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   It is known that there exist five simple Lie groups of type E6 up to local

isomorphism, one of them is compact and the others are non-compact. The compact

simple Lie group is given by

            E6={evEilsoc(gC, $C)ldetaX=detX, <evX, cvY>=:<X, Y>}

where $C is the split exceptional Jordan algebra over the complex numbers C and

<X, Y> the positive definite Hermitian inner product in gC, and it is simply

connected and its center is Z3 [8]. Two of the non-compact simple Lie groups are

given respectively by

                   E6(m26):={aEIsoR(g, g)ldetcrX=detX},

                   E6(6)= {aEi IsoR(g2, S2) ] det evX=det X}

where $ (resp. S2.) is the exceptional (resp.split exceptional) Jordan algebra over

the real numbers ft, and their polar decompositions are given respectively by

                E6(-26)[zl74xR26, E6(6)[rSp(4)/Z2xR42,

and both centers are trivial [1], [3], [5].

   In this paper, we find out explicitly the two other non-compact simple Lie

groups. The results are as follows. These groups are given respectively by

          E6,a-- {aEIsoc(gC, gC) ldet aX=detX, <evX, aY>a=<X, Y>a},

          E6,r={crEIsoc($C, gC)ldetaX==detX, <aX, aY>r=:=<X, Y>r}

where <X, Y>a and <X, Y>r are the Hermitian inner products in SC. Their polar

decompositions are given respectively by

                      E6 , a :r: ( U(1) x SPin(10))/Z4 x R32,

                      E6, r[)t (SP(1) x SU(6))/Z, x R4e
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                                                              '

and both centers are given by the cyclic group Z3=={1, to1, ca21}, tuEiC, to3=1,

te;1, of order 3:

                       2(E6,a) =Z3, 2(E6,r) =:: Z3.

             g. Neas-comegeact siffw}ple thae gro"p E6,a of type E6

   1. Jordan algebras S amdi 5i.

   Let as be the Cayley algebra over the real numbers .ee. In this algebra S=

ffeUle3 (where ff is the quaternion field over ft), the multiplication xy, the conju-

gate I, the scalar part t(x), the inner product (x, y) and the norm lxl are defined

respectively by

                    (a+bc)(c+de)=(ac-db)+(bb+da)e,

                      a+be==fi--be, t(x)==x+x-,

              <a+be, c+de)=<a, c)+(b, d), lxl ==V(x, x).

   Let asC::={xi+ix21xi,x2eE} be the complexification algebra of G. In QC, the

conjugate hi, the scalar part t(x) and the inner product (x, y) are also defined

   Let g=g(3, as) be the Jordan algebra consisting of all 3x3 Hermitian matrices

with entries in G
                           '
                x..,x(6,.)=(i-} xii -li),

                                            8iGre,xiEi]G

with respect to the multiplication

                                1                         XoY= 2 (XY+YX).

In g, the inner product (X, Y), the crossed product XxY, the cubic form

<X, Y, Z) and the determinant detX are defined respectively by

          (X, Y)-=tr(XoY),

                 1          XXY= 2 (2XoY-tr(X)Y-tr(Y)X+(tr(X)tr(Y)-(X, Y))E),

          (X, Y, Z)=(XxY, Z)==(X, YxZ),

                 1          detX= 3 (X, X, X)==&g2g3+t(xix2x3)-6ixili-82x2I2-83x3hi3,

where X==X(e, x) and E is the 3×3 unit matrix.

   Let gC=:$(3,SC) be the split exceptional Jordan algebra over the complex

numbers C. This Jordan algebra ga may be considered as the complexification of
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the Jordan algebra g. Especially any element X of Sa can be uniquely represented

by the form

                    X=Xi+iX2, Xi, XliEilEg, i2=Ll.

In SC, the inner product (X, Y), the crossed product XxY, the cubic form

(X, Y, Z) and the determinant detX are also defined naturally. Moreover we define

a mapping, called the complex conjugation, r : gC.ga by

                    r(Xi+iX2)=Xi-iX2, Xi, X2Eg

and the positive definite Hermitian inner product <X, Y> in kC by

                             <X, Y>==(di, Y).

   Next, let gi be the Jordan algebra consisting of all 3×3 r-Hermitian matrices,

i.e. rx"r=x, where r=(-8 9 oO ), with entries in as ''

                        NOO 11

               x=x(e, x)=(-i), Xmxgl rmii, ), . eieR, xiEEing'

                             '
                                     iwith respect to the multiplication XoY== 2 (XY+YX). In gi also, the inner pro-

duct (X, Y), the crossed product XxY, the cubic form (X, Y, Z) and the deter-

minant detX are defined by the quite analogous formulae as in g (e. g, detX== ±

(X, X, X)=6,g,&+t(xix,x,)-&xili+62x2hi2+g3x3I3).

   Furthermore Iet &C be the complexification of the Jordan algebra gi and also

in S!C the inner product (X, Y), the crossed product XxY, the cubic form

(X, Y, Z) and the determinant detX are naturally defined. Finally we define the

Hermitian inner product <X, Y> in SiC by

                            <X, Y> =(TX, Y)

where r(Xi+iX>)= Xi-iXh for Xi, XhGgi.

   From now on, we will use the same notations for the same operations in g

and $i, but as occasion demands the notations in Si will be indexed by the figure 1.

   Proposition X. fiiC is isomorPhic to SC as lbrdan aigebra over C by an isonzor-

Phismf: $iC-SC dofned as follows: '
                     fx-r,xpi .'i=(k' Z' 8)

And f satistes, the following ProPerties.
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   (i) (X, Y),-(fX, fY),

   (ii) detX=detfX,

   (iii) <X, Y>i==<fX, fY>a

where cr:gC.SC is the linear involution dofned by

                   a( s･ /ll xii･)-= (:it, Hgi -i:･)

and the inner Product <X, Y>a in EiC is deYined bN

                         <X, Y>a=<aX, Y>.

   Proof. It is easy to see that f is a linear isomorphism over C and satisfies

f(XoY)-fXofZ And
   (i) (X, Y)i=tr(Xon=tr(f(XoY))==tr(fXofY)=(fX, fY).

   (ii) We have immediately detX==detfX

   (iii) Since we have fd¥==TofX, we have

     <X, Y>i-(TX, Y)i=(frX, fY)=(tofX, fM =<afX, fY>=<fX, fY>o.

   2. Groups of type E6 amd I'4.

   The group E6,a is defined to be the group of linear isomorphisms of Sa leaving

the determinant detX and the Hermitian inner product <X, Y>o invariant:

     E6,o=={aEilsoc(EYC,E)C)ldetuX=detX, <aX, aY>a:=<X, Y>a}

        ={aEEilsoc(gC,gC)l(aX, aY, aZ)=(X, Y, Z), <aX, evY>a=<X, Y>o}

and F4,a the subgroup of E6,a preserving the inner product (X, Y):

                    F4,a={crEE6,ol(aX, aY)==(X, Y)}

                       ={evEE6,a]aE=E}.

Next, to consider the group E6,a we need to define the group E6,i and the subgroup

F4,1 of E6,1:

     E6,i={evEIsoc(giC,SiC)ldetaX=detX, <ctX,evY>=<X, Y>}

        =={crEIsoc(giC,$iC)1(aX, evY, ctZ)=(X, Y, Z),<evX, aY>=<X, Y>},

                   F4,i= {aE ,Elr6,i l (evX, cr Y) = (X, y)}

                      ={evEE6,ilaE==E}.

Finally we shall recall the compact group E6 and the compact subgroup F4 of E6:

     E6 ==: {ev E Isoc(gC, $C) I det aX= det X, <aX, aY> == <X, Y>}

      ={crelsoc(SC,SC)1(aX, aY, crZ)=(X, Y, Z), <aX, aY>=<X, Y>},
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                      F4= {aE E6 l (crX, aY) == (X, Y)}

                        ={ecEE6IaE=E}.

   Lemma 2. The grouP F4,i is homeomorPhic to SPin(9)×rei6 and a simPle (in
the sense of the center z(F4,i)=1) Lie grouP of tyPe F4.

   Proof. We define the group F4(m2e) by

                 F4(m2o)= {aEIsoR(gi, gD Icr(XoY)= evXoaY}

                      = {evE EIi,(-2,) l (crX, ev Y) -- (X, Y) }

                      ={aEEi6(-26)1crE=E}

where Ei6(-26)={aEIsoR(g!, gi)IdetcrX=detX}. Then the argument used in the

proof of Proposition 1 of [8] shows that F4("2e) is isomorphic to F4,i by the

complexification a.evC (which means evC(Xi+iXh)=crXi+inXh, Xl,&ESi). Recall

now that F4(-2o) is homeomorphic to Spin(9) ×rei6 and a simple (in the sense of the

center 2(F4(-2o))=1) Lie group of type F4 (Theorem 8 and 11 [6]), then results

follow.

   Propositioit 3. The grouP E6,a is isomorPhic to the grouP E6,i and also F4,a to

F4,i. in Particular, Ii'4,a is homeomorPhic to SPin(9)xTli6 and a simPle (in the sense

of the center z(F4,a)=1) Lie grouP of tyPe F4.

   Proof. By using the isomorphlsm f:SiC-SC in Proposition 1, we define a

mapping ip : E6,a-E6,i by

                       ip(ev)X=.f:"'ofX, XESiC･

Then from Proposition 1 it is easily obtained that ip gives an isomorphism between

E6,o and E6,i. Furthermore we can readily show that the restriction ipIF4,a gives

an isomorphism between F4,a and F4,i.

   Remark. Let the group E6(e26) and its subgroup F'4(-2o) be defined respectively

by

                   E6(-26)== {aE IsoR(EY, Ej) I detcrX=detX } ,

                                  '                  F'4(-2o)= {aGE6(-26)1(aX, crY)a:=(X, Y)a}

  ' ={aEiE6(-26)Icrr=T}
where (X, Y)a=(aX, Y). Then we have already known that

              E,(.2,) =F,xR26, z(E,(-,,)) =1 ([1], [3]),

              F'4( ..2e)[) SPin(9) XRi6, z(F'4(-2o))=1 ([6]).

Now, define a mapping g: gi->$ by
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                   g(-$, /-iwwi:)=(--i'L,-Zii -:,i')'

then g is a linear isomorphism over re and satisfies the properties detX=-detgX

and (X, Y)i=(gX, gY)a. We see therefore that the mapping ip':E6(H26)-Ei6("26)

defined by

                   ･ ¢'(a)X=g-iagX, XESt

gives an isomorphism between E6(-26) and Ei6(-26) and that the restriction ¢'IF'4(-2e)

gives one between F'4(-2e) and F4(-2o).

   3. Lie aggebra e6,a og E6,o.

    We consider the Lie algebra e6,a of E6,a: .

        'e6,.={4EHomc(ga,SC)[(4X, X, X)=O, <CX, Y>o=-<X, CY>.}.

    Theorem 4. Any element 4 of the Lie algebra e6,o of the grouP E6,a is uniauely

rePresented by the form

    '            g=s+s'v, sEf,,.,sl]=(!-: Si Si)+i(g' g?, i9,),

                                                     '
where Xai=O, oiEre, si(iiiag and k,g= {6EEe6,oi(SX, Y)==-<X, 6Y)}=={6Ee6,o[6E=O}

is the Lie algebra of the grouP F4,a and, for S, S-JGHomc(gU, gC) is dofned by

SX=SoXL in Particular, the tyPe of the Lie grouP E6,a is E6. -

   Pscoof. It is easily seen by the analogous argument as in the proof of Theorem

2 of [8].

    4. Compact subgroup (E6,a)K of E6,a.

    We shall consider the following subgroup (E6,a)K o£ E6,a:

                    (E6,a)K=={evEE6,ff1<crX, aY>=<X, Y>}

                          ={aGE6I<aX, aY>a=:<X, Y>a}.

To do this, we need some preparations. Following [8], we first define the subgroups

Ea of E6 and Ea,i of Ea by

                     . Ea={crEE61caa =a},

                           Ea, i == {aG Ea 1 aEi == Ei}

where Ei==(i go go ) Then we have already known th.e following



             Non-compact Simple Lie Groups E6(-t4) and E6(2} of Type E6 21

   Lemrna 5. (Proposition 11 [8]). The grouP Ea,i is isomorPhic to the sPinor grouP

Spin(lo).

   From now on, we identify the group Ea,t with the group SPt'n(10).

   We next define the subgroup U(1) of Ea,i by .

                                              .-
          u(i) .. {ip(o) [¢(o)x(6, .) ..( Z;,i oefS, ,0-X2k, ), ,. c, lol .. i}

                               N Ox2 e-2]2f, e-26, t

It is obvious that the group U(1) is isomorphic to the usual unitary group U(1)

={0e!C[]0] ==1}. Furthermore we have known that the subgroups U(1) and SPin(10)

of E6 commute elementwisely (Lemma 12 [8]).

   Finally we denote by cr' and a the transpose of evEilsoa(ge, gC) relative to

<X, Y> and <X, Y>a respectively:

               <crX, Y>=<X, a:kY>, <evX, Y>a==<X, aY>a.

Then it holds generally

                       a=aev*a, evEIsoc(Sa, fiC),

since we have <X, aY>==<aX, aY>a==<aaX, Y>a=<aaaX, Y>=<X, act"aY>, noting

that a=a'==a.

   Propositioit 6. The grouP (E6,a)K is isomorPhic to the groaP (U(1)xSPin(10))/Z4

where Z4=={(l,ip(1)), (-1, di(-1)), (i, ip(-i)), (-i, ¢(i))}.

   .Proof. First we shall show that (E6,a)K==Ea. Let cr be an element of (E6,a)K, that

is, ua*=aa==1, then from a=aav*a we have caa=a, that is, crEEa. Conversely,

let a be an element of Ea, then we have wh:=avffa*a=ana*o=oa::=1, that is, crG

(E6,a)K. Now, we have already known that a homomorphism g: U(1)xSPin(10)-

Ea=(E6,a)K defined by g(0,P)=¢CO)P induces an isomorphism (E6,a)K](U(1)xSPin
(10))/Z4 (Theorem 13 [8]). Thus Proposition 6 is proved.

   5. Polar decoxcrRpesition of E6,a.

   To give a polar decomposition of E6,a, we use the following

   vaernma 7 ([2] pp. 345). Let G be a Pseadoalgebraic subgromp of the general linear

grouP GL(n, C) such that the condition AEG imPlies A"eG. Then G is homeonzo-

rPhic to the toPological Product of GnU(n) (which is a maximal comPact subgrouP

of G) and a Euclidean sPace Bd:

                G[r(GnU(n))xRd, d==dimG-dim(GnU(n))

where U(n) is the unitary subgrouP of GL(n, C).

   To use the above Lemma, first of all we show the following

   -einmea 8. E6,a is a Pseudoalgebraic subgrouP of the general linear grouP GL(27, C)

=lsoc(SC, $C) and satishes the condition aEE6,a imPlies cr"GiE6,a.

   Proof. Since a==acr*a,nd=1 for aEE6,a, we have ev*=acr-iaGE6,a. It is obvious
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                 '
that E6,a is pseudoalgebraic, because E6,o is defined by the pseudoalgebraic relations

detaX=detX and <aX, aY>a==<X, Y>a.

   Let U(gC) be the unitary subgroup of Isoc(gC, SC):

             U(27) == U($C) == {a Ei Isoc($C, $C) I <crX , aY> = <X, Y> } .

Then we have

                  E6,a ft U(gC) == (E6,a)K2il(U(1) × SPin(10))/Z4

by Proposition 6. Finally we shall determine the dimension of the Euclidean part

of .Elr6,a. Since E6,a is a simple Lie group of type E6 by Theorem 4, the dimension

                 d==:dimE6,a-dim(U(1)×SPin(10))=78-46=32.

Thus we get the following

   Theoreevt 9. The groaP E6,o is homeomorPhic to the toPological Procinct of the

groaP (U(1>xSPin(10))/Z4 and a 32-dim. Eudlidean sPace R32:

                      E6,a!)::(U(1) × SPin(10))/Z4 × R32.

in Particzalar, E6,a is a connected (but not simPly connected) Lie grouP.

   6. Center x(E6,a) of E6,a.

   Leavltma aO. For aEas, alO, the malu)ing a(a) : gC-SC deYined by ev(a)X(e, x)==

Y(v, y) belongs to E6,a, where

                                     (a, x2)                        6i+&                 &-6B                             cosh la[ +                                          sinhla],              Vi= 2+2 Ial
              rp2 =ee,

                                      (a, x2)                   8i-83                          &+eB
                              cosh la1 +                                            sinh1al,              rp3=- 2+2 lal

                       lal                                   lal                            a't3
              yi=xicosh 2 +LaESinh 2 ,

              y2==x2+2(1'aXl,2)asinh2 1:1 +(e>;i2)asinh]al,

              y3=x3cosh 1gl + tllll'llff sinh ]:i .

   preof. since, f6r F2(a)=( 2t 8o g), n(a) is an eiement of e6,a by Theorem

4, it follows a(a) =expF2(a)EE6,a.
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   TheorerwR lg. The center z(E6,a) ofthe grouP E6,a is isomorPhic to the cyclic

grouP Z3 of order 3:

              2(E6,a)=Z3= {1, to1, to21}, toEC, o3=1, to7<:i.

   proof. Let crG2(E6,a). From the commutativity with aEE6,a, we have acr:=aa,

that is, aE(E6,a)K. Hence there exists an element (0, P)EU(1)xSPin(10) such that

ev=g(e,P)=¢(e)P by Proposition 6. Moreover we see that P is an element of the
center z(SPin(10)), noting that the groups U(1) and SPin(10) commute elementwisely.

In fact, jt holds ip(e)PP' =P'ip(e)P=:ip(0)P'P, hence PP'=P'3 for all P'ESPin(10). Now,

as is well known, the order of z(SPin(10)) is 4 and obviously ip(s)Ez(SPin(10)) for

s==±1, ±i, therefore we have

               2(SPin(10))=-{¢(1), ¢(-1), ip(i), ¢(-i)}cU(1).

Hence a==di(0')EU(1) for some e'EC, lO'j==1. Next, from the commutativity with

ev(a)EE6,a as in Lemma 10, we have on(a)E=a(a)aE, that is,

        ( Rcosoohla[ g ,,,,Othi.l )

                /2:spt+2il;ptcoshlal o O N

               :=:t O Fe 'o 11
                X o o -Zillpt+2il;ptcoshtat l

where we denote e' by 2 and e'-2 by pt. Hence we have 2=pt(:::bl), that is,

                               crE==oE

where toEC and tu3=detevE=detE=1. Since tuIEz(E6,a), we have ofiaEg(E6,o) and

to-ievE=E, hence tu-'aGz(F4,a). Therefore it follows that tu-ta=1, that is, ct=::to1,

since 2(F4,a)=1 by proposition 3. Thus the proof of Theorem 11 is completed.

            gg. NoR-compnct simpXe Lie group E6,r of type E6.

   7. Spgit jordam aEgebra EY2.

   Let G' be the split Cayley algebra over R. In G'==ffOIIe', the multiplication

xy, the conjugate hi, the scalar part t(x) and the inner product (x, y)' are defined

respectively by

                    (a+be')(c+de')=(ac+db)+(b6+da)e',

                      a+be'=-a-be', t(x)=x+x,

                      (a+be', c+de')'=(a, c)-(b, d).
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   Let g'C be the complexification algebra of G'. In 6'C, the conjugate I, the

scalar part t(x) and the inner product (x, y)' are also defined naturally. The mapping

le:or'a-E'C defined by '
                    fe((a+be')+i(c+de'))=(a+de)+i(c-be)

gives an isomorphism as algebra over C and satisfies

                     k(x)==k(x), (x, y)'== (le(x), le(y)).

   Let S2==g(3,ag') be the Jordan algebra consisting of all 3×3 Hermitian matrices

with entries in 6'

                x=x(gx)=(il /llil nllli,), 'eiGre,xieG' .

  '                        '
                      'with respect to the multiplication XoY== ; (XY+YX). In & also, the inner pro-

duct (X, Y), the crossed product XxY, the cubic form (X, Y, Z)and the determi-

nant detX are defined by the quite same formulae in S. ,
   Furthermore the complexification g2C of S2 and the several operations in S2C

are also similar to the definitions in the section 1.

   From now on, we will use the same notations for the sarpe operations in g

SPd M, but as occasion demands the notations in S2 will be indexed by the figure

   Proposition 12. g2C is isomorPhic to SC as .lbrdan algebra over C by an isomo-

rPhism h:g2C.3a cte:lined as follows: '
                            hx(e, x) -x(e, k(x)).

And h satishes the following ProPerties.

    (i) (X, Y),-=(hX, hY),

    (ii) detX=dethX,

    (iii) <X, Y>2=<hX, hY>ri

evhere r : ga-SC is the linear involtetion dojined by

                          rX(g, a+be)=X(6, a-be)

where 6eC, a, bGffC and the inner Product <X, Y>r in fiC is deijined by

                           <X, Y>r==:<rX, Y>.

   Proof. It is easy to see that h is a linear isomorphism over C and satisfies

h(XoY)=:hXohlY: The properties (i), (ii) and (iii) are shown similarly in the proof

of Proposition l. .
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   8. Groups of type lf6 amdi .E;'4.

   The group E6,r is defined to be the group of linear isomorphisms of SC leaving

the determinant detX and the Herrnitian inner product <X, Y>r invariant:

          E6,r== {crEIsoc($C,Se) 1deteX=detX, <aX, crY>r= <X, Y>r}

             ={aEIsoc(SC,SC)1(aX, aY, evZ)==(X, Y, Z), <aX, evY>r==<X, Y>r}

and F4,r the subgroup of E6,r preserving the inner product (X, Y):

                    F4,r={aE.lli6,rj(crX, crY)==(X, Y)}

                        ={crGE6,rlcrE=E}.

Next, to consider the group E6,r we need to define the group E6,2 and the subgroup

F4,2 of E6,2:

     E6,2= '{crGIsoc(g2a,&C)ldetecX=detX, <crX, crY>=<X, Y>}

        ={crelsoc(&C,S2C)](crX, aY, aZ)=(X, Y, Z), <crX, aY>=<X, Y>},

                    F4,2={evEE6,21(evX, aY)=(X, Y)}

                       ={evEE6,2[aE=E}.

   ineffiftrgxta g3. The grouP F4,2 is homeomorPhic to (Sp(1)xSP(3))/Z2×re28 and a

simPle (in the sense of the center z(F4,2)=1) Lie grouP of tyPe -F4.

   Proof. We define the group F'4(o by

                  I7'i(4)=={aEIsoR(g2, S2)]cr(XoY)=crXoevY}

                      :=:{ctEiiiE'6(6)[(evX, aY)=(X, Y)}

                      == {ev e E'6(6)j evE=E}

where E'6(6)={aelsoR(g2,$2)ldetcrX:=detX}. Then the argument used in the proof

of Proposition 1 of [8] shows that F'`(o is isomorphic to F4,2 by the complexification

a.aC. Recall now that F'4(o is homeomorphic to (SP(1)xSP(3))/Z2xR28 and a

simple (in the sense of the center x(F'g(`))=1) Lie group of type F4 [7], then the

results follow.

   Progeositiofi Z4. The grouP E6,r is isomorPhic to the grouP E6,2 and also Fg,r

to F4,2. in Particular, Fd,r is homeomorPhic to (SP(l)xSP(3))/Z2xR28 and a simPle

(in the sense of the center z(F4,r)= 1) Lie grouP of tyPe Fg.

   Proof. By using the isomorphism h: S2CoSC in Proposition 12, we define a

mapping ip : E6,r-E6,2 by

                       ¢(cr)X== h-iahX, XE g2C.

Then from proposition 12 it is easily obtained that ¢ gives an isomorphim between



26 OSAMu SHuKuzAwA and lCHIRo YOKOTA

E6,r and E6,2. Furthermore we can readily show that the restriction ¢IF4,r gives

an isomorphism between F4,r and K,2.

   9. Lie algebra e6,r of E6,r.

    We consider the Lie algebra e6,r of E6,r:

       e6,r--{gEiHomc(gC,SC)KCX, X, X')--O, <gX', Y>T=-<X, CY>r}.

   TheoreTva 15. AnN element ts" of the Lie algebra e6,r of theg rouP E6,r is uniquely

rePresented by the form

         (..6+s'sJ, 6Gf,,,,s-(-g,,Oe, -i8,e,,Pg,i'ee)ht-i(ii rli i'i,)'

where :Ii ]Ti=O, riE!iR, si, tiEiff and f4,r={6Ee6,r1 (OX, Y) =::-(X, 6Y)} == {tiee6,rltiE==O}

is the Lie algebra of the groztP F4,r and, for S,SGHomc(gC, SC) is dofned by SX

=SoXL in Particzalar, the tNPe of the Lie grouP E6,r is E6.

   Proof. It is easily seen by the analogous argument as in the proof of Theorem

2 of [8].

   fiO. CortrTpact subgroup (E6,r)K of E6,r.

We shall consider the following subgroup (E6,r)K of E6,r:

                   (E6,r)K={crEE6,rl<aX, crY>==<X, Y>}

                        =={aeiE6[<evX, crY>r=<X, Y>r}.

To do this, we need some preparations. Following [81, we first define the subgroup

Er of E6 by

                          Er=:{neE61rar=:a}.

Next we denote by 'a the transpose of a(!EIsoc(3C, gC) relative to <X, Y>r:<aX, Y>r

=<X, 'aY>r. Then it holds similarly in the section 4,

                      'a=ra"r, crelsoc(℃C, SC),

noting that r==r'='r･

   Pyopositierry 1.6. The grouP (E6,r)K is isomorPhic to the grouP (SP(1)xSU(6))/Z2

where Z2=={(1, E), (-1, -E)}.

   Preof. By the proof similar to that of Proposition 6, it follows that (E6,r)K

==Er. On the other hand, we have already known that Er is isomorphic to the

group (SP(1)xSU(6))/Z2 (Theorem 16 [8]). Thus Proposition 16 is proved.

   Xl. Polar decomposition ef E6,r.

   To use Lemma 7, first of all we show the following
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   Leni!Eia 17. E6,r is a Pseztdoalgebraic subgrouP of the general linear grouP

GL(n, C)==Isoc(gC,gC) and satisies the condition aEE6,r imPlies a"EiE6,r.

   Proof. Since 'cr==rcr*r,av'a=1 for aEE6,r. we have a*==rcr"irEE6,r. It is obvious

that E6,r is pseudoalgebraic, because E6,r is defined by the pseudoalgebraic relations

detaXua-detX and <aX, aY>r==<X, Y>r.

   Next, let U(Se) be the unitary subgroup of Isoc(gC,SC) as in the section 5,

then we have

                    E6, r A U(£YC) = (E6, r) KE-l! (SP(1) × SU(6))/Z2

by Proposition 16. Finally we shall determine the dimension of the Euclidean part

of E6,r. Since E6,r is a simple Lie group of type E6 by Theorem 15, the dimension

d is obtained by

                  d=dimE6,r-dim(SP(1)×SU(6))=78-38=:40.

Thus we get the following

   TheoreEwt g8, The grouP E6,r is homeomorPhic to the toPological Product of the

grouP (SP(1) XSU(6))/Z2 and a 40-dim. Euclidean sPace R`O:

                        E6,r:): (SP(1) × SU(6))/Z, × de40.

in Particular, E6,r is a connected (bztt not simPly connected) Lie grouP.

    e2. Cerriter x(E6,r) of E6,r.

    Tiaeorem 19, The center 2(IEI6,r) of the grouP E6,r is isomorPhic to the cyclic

grouP Z3 of order 3:

               z(E6,r)=Z3={1, to1, to21}, tocgC, tu3=1, tu74:1.

   Proof. We define the Iinear transformations Pi,i--1,2,3 of gC by

                      -H      pix=(ii'l:-/i3:-:,i･)･ pcx=(-i'1Il"2ee･)･ p3x=( l'i･ Z.l ni3i)

for X=X(e,x)GSC. Then as readily seen they are elements of E6,r. Now, let

evEz(E6,r). From the commutativity with the above Pi,i=1, 2, 3, that is, PievE=

crPiE=aE, we have

                         evE =:: tuE, toGC, tu3=1.

Thus, since 2(F4,r)=1 by Proposition 14, the result follows similarly in the proof

of Theorem 11.

    Since the fundamental group of E6,r is Z2 from Theorem 18 and the center

z(E6,r) of E6,r is Z3, we have the following
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   Tkeorecrvt 20. The center z(llii6,r) of the simPly connected non-conzpact Lie group

2;6,r=E6(2) is isomorPhic to the cyclic grouP Z6 of order 6.

                           '             '
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