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It is well known that the special unitary group SU(4) and the spinor group
Spin(6) are isomorphic. To prove this it is usually used that their Lie algebras are
isomorphic. In this paper, we shall prove it by giving a homomorphism p: SU(4)
—-S0(6) explicitly.

1. Preliminaries.

(1) Let € and H=C®jC be the complex and the quaternion fields respectively.

0 1
H is isomorphic to the space H={xeM(2, C)|xj=ijx}, where j:( ), as
—1 0
algebra, by the correspondence % : H—9,

k(a—l—jb)z(a —”>, a,beC,
b a
and % has the following properties:
MR=wt, ot p) = (9, wtextxe 5B

where x=Fk(x), y=k(y) and E is the unit matrix. This mapping % is naturally
extended to the spaces of matrices:

k: M2, H—M4, C), k(
Xo1 Koz

X11 x12> B (k(xn) k(xﬂ))
 \ k) k() )

(2) Let (2, H) be the vector space of all 2X 2 quaternion Hermitian matrices:
(2, A)={XeM@2, H)| X*=X}.

In (2, H), we define the inner product (X, Y) by
X, Y) :—;-tr(Xﬂ- YX).

Let 32, H)YC={X=X,+iX:]1X;, X:€3(2, H)} be the complexification of (2, H).
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In (2, H)® we define the Hermitian inner product <X, Y) by
Xi+iXs, Yi+iYor=(X:, Y1)+ (Xe, Vo)+i((Xs, Yo)—(Xs, Yi))

Furthermore let &{4, C) be the vector space of all 4x4 complex skew-symmetric
matrices:

&4, C)={PeM(4, C)|"P=—P}.
In &4, C) we define the Hermitian inner product <P, @> by

<P, Q>:——£11—tr(PQ+QP)

Then the space (2, H)C is isomorphic to the space &(4, C) by the correspondence
h: (2, HIC-64, C),

i 0
WX +iXe) = (R(X)+iRXE, T :<; )
J

(3) Let ¢2 be the Lie algebra of all 2Xx2 quaternion skew-Hermitian matrices:
ee={DeM(2, H)|D*=—D}

and a; the Lie algebra of all 4x4 complex skew-Hermitian matrices with zero
trace:

Gy {SE M4, C)|S*=—§, tr(S)=0).
Any element S of a3 can be represented by the form
S=Fk(D)+ik(T), Dec, TeS(2, H), tr(T)=0
=k(D)-+ik(F(a))+ith(E1—Es)

0 0

a 1
where F(a):( >, as=H, El—E2:<O

)and teR (R is the field of real
a O

—1
numbers). In fact, for S€a,, put Dlz%(S—]gj) and le—% (S-JS7), then

we have S=D;+iTy, D*=—Dy, DiJ=JD; and Ty*=Ti, TiJ=JT1, tr(T1)=0.
So D=Fk™YD;) and T=kYT,) satisfy the required conditions.

2. Low dimensional spinor groups,
We define the low dimensional symplectic groups, the special unitary group

and the orthogonal groups by
Sp)={acH | la|=1},
Sp2)={AeM(2, H)|A*A=L},
SUM)={A=sM{, C)|A*A=E, detA=1},
SO(3)=SO(H,) = {ac Isor(H,, Hy)| (ax, ay)=(x, ¥), deta=1}
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where Hy={x&H|x=—x},
SO{4)=SO(H)=(acIsor(H, H)|(ax, ay)=(x, y), deta=1},
SO(5)=SO(J) = {aEIsor(Jo, J) | (@X, aY)=(X, Y), deta=1}
where 3y=5(2, H)y={X<J(2, H)|tr(X)=0} and
SO6)=SO(V)={acIsor(V, V)|[{aX, aY)>=<X, V), deta=1}

3 x
where Vz{( _ _ )[EEC, xEH} c3(2, H)C.

x —§

We note that the restriction of the mepping % of the section 1 on V is an
isometry:
<WX), WY )H=<X, Y?, X, Yev

and the group Sp(2) acts on the space J(2, H) by p: Sp(2)xJ(2, H)—J(2, H),
A, X)=AXA* and it holds that

(AXA*, AYA¥=(X, V), tr(AXA¥) =tr(X).

On the other hand, the group SU(4) acts on the space &4, C) by p:SU{4)x
84, €)—~ai, C), pA, P)=AP'A and it holds that

CAP'A, AQ'A>=<P, @.
Now we define the following homomorphisms.
D1 Sp(1)—S03), bilalx=axa, x€ M,
ba t Sp(1) X SH(1)—~SO(4), pela, b)x=axb, x<H,
bt Sp(2)—S0(®), DA X=AXA*, X&F,
b=ps: SUM4)—SO(6), PAYX=h"YARX) 4), XEV.

Then we have
Theorem 1. The following diagram is commutative

Ry ks k
Sp1)  — Sp()xSp(l) — Sp(2) — SUWM)
loe 5 e les;  |p

9

SO(3B) — SO@) —  S0(6) — SO@)

where ky is the diagonal mapping and ke, ji, j», j arve natural inclusions, And each
mapping pi: is the umiversal covering homomorphism. In particular, we have the
Sollowing isomorphisms.

Sp(1)==Spin(3), Sp(1) x Sp(1)=Spin(4),
Sp(2)=<Spin(5), SU(4)==Spin(6).



32 ICHIRO YOKOTA

Proof. As for the mapping p:, ps, they are well known (Chap. I[17]). The
mapping ps is also well known, however we will give a proof that p; is onto by
using the following

Lemma 2, Let G, G' be groups, H, H subgroups of G, G' respectively and
P G-G' a homomorphism satisfying p(H)cH'. If p'=p|H: H->H and p:G/H—
G'/H' (the induced mapping of p) are both onto, then p: G—G' is also onio.

1 — H — G -— GH — *

e s |F

1 — H — G — G/H — *

Proof of Lemma 2 is easy (Lemma 1,50 [2]).
Let S* be the unit sphere in (2, H)o:

St={XeJ(2, H)I<X, X>=2}.
By using that any element of J(2, H) can be transformed in a diagonal form by
the action g of Sp(2), we see that any element X of S* can be transformed to
1 0
El—EQ:( ) by Sp(2). This shows that the group Sp(2) acts transitively on
0 —1

St Since the isotropy subgroup of Sp(2) at Ei\—E; is k(Sp(1)xSp(1)), we have
the following homeomorphism

Sp(2)/kalSH(1) X Sp(1))=5*

Thus we have the following diagram

I — Sp(1)xSp(1) —lg Spg) — St o— ¥
lﬁz ja lﬁs

1 — S0o(4) —> SO(B) — St — F
Therefore, from Lemma 2, we see that ps is onto. Kerps=Z,={E, —E} is easily
obtained,

Now, we consider the mapping p:SU{4)—S0O(6). In order to prove that the

mapping p is well-defined, first we have to show that, for Ae€SU(4) and XeV,
we have :

PAX=h"HARX)} AV,
Since any element S of the Lie algebra a; of SU(4) is represented by the form
S=k(D)\ik(F(a))-+iltk(E1— Es)

as §1 (3), the group SU(4) is generated by the elements such as expk(D), expik
(Fl(@)) and expith(E,—E:). For A=k(A:) where A;=expD&Sp(2), XV, we have
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R ARX) A) =1 (R A)RX) T R(AL) =B~ (R(ADR(X)R(AL)*T)
=hR(AXAF) ) =AXAFET.
For A=expik(F(a)), X&V, we have
B ARX)A)=h*((expik(F(a)k(X)J* expik(F(a)))
=h""((expik(F(a)k(X)(expik(F(a))])
=h""(k((expiF(a)) X(expiF(a)))])
=(exp iF(a)) X({expiF(a))

_( cos|al i;—lsinla[ >< & x )( cosla| iWZ—lsinlal
ilTalsinMI cos|al ¥ —€ z'-lZ—|sin]a| cos|al
Yy
:< ? 7 )EV,
y -7
where
p=Ecos?|a| +Esin®|a] —l~i2(fc’Z lx)sinlalcoslai ,
y:x—z(li’]f)sinzlﬂ +i (Erj)a sin|a|coslal.
it £ = .\ .
For A(t):exka(El—Ez), X={ _ __{eV, it is easy to verify that
x —£

et %
h‘l(A(t)h(X)tA(t)):( i _)EV.
x —elE

Thus p(A)XEV is proved. For A€SU(4), we see that p(4)e0(8)=0(V)={a&Isor
(V, V)[KeX, aY>=<X, Y)}, because '

HAX, pAY>=h(pAX), KHAY))
={ARX A, ARYVA>=X), MY ))=<X, Y.

Since SU(4) is connected, p{SU(4)) is contained in the connected component SO(6)
of identity E in O(V), i.e. p(SU4)cSO®6). Thus we see that the mapping p is
well-defined.

Let S% be the unit sphere in V:

= (X VKX, X>=2)

We shall prove that the group SU(4) acts transitively on S° To prove this, it
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is sufficient to show that any element X of S® can be transformed to i(E|+E:)=
( :) 0) For a given X&S% operate some element A(to):exp—ig(El—Ez), then
)
we have
DlA(f)) X =S54
Since Sp(2) acts transitively on S*%, there exists AeSp(2) such that

DPR(A)A(t) X =E1— Es,

and then operate A(%) :exp%(El—Eg) on it, then we have

PA(S-)HA) Alto) X =il Er+ ),

This implies the transitivity of SU(4). Since the isotropy subgroup of SU(4) at
{(Ei+E) is k(SP(2)), we have the following homeomorphism
SU(4)/k(Sp(2))=S®.

Thus we have the following commutative diagram

#*

k
1 — Sp@2) — SUHY) — S°

L |

J
1 — SOB) — SO6) ~— S — *

—
hS3

Therefore, from Lemma 2, we see that p is onto. Kerp={FE, —E} is easily obtained.
Thus the proof of Theorem 1 is completed.
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