im_{2}.

Let \mathbb{E}^{\prime} be the split Cayley algebra over \boldsymbol{R}. In $\mathbb{C}^{\prime}=\boldsymbol{H} \oplus \boldsymbol{H} e^{\prime}$, the multiplication $x y$, the conjugate \bar{x}, the scalar part $\mathrm{t}(x)$ and the inner product $(x, y)^{\prime}$ are defined respectively by

$$
\begin{gathered}
\left(a+b e^{\prime}\right)\left(c+d e^{\prime}\right)=(a c+\bar{d} b)+(b \bar{c}+d a) e^{\prime}, \\
\overline{a+b e^{\prime}}=\bar{a}-b e^{\prime}, \quad \mathrm{t}(x)=x+\bar{x}, \\
\left(a+b e^{\prime}, \quad c+d e^{\prime}\right)^{\prime}=(a, c)-(b, d) .
\end{gathered}
$$

Let $\mathbb{E}^{\prime} C$ be the complexification algebra of $\left(\mathbb{C}^{\prime}\right.$. In $\mathbb{C}^{\prime} C$, the conjugate \bar{x}, the scalar part $\mathrm{t}(x)$ and the inner product $(x, y)^{\prime}$ are also defined naturally. The mapping $k: \mathbb{C}^{\prime} C \rightarrow \mathbb{E}^{\prime} C$ defined by

$$
k\left(\left(a+b e^{\prime}\right)+i\left(c+d e^{\prime}\right)\right)=(a+d e)+i(c-b e)
$$

gives an isomorphism as algebra over \boldsymbol{C} and satisfies

$$
k(\bar{x})=\overline{k(x)}, \quad(x, y)^{\prime}=(k(x), k(y)) .
$$

Let $\Im_{2}=\mathfrak{J}\left(3, \mathbb{E}^{\prime}\right)$ be the Jordan algebra consisting of all 3×3 Hermitian matrices with entries in \mathbb{C}^{\prime}

$$
X=X(\xi, x)=\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right), \quad \xi_{i} \in R, x_{i} \in \mathbb{E}^{\prime}
$$

with respect to the multiplication $X \circ Y=\frac{1}{2}(X Y+Y X)$. In \Im_{2} also, the inner product (X, Y), the crossed product $X \times Y$, the cubic form (X, Y, Z) and the determinant $\operatorname{det} X$ are defined by the quite same formulae in $\mathfrak{\Im}$.

Furthermore the complexification $\Im_{2} C$ of \Im_{2} and the several operations in $\Im_{2} C$ are also similar to the definitions in the section 1.

From now on, we will use the same notations for the same operations in \mathfrak{F} and \Im_{2}, but as occasion demands the notations in \Im_{2} will be indexed by the figure 2.

Proposition 12. \Im_{2}^{C} is isomorphic to \mathfrak{F}^{C} as Jordan algebra over C by an isomorphism $h: \Im_{2}^{C}{ }^{C} \mathfrak{S}^{C}$ defined as follows:

$$
h X(\xi, x)=X(\xi, k(x)) .
$$

And h satisfies the following properties.
(i) $(X, Y)_{2}=(h X, h Y)$,
(ii) $\operatorname{det} X=\operatorname{det} h X$,
(iii) $\langle X, Y\rangle_{2}=\langle h X, h Y\rangle_{r}$
where $\gamma: \Im^{C} \rightarrow \Im^{C}$ is the linear involution defined by

$$
\gamma X(\xi, a+b e)=X(\xi, a-b e)
$$

where $\xi \in \mathbb{C}, a, b \in \boldsymbol{H}^{C}$ and the inner product $\langle X, Y\rangle_{r}$ in $\mathfrak{\Im}^{C}$ is defined by

$$
\langle X, Y\rangle_{r}=\langle\gamma X, \quad Y\rangle .
$$

Proof. It is easy to see that h is a linear isomorphism over \mathbb{C} and satisfies $h(X \circ Y)=h X \circ h Y$. The properties (i), (ii) and (iii) are shown similarly in the proof of Proposition 1.

8. Groups of type \boldsymbol{E}_{6} and \boldsymbol{F}_{4}.

The group $E_{6, r}$ is defined to be the group of linear isomorphisms of \Im^{C} leaving the determinant $\operatorname{det} X$ and the Hermitian inner product $\langle X, Y\rangle_{r}$ invariant:

$$
\begin{aligned}
E_{6, \gamma} \gamma & =\left\{\alpha \in \operatorname{Isoc}\left(\Im^{C}, \Im^{C}\right) \mid \operatorname{det} \alpha X=\operatorname{det} X,\langle\alpha X, \alpha Y\rangle_{r}=\langle X, Y\rangle_{r}\right\} \\
& =\left\{\alpha \in \operatorname{Isoc}\left(\Im^{C}, \Im^{C}\right) \mid(\alpha X, \alpha Y, \alpha Z)=(X, Y, Z),\langle\alpha X, \alpha Y\rangle_{r}=\langle X, Y\rangle_{r}\right\}
\end{aligned}
$$

and $F_{4, r}$ the subgroup of $E_{6, r}$ preserving the inner product (X, Y) :

$$
\begin{aligned}
F_{4, r} & =\left\{\alpha \in E_{6, r} \mid(\alpha X, \alpha Y)=(X, Y)\right\} \\
& =\left\{\alpha \in E_{6, r} \mid \alpha E=E\right\} .
\end{aligned}
$$

Next, to consider the group $E_{6, r}$ we need to define the group $E_{6,2}$ and the subgroup $F_{4,2}$ of $E_{6,2}$:

$$
\begin{aligned}
& E_{6,2}=\left\{\alpha \in \operatorname{Isoc}\left(\Im_{2}^{C}, \Im_{2} C\right) \mid \operatorname{det} \alpha X=\operatorname{det} X,\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\} \\
&=\left\{\alpha \in \operatorname{Iso}\left(\Im_{2} C, \Im_{2} C\right) \mid\langle\alpha X, \alpha Y, \alpha Z)=(X, Y, Z),\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\}, \\
& F_{4,2}=\left\{\alpha \in E_{6,2} \mid(\alpha X, \alpha Y)=(X, Y)\right\} \\
&=\left\{\alpha \in E_{6,2} \mid \alpha E=E\right\} .
\end{aligned}
$$

Lemma 13. The group $F_{4,2}$ is homeomorphic to $(S p(1) \times S p(3)) / \mathbb{Z}_{2} \times \mathbb{R}^{28}$ and a simple (in the sense of the center $z\left(F_{4,2}\right)=1$) Lie group of type F_{4}.

Proof. We define the group $F^{\prime}{ }_{4(4)}$ by

$$
\begin{aligned}
F_{\left.{ }_{4(1)}\right)}^{\prime} & =\left\{\alpha \in \operatorname{IsoR}\left(\Im_{2}, \Im_{2}\right) \mid \alpha(X \circ Y)=\alpha X \circ \alpha Y\right\} \\
& =\left\{\alpha \in E_{6(6)}^{\prime} \mid(\alpha X, \alpha Y)=\langle X, \quad Y)\right\} \\
& =\left\{\alpha \in E_{\theta(6)}^{\prime} \mid \alpha E=E\right\}
\end{aligned}
$$

where $E_{6(6)}^{\prime}=\left\{\alpha \in \operatorname{IsoR}\left(\Im_{2}, \Im_{2}\right) \mid \operatorname{det} \alpha X=\operatorname{det} X\right\}$. Then the argument used in the proof of Proposition 1 of [8] shows that $F_{4(4)}^{\prime}$ is isomorphic to $F_{4,2}$ by the complexification $\alpha \rightarrow \alpha^{C}$. Recall now that $F_{4(4)}^{\prime}$ is homeomorphic to $(S p(1) \times S p(3)) / \mathbb{Z}_{2} \times \mathbb{R}^{28}$ and a simple (in the sense of the center $\left.z\left(F^{\prime}{ }_{(4)}\right)=1\right)$ Lie group of type $F_{4}[7]$, then the results follow.

Proposition 14. The group $E_{6, r}$ is isomorphic to the group $E_{6,2}$ and also $F_{4, r}$ to $F_{4,2}$. In particular, $F_{4, \gamma}$ is homeomorphic to $(S p(1) \times S p(3)) / \mathbb{Z}_{2} \times R^{28}$ and a simple (in the sense of the center $z\left(F_{4}, r\right)=1$) Lie group of type F_{1}.

Proof. By using the isomorphism $h: \Im_{2}^{C \rightarrow} \mathfrak{\Im}^{C}$ in Proposition 12, we define a mapping $\psi: E_{6, r} \rightarrow E_{6,2}$ by

$$
\psi(\alpha) X=h^{-1} \alpha h X, \quad X \in \Im_{2} c .
$$

Then from proposition 12 it is easily obtained that ψ gives an isomorphim between
$E_{6, r}$ and $E_{6,2}$. Furthermore we can readily show that the restriction $\phi \mid F_{4, r}$ gives an isomorphism between $F_{4, r}$ and $F_{4,2}$
9. Lie algebra ε_{6}, r of \boldsymbol{E}_{6}, r.

We consider the Lie algebra $e_{6, r}$ of $E_{6, r}$:

$$
\mathfrak{c}_{\mathrm{e}, \gamma}=\left\{\zeta \in \operatorname{Hom}_{C}\left(\Im^{C}, \mathfrak{S}^{C}\right\rangle \mid(\zeta X, X, X)=0,\langle\zeta X, \quad Y\rangle=-\langle X, \zeta Y\rangle_{r}\right\} .
$$

Theorem 15. Any element ζ of the Lie algebra \mathfrak{c}_{6}, γ of theg roup $E_{6, r}$ is uniquely represented by the form

$$
\zeta=\delta+\widetilde{S}, \quad \delta \in \mathrm{f}_{4}, r, S=\left(\begin{array}{ccc}
0 & s_{3} e & -s_{2} e \\
-s_{3} e & 0 & s_{1} e \\
s_{2} e & -s_{1} e & 0
\end{array}\right)+i\left(\begin{array}{ccc}
\tau_{1} & t_{3} & \bar{t}_{2} \\
\bar{t}_{3} & \tau_{2} & t_{1} \\
t_{2} & \bar{t}_{1} & \tau_{3}
\end{array}\right),
$$

where $\sum \tau_{i}=0, \tau_{i} \in \boldsymbol{R}, s_{i}, t_{i} \in \boldsymbol{H}$ and $\mathfrak{f}_{4, \gamma}=\left\{\delta \in \mathfrak{e}_{6, \gamma} \mid(\delta X, Y)=-(X, \delta Y)\right\}=\left\{\delta \in \mathfrak{e}_{6, \gamma} \mid \delta E=0\right\}$ is the Lie algebra of the group $F_{4, r}$ and, for $S, \widetilde{S} \in \operatorname{Hom}_{C}\left(\mathfrak{J}^{C}, \mathfrak{\Im}^{C}\right)$ is defined by $\widetilde{S} X$ $=S \circ X$. In particular, the type of the Lie group E_{6}, r is E_{6}.

Proof. It is easily seen by the analogous argument as in the proof of Theorem 2 of [8].
10. Compact subgroup $\left(\mathbb{E}_{6, r}\right)_{K}$ of $\mathbb{E}_{6, \gamma}$.

We shall consider the following subgroup $\left(E_{6}, r\right)_{K}$ of $E_{6, r}$:

$$
\begin{aligned}
\left(E_{8, \gamma}\right)_{K} & =\left\{\alpha \in E_{6, r} \mid\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\} \\
& =\left\{\alpha \in E_{6} \mid\langle\alpha X, \alpha Y\rangle r=\langle X, Y\rangle r\right\} .
\end{aligned}
$$

To do this, we need some preparations. Following [8], we first define the subgroup E_{γ} of E_{6} by

$$
E_{\gamma}=\left\{\alpha \in E_{6} \mid \gamma \alpha \gamma=\alpha\right\} .
$$

Next we denote by ' α the transpose of $\alpha \in \operatorname{Isoc}\left(\mathfrak{F}^{C}, \mathfrak{S}^{C}\right)$ relative to $\langle X, Y\rangle_{r}:\langle\alpha X, Y\rangle_{r}$ $=\left\langle X,{ }^{\prime} \alpha Y\right\rangle$. Then it holds similarly in the section 4 ,

$$
' \alpha=\gamma \alpha^{*} \gamma, \quad \alpha \in \operatorname{Isoc}\left(\mathfrak{F}^{C}, \mathfrak{\Im}^{C}\right),
$$

noting that $\gamma=\gamma^{*}={ }^{\prime} \gamma$.
Proposition 16. The group $\left(E_{6, r}\right)_{K}$ is isomorphic to the group $(\operatorname{Sp}(1) \times S U(6)) / \mathbb{Z}_{2}$ where $\mathbb{Z}_{2}=\{(1, E),(-1,-E)\}$.

Proof. By the proof similar to that of Proposition 6, it follows that $\left(E_{6, r}\right)_{K}$ $=E_{\gamma}$. On the other hand, we have already known that E_{γ} is isomorphic to the group $(S p(1) \times S U(6)) / \mathbb{Z}_{2}$ (Theorem 16 [8]). Thus Proposition 16 is proved.
11. Polar decomposition of $\boldsymbol{E}_{6}, 7$.

To use Lemma 7, first of all we show the following

Lemma 17. $E_{6, r}$ is a pseudoalgebraic subgroup of the general linear group $G L(n, C)=\operatorname{Isoc}\left(\mathcal{S}^{C}, \mathfrak{\Im}^{C}\right)$ and satisfies the condition $\alpha \in E_{6, \gamma}$ implies $\alpha^{*} \in E_{6, r}$.

Proof. Since ' $\alpha=\gamma \alpha^{*} \gamma, \alpha^{\prime} \alpha=1$ for $\alpha \in E_{6}, \gamma$. we have $\alpha^{*}=\gamma \alpha^{-1} \gamma \in E_{6, \gamma}$. It is obvious that $E_{6, r}$ is pseudoalgebraic, because $E_{0, r}$ is defined by the pseudoalgebraic relations $\operatorname{det} \alpha X=\operatorname{det} X$ and $\langle\alpha X, \alpha Y\rangle_{r}=\langle X, Y\rangle_{r}$.

Next, let $U\left(\mathfrak{S}^{C}\right)$ be the unitary subgroup of Isoc$\left(\mathfrak{S}^{C}, \mathfrak{S}^{C}\right)$ as in the section 5 , then we have

$$
E_{6, r} \cap U\left(\Im^{C}\right)=\left(E_{6, r}\right)_{K} \cong(S p(1) \times S U(6)) / \mathbb{Z}_{2}
$$

by Proposition 16. Finally we shall determine the dimension of the Euclidean part of $E_{6, \gamma}$. Since $E_{6, r}$ is a simple Lie group of type E_{6} by Theorem 15 , the dimension d is obtained by

$$
d=\operatorname{dim} E_{6, r}-\operatorname{dim}(S p(1) \times S U(6))=78-38=40 .
$$

Thus we get the following
Theorem 18. The group $E_{6, r}$ is homeomorphic to the topological product of the group $(S p(1) \times S U(6)) / \mathcal{Z}_{3}$ and a 40-dim. Euclidean space \boldsymbol{R}^{40} :

$$
E_{6, r} \simeq(S p(1) \times S U(6)) / \mathcal{Z}_{2} \times \mathbb{R}^{40} .
$$

In particular, E_{6}, r is a connected (but not simply connected) Lie group.
12. Center $z\left(\mathbb{E}_{6}, r\right)$ of $\mathbb{E}_{6, r}$.

Theorem 19. The center $z\left(E_{6, r}\right)$ of the group $E_{6, r}$ is isomorphic to the cyclic group \mathbb{Z}_{3} of order 3:

$$
z\left(E_{6}, r\right)=\mathbb{Z}_{3}=\left\{1, \omega 1, \omega^{2} 1\right\}, \quad \omega \in \mathbb{C}, \omega^{3}=1, \omega \neq 1
$$

Proof. We define the linear transformations $\beta i, i=1,2,3$ of \Im^{C} by

$$
\beta_{1} X=\left(\begin{array}{rrr}
\xi_{1} & -x_{3} & -\bar{x}_{2} \\
-\bar{x}_{3} & \xi_{2} & x_{1} \\
-x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right), \quad \beta_{2} X=\left(\begin{array}{rrr}
\xi_{1} & -x_{3} & \bar{x}_{2} \\
-\bar{x}_{3} & \xi_{2} & -x_{1} \\
x_{2} & -\bar{x}_{1} & \xi_{3}
\end{array}\right), \quad \beta_{3} X=\left(\begin{array}{lll}
\xi_{2} & x_{1} & \bar{x}_{3} \\
\bar{x}_{1} & \xi_{3} & x_{2} \\
x_{3} & \bar{x}_{2} & \xi_{1}
\end{array}\right)
$$

for $X=X(\xi, x) \in \mathfrak{J}^{C}$. Then as readily seen they are elements of E_{6}, r. Now, let $\alpha \in z\left(E_{6}, r\right)$. From the commutativity with the above $\beta_{i}, i=1,2,3$, that is, $\beta_{i} \alpha E=$ $\alpha \beta i E=\alpha E$, we have

$$
\alpha E=\omega E, \quad \omega \in C, \omega^{3}=1 .
$$

Thus, since $z\left\langle F_{4}, r\right)=1$ by Proposition 14, the result follows similarly in the proof of Theorem 11.

Since the fundamental group of $E_{6, r}$ is \mathbb{Z}_{2} from Theorem 18 and the center $z\left(E_{6}, r\right)$ of E_{6}, r is \mathscr{Z}_{3}, we have the following

Theorem 20. The center $z\left(\widetilde{E}_{6}, \gamma\right)$ of the simply connected non-compact Lie group $\widetilde{E}_{6, r}=E_{6(2)}$ is isomorphic to the cyclic group \mathbb{Z}_{6} of order 6 .

Heferences

[1] H. Freudenthal: Oktaven, Ausnahmegruppen und Oktavengeometrie, Math. Inst., Rijksuniv. te Utrecht, (1951).
[2] S. Helgason : Differential Geometry and Symmetric Spaces, Academic Press Inc., New York-London, (1962).
[3] N. JACOBSON : Some groups of transformations defined by Jordan algebras III, Jour. Reine Angew. Math., 207, (1961), 61-85.
[4] ——: Exceptional Lie Algebras, Marcel Dekker, New York, (1971).
[5] O. Shukuzawa-I. Yokota: Non-compact Simple Lie group $E_{6(6)}$ of type E_{6}, Jour. Fac. Sci., Shinsha Univ., 14, (1979), to appear.
[6] I. Yokota: On a non compact simple Lie group $F_{4,1}$ of type F_{4}, ibid., 10, (1975), 71-80.
[7] : Non-compact Simple Lie Group $F_{4,2}$ of Type F_{4}, ibid., 12, (1977), 53-64.
[8] : Simply Connected Compact Simple Lie Group $E_{6(-78)}$ of Type E_{0} and its Involutive Automorphisms, Jour. Math., Kyoto Univ., to appear.

