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Introduction

A connection 8 of a vector bundle F may be regarded to be the lower order
term of a differential operator D : C*(M, APT*(M)QF)—C=(M, AL**T*(MYRF) with
the symbol ¢ (d)Qidp (cf. [17]). Similarly, for an arbitrary differential operator
D : C>*(M, Ei)—~C>(M, E:), E1 and E; being vector bundles over M, we may con-
sider the lower order term of a differential operator D: Co(M, E«QF)—~C>(M, E,
® F) with ¢(D)=0¢(D)® idr, (o(D), etc., mean the symbols of D, efc.), to be a
connection of D with respect to F. This connection has many (formally) similar
properties as usual connection. For example, the action of the group of automor-
phisms of F to the set of all connections of D with respect to F is formally same
as usual case (cf. [97), and the obstruction class o(D, F) which has similar pro-
perties as curvature or characteristic classes, can be defined by the help of connec-
tion. .
The outline of this paper is as follows : In § 1, we define the connection of D
with respect to a vector bundle F. After showing the existence of connection, the
action of the automorphism of F' to the connection is calculated in §1. In §2, we
define the obstruction class o(D, F) and show D has a connection with respect to
F with the degree at most degD—2 if and only if o(D, F)=0, The higher obstru-
ctions o/(D, F) are also defined under the assumption o/~!'(D, F)=0. It is shown
that D has a connection with the degree at most deg D—j—1 if and only if o/(D,
F)=0, If Fis a complex line bundle, o(d, F)e H' (M, @'), <* is the sheaf of
germs of closed 1-forms on M, and its de Rham image in H*M, C) is the 1-st
Chern class of F, the closed 2-form on M whose de Rham image o(d. F), is the
curvature form of F. For this reason, we may define ch(D, F) and ch’/ (D, F)
using non-abelian cohomogy theory ([67], [8]). In §3, we consider the extension
of differential operator D on the base space M to the tatal space My of a fibre
bundle F and show this problem is also treated by the same way as the connection
of D defined in §1. For this reason, to fix a connection @ (F) of F, we call the
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lower order term of the differential operator D : C*(Mp, np*(E:))—~Co(Mp, np*(Es))
with o(D)=mocpy*[zp* (¢ (D))] is called the connection of D with respect to F and
O(F). Here zmocry* : TH*(Mp)—zp*(T*(M)) is the map defined by (F). It is shown
that if F is an SO(n)—bundle or SU(n)—bhundle with the fibre R”* or C*, D has a
connection such that decomposed as the sum of connections of D with respect to
1o F) or xe,p(F), q=0. Here yp(F), or yc,p(F), is the associate p—th degree har-

monic polynomials bundle, or (p, p)—type harmonic polynomial bundle, of F.

§ 1. Definition of connections

1. Let M be a connected n—dimensional smooth manifold, E:, Es: and F are
complex (or real) vector bundles over M. The dimensions of the fibres of E; and
E; are assumed to be finite, but the dimension of the fibre of F need not be finite
(cf. §3). We fix a common (locally finite) coordinate neighborhood {U} of Ei, E,
and F. The (fixed) transition functions of Ei, E; and F defined by {U} are denoted
by {g,ov(%)}, {g,uv(x)} and {guv(x)}. We denote by C=(M, E), efc., the space
of C~—cross-sections of E; over M, etc.. Under these notations, a differential
operator D : C*(M, E\)—~C>(M, E,) is a collection of differential operators Dy : C=
(U, E)—C={U, Ej) such that

Dygi,uv(®)=8,uv(x)Dy, x€UNV.
We set degD=*F. Then Dy is written

(1) Dy= 3 Ar w2, Ty o)y 1] =gt i,

1=k oxy

o a1 ol
axU 76xu, 1i1...ax[],ni"’

(

where (Xg,1, -, %y,«) is the local coordinate on U, We set

Dy®1p= Z} AI,U(x)®1F%)I, 1p is the identity map of the fibve of F,
U

=k
Then Dy®1p : Co(U, E:QF)—C>(U, E;QF) is a differential operator on U.
Definition. A collection {0y} of differential operators Oy : C2(U, E\QF )—~C=(U,
E:®RF), is called a conmection of D (with respect to F) if it satisfies
(i) Z2,uv(X)Rguv(2)(Dy @1 +0y)={Du®1p +0u)g1,uv(x)Rguv{x),
(ii} degly=<k—1, (k=degD).

Proposition 1. For any D and F connection exists.
Proof. Let {ey(x)} be a C®—partition of unity subordinate to {U}. Then to set
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(2) Ou(x)= D) ewlx)ge,ow(x)Rguw(x){Dw@1r(gs, wo{x)Rgwu(x))
UAW# b

— (&2, wo(x)®gwu(x))Dy@1x},
{Ou(x)} satisfies (i), (ii).
Eefinition. Let 0= {0y(x)} be a connection of D with respect to F. Then the col-
lection {DyQ@1lp+0y} is denoted by Da. }
By definition, Dy : C*(M, E\QF)—~C>(M, E,QF) is a differential operator on
M and degDy=k. Hence we have

(3) o(Do)=0o(D)idp,

where ¢ (D), efc., are the symbols of D, efc., and idp is the identity map of =*
(F), = is the projection of T*(M), the cotangent bundle of M.,

Note 1. If E;=A?T*, E;=AP*'T* and D=d, the exterior differential, then a
connection of d with respect to F is a linear connection of F.

Note 2. For a differential complex

D1 D2
(D) : C=(M, Ei)——C>(M, Eg)—,
Connection (with respect to F) is also defined. But the lifted sequence

D3, 02

(Ds) : C=(M, Ex@F)C(M, Es@F ) ..,

is not a differential complex in general, although its symbol sequence is exact (cf.

2.
2. Let ¢ :Ei—E; be a bundle map, then we set

d .1
4 D = AI, X x(— 5
( ) vy ngk v )@( ) axy)
and set
(5) Dyp=e¢Dy~+Dy,s.

By definition, degDy,¢<<k—1.
Lemma 1. If ¢ is an automophism, then

(6) Dy, o7t=—p" Dy, ¢? %

Proof. Since we have ¢_;(eD)=D, we get
Dy=Dyp~lo=9"'Dyp+Dy,¢e"'=Dy+¢~'Dy ¢+ Dy ¢,

we obtain (6).
If {0y} is a connection of D with respect to F, we have
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Z2,uv@8uv Dy @1y —Dy@1pg1,uv@8uv = G2, uv @ 8uvOv —0ugi,uy Rguv.

Hence we get

(7) 82,uvQhugyvhy {1, @hy)Dy@1r (1z,&hy™)
—(1g,®hy) Dy®1r (1g,:@hy™)} g1,0vQ@8uv

=(1£.@hv){gs,uvQguvly —Oug,uv®guv}(1e. Qv ™),
where 1z, and 1g, are the identity maps of the fibres of E, and E.. But since we
get by (6) '

(12, @hy)Dy@1p(1g, @y ™)

=12, hv) {a , @k, »Du@1lr—a ; @ HDo@Lrhy, @iy (Le:@hu™)}
and since

a, ®h,HDu@1p=15,Qhy™)Dy@1r,
we obtain
(8) (L2, @h)Du@1p(1e,@ hy™") =Dy®@1r — (Du@1lrh, @h,(1e,Qhu™).

By (7), (8), we have

Lemma 2. If {0y} is a commection of D with respect to F, where {guv), a
transition function of F, is fixed, then by the change of transition function of F by
{hy}, {6y} is changed to {0y'} given by

(9) Ouv'=(1g,®hy) {(0u— {15 2®hU"1)(DU®1F)1E 1®11U} 1z, Qhy™t).

Note. Since ds=ds, the action of the automorphism of F to the connection of
D is formally similar as the usual connection (cf. [17], [97).

Definition. If {0y,u,} and {0s,v,} are the connections of D with respect to F,
we call {01,y,} and {0sy,} to be equivalent if there exists a common locally finite
refinement (U} of {Ui}, {Us} and a collection of bundle automorphisms {hy} of F,
each hy 1s defined on U, such that

01,0 | U=15.Qh0){02,v, |U—(1p.Qhu W Du®@1rh, &n,}(1e,Qky™),

UcU,nUs,

Jor each U.

Note, If Ey=FE,=F, E and F both have unitary structures and D is formally
selfadjoint, that is, {gy,ov} (={gsuv}) and {gyy} both take the values in unitary
group, then to denote inner product on C*(M, EQF) defined from the inner pro-
ducts of E and F by <e,¢>, we get
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< &,uv ' @8uv  Dug1,uv@8uve, > =<o, g1,uv 'Qguv 1 Dg1,ur R guv>,

if Supp.p and Supp.¢ both contained in UNV. Hence D has a connection ¢ such
that Dy is formally selfadjoint. In this case, if {hy} take values in unitary group,
the change {#y’'} of {8y} by {hv} given by (9) also gives a formally selfadjoint
operator Dy,

3. We set

Con(D, F)={0\|0 is a comnection of D with respect to F},

GIUEQF, ExQF)={y:C°(M, EQF)~C>(M, E:QF)|y is a differential
operator with degree at most j}.

Then by definition, to fix 0= {6z} € Con(D, F) and define ig,(0) = {0y—0bo,u} =Do
—Dy,, 0={0y}=Con(D, F), we have a bijection

(10) i0,:Con(D, F)—2* Y EQF, EQF).

Since @ *YEQF, E:QF)=C>(M, Hom(E\QF, E:QF)®Jr-1(M)) is a topolo-
gical space by C~—topology, Con(D, F) becomes a topological space by (10) and
this topology does not depend on the choice of 6.

Denote & (F) the group of bundle automorphisms of F, &(F) acts on Con (D,
F) by lemma 2. To copy this action to @ * Y E.®F, E:QF) by ig,, we can define
an action of G(F) on 2 *YE\QF, E:®F) which may different from usual action.
By (9), the isotropy group @&(F)s of G(F) at @ is given by

(11) &(F)o={{hv} |(1z:® hv) Du,6,, = Dy, 0, (15.@hv)},
Dy, 6, =Dy@1r+0u.
By (10), Con(D, F) is imbedded in 2 * 1S (E\QF, E2QF)=275(M, Hom(E:®
F, E;QF)®Jr1(M)), where £°° means s—th Sobolev space. Hence, if F has a
fixed unitary structure, ®(F) is the group of bundle automorphisms of F with the

unitary structure and M is compact, local slice theorem is valid ([4], [7]1, [97]).
In the case D is formally selfadjoint, we set

Cons(D, F)=1{010 is a formally selfadjoint connection of D with
respect to F},

DGI(E\QF, ExQF)={y:C*(M, E F)~»C=(M, E;F) E 3 is a formally
selfadjoint differential operator with degree at most j}.

Then to fix a formally selfadjoint connection 6, of D with respect to F, we get

(10)’ iﬁ., : COHs(D, F)—’.@k—-ls(E1®F, E2®F>
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If M is compact, by the action of &(F'), Cons(D, F) has local slice.
§2. The obstruction class.
4. For the index set I=(iy,..,in), we set
-Li=(d1, v dimrs G541, digry e, in)

(cf. [8]). Using this notation, we set

-~ 2 )
Dy = A () (=21
y lllgk—l‘—g o1l )(3xu) 8 %xuy j

+ ) BU,I(x)(L)H—lower order terms,
11[=k—1 xy

Ay, 11j(x)=Av, 1, 14(x) if I+1;=1"+1z.
Then, since g3,uvDy=Dygy,uv, we get
&2, uv@8uvDy @1y —DyQ@Lrgi,uvQ8uv
_ 9 (xy)t*; 98uv
= ;[;Au,m,(a(xy) ®1F(g1’w®axv,j)](

+lower order terms.

0y

axv

Thérefore, to set a connection {fy} of D with respect to F' by

bu= D) Ou1(x) (L)H—lower order terms,
(1 =k-1 Oxy

we obtain

3 (xv)

1
&2, uv Q@ guvlv,1— 0u,1( - &g,uv® guv
a (xv)

_ 5 9 (xy)1*; 08uv
= gAU,hlj('a_(x_U) gi,uv ®3xv, B

for each I, |I|=k—1. But since g, vvDv=Dug,uv, we get

= 9 (xy) 14 08y & ’ 0guv
;Au,hu(a (xu)) gL,ov® v, j—égguvflv,lnj@ ary, s
Hence we have
a(xy)\I
(12) Go,uvQ8uv 01”1—0”’1(8_5973) &1,uv @8uv
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& 08uv
= _ZgZ,UVAV,IHj @a—*_, [T =k—1.
=1 Xy, i

5. We set by &, ...,60", the dual basis of 9/0xy,1,,0/0%y,» in the cotangent
space. Then to set

Sy = E (ZAU,thEUI”j@ 9 )

11[=F%~1j=1 dxy, j

&y is a cross-section of Hom(E;, E;)QSHT*M)QT(M) over U. Here, SHT*M))
=Jiu(M)/Jk_1(M) is the k—th symmetric product of T*(M). By (12), to set

a(0v)= D1 Ou,1 &, ol0y)PVV=gourRguv a(bv)&1,vuR8vu,
11(<h-1

we get

a(0u) _G(ﬂv)gvu:gz,UV[JVV(gUV)]gL v gvu
= u(guv)(1e,&8vu),

because gp,uy.¥v=Syg,uv. Since this right hand side does not depend on th
choice of {0y}, we have
Lemma 3. 7o set

._Q/UV:0<0u)_0(0v)gVU:MU<gUV) <1E1®gVU);

Sy 1S a cross—section of Hom(E;, E)QSk YT+ M))Q Hom(F, F) over UNV and
does not depend on the chice of {0y}.
By definition, the collection {yy} satisfies cochain condition

(13) gy + . ywlvy+ & w87V =0.
If 8'={0"y} is equivalent to #, we have by (9)

n ah(}'
"v1= —>A e
(14) 0'y,1=0u,1 2 v,1:1Q hy P

for any I, |I|=k—1. Conversely, if ¢’ satisfies (14), there exists y€ 2 * ¥ E:QF,
ExQF) such that ¢'+y is equivalent to 4. If # satisfies (14), then

(15) o(0'v)=0(0u)—(15,Qhy™*) v (ho).
But, since &7y(hy™t)=—1p,Qhy™) [ ry(hy)] (1. Qky™t), (16) is rewritten

(1)’ o(0'v)=0(0v)+7v(hv™) (15, @hv).
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Therefore, if {6y} and {¢'y} are equivalent each other, then

(16) {0(0'0)—0a(0"v)8VV} —{o(0y) —alby) BVV)}
= v(fu) (Lg.®@Ffu™) =L v(fv) 1n@Fvy )8V,

with suitable {fy}, fu:U—Hom(F, F). Conversely, if (16) is satisfied, then with
suitable y€ @ *YE,QF, E:QF), #'+7 is equivalent to ¢. LEspecially, we have

Lemma 4. ({). The symbol o (6) of 0 is defined if and only if there exist fy,
Su:U—~Hom(F, F), such that

(17) S oy=u(fr) e, QF v )~ v(fv) (1, ®y )I07Y,

Jor each UNV.

(@0). If D has a connection 0 with respect to F such that ¢ (0) is defined, then
there exists a connection 6, of D with respect to F such that deg 6,=<k—2.

Proof. We only need to show (ii). But since ¢ (8) is defined, g3 uv®guvly—
Oug,uv®8uv is a differential operator of degree at most £—2. Hence there exists
npE 2 ! (EiQF, E\QF) such that o(f)=a(y) (cf. the proof of proposition 1).
Then, since o(0-+79)=0(0)+a(y) for ye 2 Y EQF, Ex®QF), we have the lemma.

6. We denote by B(F) the associate principal bundle of F and define a diffe-
rential operator = :C(U,R(F))—~C>(U, Hom(E:, E:)Q@SFYT*M))® Hom (F, F))
by

D fu=u(fv) (1. Qv

The sheaf of germs of images of 2 is denoted by R(= ). Then (12) and (13) show
that {¢(0y)—a(0y)8VU} = {ryy} defines a cohomo logy class in H'(M, R(=)). By
(16), this class is same if ¢ and ¢’ are equivalent. By lemma 3, this class does not
depend on the choice of 4.

Definition. The cohomology class of {s7uyv}in H{(M, R(=)) is denoted by o(D,
F).

By this definition, lemma 4 is restated as follows:

Theorem 1. D has a connection 0 with vespect to F such that degf<k—2if and
only if o(D, F)=0,

Example 1. If D=d, the exterior differential, o7 (f) is equal to df. Hence to
define D2:C>(M, Hom(F, F)YQT*M))—~C>(M, Hom(F, F)QALET*M)) by D:F=dF
+F, we get an exact sequence of sheaves

0-R(2 )= F (M)QHom(F, F)-25Dy 5 {M)QHom(F, F))—0,

where «# (M) is the sheaf of germs of closed 1-forms on M. Therefore, there
exists a Hom (F, F)-valued 2-form © on M such that whose de Rham image by
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this exact sequence just covers the representative of o(D, F) defined by ¢, a con-
nection of F. This © is the curvature form of 4. On the other hand, if F is a
complex line bundle, then the kernel sheaf of = is the constant sheaf of complex
numbers over M and we have the exact sequence

0-C—-C*g—R(=z)—0.

Hence we can define d(o(D, F))e H¥M,C). It is the 1-st Chern class of F.
Example 2. If k=2, E;=FE;=1, the 1-dimensional trivial bundle, then set D=
20, iAi, j(2)0% /0x:i0x j+lower ovder terms, Aij=Aji, <2(f)is given

n n
2 (f) ;(]Z:;:Ai,j(x)g%f”) dx;.
Hence if [IF'is a complex line bundle and the matrix (A;, j(x)) is regular at any point
of M, the kernel shdaf of & is the constant sheaf of complex numbers over M.
We denote the kernel sheaf of & by fer(=). The sheaf of germs of smooth
sections of B(F) is denoted by P(F). Then we have the exact sequence of she-
aves

O0—ter( =z )= B(F)—R(D)—0

Then to set ® = the sheaf of germs of those automorphisms of ¥ex(D) that can be
extended to automorphisms of PB(F'), there exists 2-dimensional cohomology set
H*M,P=) and map 6:H M, R(=2))—-H{M, ¢=) ((6], [8].

Definition, We denote 6(o(D, F)) by ch(D, F).

On the other hand, if there is an operator @:={2 ¢} such that the local
integrabillity condition for the equation g=2(f) is given by <rq(g)=0, then we
define the curvature ©=0(4, D, F) of a connection ¢ of D with respect so F by

(18) Ov=2 3,u(ly), O={Oy}.

7. We assume there is a transition function {gyy} of F such that
(19) degl g2, 0vQguvDvQLF —DyQ@1r g1, vvQguv 1=k —j, j=2.

We note that under thi assumption, D has a connection # with respect to F such
that deg 0<k—j (cf. the proof of proposition 1).
Under the assumption (19), we set

Dy = b Ay, [+J(x)(i)”f +lower order terms,
(1=4=7, [i1=<i 0%y

Ay ivs=Ay vy, if I+HI=V T,
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Then we have
Zo,uvRguvQ@lr —DyR1pg1,uv@8uv

—— 3103 At 3P sy g e

U<k 1=1T=/ sz TR 2 KNI —K) ! oxy

VI dlower order terms.

Let {6y} be a connection of D with respect to F such that deg #y<<k—j, then to
set Ou=2111|=k-; Op,1(3/0xy ) -+loder terms, we have

0
2o, uv@&uvlv,1( (xU))I—(fU,Igi,UV®gUV
a2 (xv)
[J] L [J]! d
=_ A 1 L AL J-K K
1§I>J:|}_ U1+ QL g I oA o K (=K {(3 W Kgy, UV{®}( ) guv )]
Hence to set
; JIJI [J]!
Sy f)= A 1 —
ov! |1|;k—; ZJ]g T [J_z_K, (= KHT—K)!
a
{(ax W-Rgi yy {®}( )Kf}]]
we obtain
(12); o(00)—a(0y )8V = Ty y( guv )81, vuRE vu.

By (12);, o(0u)—a(60,)8VV =7y, does not depend on the choice of ¢ if deg 0=<k—j.
On the other hand, if hy satisfies

(20); deg(Duy@Lp)iz @hv=k—1,
and OIU:1E2®hU(0U"‘1E2®hU_IDU,hU)1E1®hU—1) then

{0(0'y)—0{0' )8V U} — {a(0y) — o (0y)8V U}
=y (hu™) (1. Qhy)—[ gy (hy ™) (12, Qhy) 18V Y.

We set C;io(U,B(F))={f|fEC=(U, B(F)), deg{Dv®@lrhimer<k—j}, j<k. Since
constant section belongs in C;~(U, B(F)), C;~(U, B(F))=4f for all . We define =/
Ci=(U, BF)—C=(U, Hom(E:, E))Q@S* (T*M))QHom(F, F)) by

DI f)= ()N
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Then, to set R(=7) the image sheaf of =/ {¢(0y)—c(6,)97V} defines an element
of H\M,R(= ).

Definition. Under the above assumptions, the class o(0y)—ac(0y)0VV in H(M, R
(7)) is denoted by o/(D, F).

By definition, we have

Theorem 1'. D has a connection {8y} with respect to F such that deg Oy<hk—j
—1if and only if o/(D, F)=0.

Corollary. o/(D, F) is defined if and only if oD, F) (D, F) (=o4D, F))=0¥D,
F)==0¢/"Y(D, F)=0,

As in n%, we can define ch/(D, F) and ©/(0) under the assumption o/~YD, F)
=(.

§ 3. Extension of differential operators

8. Let é=&(F)={Mp, M, nz, F} be a G-bundle, G is a Lie group, over M
with the coordinate neighborhood system {U} and transition function {gyy{(x). Let
E, and E; are the vector bundles over M such that trivial on each U, Then reC«
(Mg, =p*(E;)), i=1,2, can be written

f:{fU(x> y)}’ fUECDo(UXF, ﬂF*(Ei))’ xEU: yEF,
fU(x’ y):fV(x) gUV(x)y)a (xvy)E(UnV)XF-

We set

(21) guv()¥fv(x, y)=rvix, guv(x)y)

Let D:C®(M, E;)—C>(M, E;) be adifferential operator of degree kon M. Then
to fix a connection 0=0(F) of F, zp*(D)=rnp*(D)=nrp*(Dy) is defined on each C=(U
x I, WF*(El))-

Definition, A collection of differential operators {8y}, Oy:C*(UXF, =p*(Ei))—
Co(UXF, np*(E2)) is called a connection of D with vespect to &F) and O(F)) if it
satisfies

(9 Guv{x)# (mp*(Dy)+0v)=(rp*(Du)+0y)guv(x)¥,
(i) degly<<h—1,
(iii) Ourp*f=0, FeC>(U,E;).

proposition 1'. For any D and & (and 6(F)), connection exists.
Proof. Under the same notations as in proposition 1, it is sufficient to set

(' Ov,e(x)= D ew(®)guw(®)# {np*(Dw)gwuv)%)¥ —gwu(x)#zr*(Dy)}.
WNU#h

Definition. We define a differential operator Dp:Co(Mp, np*(E)—C>(Mp, wp*
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(E2)) by
DOfy=(rp*(Dy)+-0u)fu, f={fu).

By definition, denote the projection from T*Mp) to mp*(T*(M)) defined by ¢
(F), by macry, we get

(22) (Do) =mo¢ry* (wp*(ar*(a(D))).

Proposition 2, If F has a G-invariant wmeasure p, M is a Rimannian manfold
with the volume element dv, and E=E;=FEis has a (fixed) unitary structure, then
the formal adjoint O¢r==0y ¢ of Oc is a conmection of D', the formal adjoint of D.
Especially, if D is formally selfadjoint, then D has a formally sel fadjoint con-
nection,

Proof. By assumption, gyy(x)¥ is extended to a unitary operator of L’((UNV)
X F, dv@u)REx, Ex is the fibre of E at x. Hence we have the proposition.

As in #°3, we denote the set of all connections (respectively, all formally sel-
fadjoint connections) of D with respect to & and 6(F) by Congery (D, &) and Cong
¢my,s(D, 3). Then we have

(10)’ COI’](}(F) (D, E)g@k‘l(n‘p*(El), ﬂp*(Ez)),
Congery,s (D, €)= * Ls(zxp*(EL), np*(Es)).

9. Let & (F) be a function space on F such that G acts on . (F) by the
action o#/(y)=f(zy), G, y&F, fe % (F). Then we can construct associate
F(F)—bundle_5 (&) of & The associate C=(F)-bundle of ¢ is denoted by C=(&).

Lemma 5. (i). Let E be a finite dimensional vector bundle, then there is an iso-
mor phism ¢ such that

(23)i ¢:C(Mp, mp*(E))=C=(M, EQC=()).

(ii). To fix a connection O(F) of F, there is an isomorphism cocpy=tocry, e, 22
such that

(23)i: tocry: @ ap*(Er), np*(Ee))= 2 E1QC=(€), E;RQC=(£)), j=L1.

Proof. Since fu(x, y)EE:QRC=(F) if {fv}eC>(Mr, n¥E)), {fu} defines a
C=—cross-section of EQC»(&). Conversely, a Cx-cross-section of EQC=(&) satisfies
r={rv}, fulx)EExQC=(F), guy(x)¥fv(x)=su(x), we have (i).

Since a splitting of tangent bundle of My induces (local) tensor product decom-
position of differential operator on Mr, we have (ii) by (i).

Lemma 6. (i). Let 0c={0u,e} be a comnection of D with respect to O(F), then

{c*(0)e} = {eaby, ea™*},
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is a connection of D with respect to C=(¢) and satisfies
(24) Dz*(oE)ICw(M, E:QK)=D, K=R or C,

where K is the space of constant functions on F and D in the vight hand side means
D(r @c)=Dr®c.

(ii). Let 0= {0y} be a comnection of D with respect to C=(€) and satisfies (24),
then

(tocry V0= {tocry '0u},

is a connection of D with respect to & (F') and 0 (F).
Corollary. To fix a subbundle C*~(&) of C=(&) such that KRC=(E)=C=(€), we
have

(24) z*Cong(p) (D, &)=Con(D, C.>(€)).

By this corollary, we can define the action of G(F) on Congry (D, &), the
obstruction class o(D, &), characteristic class ch (D, &), eic.. Especially, ch(D, &)
belongs in H? (M, @), where @ is a subsheaf of the sheaf of germs of automor-
phisms of $(F).

Lemma 5. Denole Cy»(F) and Co*(Mr, F) be the spaces of compact support
smooth functions on F and compact support smooth cross—sections of Cy>(E), the
associate Co*(F -bundle of &, over Mp, we have

23)  c:Co=(Mp, wr*E)=Co=(M, EQCy(€).

By (23);, we obtain
Lemma 6'. We have the isomoyphism

(24)' &:Congry (D, &)=Con{D, ERCy>(&)

10. Definition. Let M be a Riemannian manifold with the volume element dv, F
has a G-invariant measuve p such that LAF, p) containes Cy™ (F) as a dense sub-
space and E is an Hermitian vector bundle over M, then we define ne:I'[(M, ER
LAE)—~T(M) by

(25) ne(f) (x)= [ F(x)] ]EX®L2(F,/1)7

where ['(M, EQL?(3)) is the space of (not necessarily continuous) cross—sections of
EQRLAE) over M, I'(M) is the space of (dv-measurable) functions on M and
A &y @rcr,m is the norm of f(x) in ExQLNF, p).

Definition. Under the same assumptions as above, we set
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(26) LXM, EQLXp)={fIfel(M, EQLXp)), ng(f)EL(M, dv)},
HA =1 in LXM, dv), if FEL{M, EQLE)).

Lemma 7. Under the same assumptions as above, we have

(23)i, . ot L (Mp, np*(E))=LXM, EQLXE)),

and ¢;2 is a unitary transformation. Here the measure on Mp is given by dv@p.
Proof. To triangulate M sufficiently fine such that on each simplex o; of M by

triangulation, & and £ are both trivial. Then to denote the characteristic function

of o; X F by i, we have

(27) Nl =2011wr |, fEL M, ap*(E)=L¥Mr dv@p)QE.

Then by Fubini’s theorem, f(x) belongs in Ex@QL?(F, p) almost everywhere on each
gi X F and

s 113=[ [] Gitoirts, o) dplao

=] Nnelur )12 dv=] | nelzir ) 1%e)do.

Hence we have (27) by (26). Then, since Co®(Mp, np*(E)) is dense in LY Mp, np*
(E)), ¢z is defined on L¥Mp, =p*(E)) and we have the lemma.

In the rest, we assume G=S0(x) or SU(n) and F=R" or C". First we note

(28)r LXR")=L¥R*, 7" ldr)QLXS", df),
(28)c LACM)=LXC*, r* 'drd0)QLACP""", dw),

and the actions of G on LAR*, 7" dr) or on L¥C*, #»"~'brdf) are trivial. Here d&
and dw are the standard volume elements on S*°! and CP"~!, It is known that the
0. n.-basis of L3S""!, df2) and L¥CP"-!, bw) are taken by harmonic polynomials
of homogeneous degree p and type (p, p), p=0, 1, 2,.. We set the space of har-
monic polynomials of homogeneous degree p (with n-variables) and type (p, p) by
9%, and $2.7, ([5], [10]). Then each $?» or $2.2, is the representation spaces of
SO (n) or SU (n) Denoting their representations by X» and yc,p, the repreSentations
of SO (#) and SU (») in L¥R") and in L¥C") (equivalently, in L¥S""', b%2) and in
LACP"-1, dw), denoted by y and yc, are decomposed as

(29) A= b XC = D _XC, .
=0 =0
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We denote the associate L3S""!, df2)-bundle or L? (CP""!, dw)-bundle of & by
x(&) or xc(€), and the associate $Pn—bhundle or HP.2,-bundle by xp(&) or xc p (£).

Proposition 3. There exists a connection 0z of D with vespect to & which induces
connection yp(fe) or ycp (Oe) of D with respect to yp(&) or yc,p(&) for each p and
satisfies

20(0:)=0, or yc,o(0¢)=0.

Proof. The connection f¢ constructed in the proof of proposition 1’ satisfies
the requirements of the proposition. '

We denote the sheaves defined for D and x(&) or xc(é), xp(€) or xc (&) by R
(20, R(zxc), R{z1) or R(214g ) (cf. n%). Then there are maps ¢p: H(M, R(=
D= HY M, R(2:) and yc, p: H(M, R(=0))>H(M, R(2ic,p) induced by the
inclusions $2,—L3S"-!, d2) and H? Pu—LACP"-!, dw). Then we have by propo-
sition 3 (and lemma 3)

Theorem 2, We have

(30 ep(o(D, x(EN)=0(D, x»(€)),
ec, plo(D, xclé))=0(D, zc,pé)),

and o(D, y(€)) (respectively, oD, xc(&)) vanishes if o(D, yp (£))=0 (vespectively o(D,
%6, 5(£)=0) for all p.

Proof. We only need to show the second assertion, But since L?(S""!, df2)
(respectively LHCP"-1, dw)) is the direct sum of $?x (respectively $2.%,), we have
the second assertion.

Same theorems hold for ch(D, x(&)), efc., and higher obstruction classes.
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