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§ 5. Fundamental solutiens on the cylinder,

Let A: C=(Y, E)y=C=(Y, E) be a 1-st order selfadjoint elliptic operator, where
Y is a compact oriented Riemannian manifold and £ is a (complex) vector bundle
over Y. On Y x R*, We consider differential operators D, =D, r and D. = D_
given by

(15)5. 2 Doy = % Futd, k>0,

0

o + A, k>0

(15)_, % D_w=u*

By definitions, D = D, &, or D_, is a differential operator from C=(Y X R*, E)
into itself. Here E = »*(E) is the induced bundle of E on Y x R* by the projection
z: Y xRt =Y.

Since #* %0 on YX (R*—{0}), D. (=D, z) and D_ (=D. ) are both elliptic on
Yx (R*—{0}) and their formal adjoints are given by

(15)4, 2* Dy, = #—a%’" +ukd,

— kutt + A,

(15)_,]‘?* D—,k*: ~uk aau

The eigenvalues and eigenfunctions of A are denoted by 2 and ¢; The pro-
jection from C=(Y, E) onto the space spanned by {$i|2=0} is denoted by P. We
set C=(Y x R*, E; P)={s/(y,u)|[{Pf){(»,0) =0.}C"(Y x R*, E; P), etc., are similarly
defined. The adjoint condition of (PF)(y,0) =0 is ((I-P)f)(y,0) =0. The space
C*(YXR*, E ; I-P), etc., are similarly defined,

As in §2, L? = L} Y xR*), H! = H{(YxXR"), efc., mean the Hilbert space, ¢-th
Sobolev space, efc., on YXR*Y efc.. Cc®.. means the space of compact support
C~—functions (or cross-sections) and set (n = dim Y + 1)
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of °f 7
3 —_ t T i — = —_—
Ho = {f|FEH, F(3,0) = ——(5,0) S0 =0}, 5=t [ 2],
a 9
Cla™ = {F1FEC, S(3,0=2-(3,0) = - =2 2(5,0) = 0), Co a1 = CenCrar™

Definition. Le! g(y,u) be a cross-section of E such that g(y,u) = 2 g@(u)pa(y)
Then we define operators Q.,r and Q_,r by

(16) Q.,%(8) = ZA}Qx,k(gx)(u)qu(y), Q-,x(g) = 21Qu,-#(g1)w)galy), 0<k<L,
ZeCe(yxR*, E),
(16)- Q- #(8) = 20Qx,-#(£2))ga(s), k=1, £2EC0, [Lar]-J=(Y xR, E).

Proposition 1. Qi are the fundamental solutions of D« r with the following
properties.
(@). The kernels Qux,1(y, # 52, v) 0f Qu,kx are C* for u=tv, u0, v=0.
b). (). Qur and Q- k, 0<E<1, are defined on Cc>(YXR*, E) and map it into
C=(Yx (R*—{0}), E).
(ii). Q& k=1, is defined on Ce[[r]-1]°(YXR,, E) and maps it into
C=(Yx (R*—{0}), E)NCY(YxR*, E ; P).
(¢). For any 0 m <M, Qx,r is extended to a continuous map LY x[m, M]—
L., More precisely, we have
(). Qs+, z is extended to a continuous map Qup : L2 — Liec..
(ii). Q-,r, k=1, is extended to a continuous map Q.i: Hywr)-ptRI+[0, L] —
Lioc., for any L > 0.

Proof. Except (a), the proposition follows from lemma 2 and lemma 6. To show
(a), as [4], we set

Kau) = Y(u)e vl AP — Y{—u)er | AT — P),

Y(u) is the characteristic function of R*, |A|= AP — A(I — P).

Then, it is known that the kernel E4(y, z, u) of K4 is a C® function on YXY xR*
([4], I). Then, since

Qi (3, %5 2, V) = Ecacrsn(y, 2, u, #rt—ok*h),
Q—,k(y7 U, =z, U) - Z)_kE(A/(l—k))(y9 Z, ul—k - Ul—k)) k % 1:

Q-,1ly, u; 2z, v) =v1E,y, 2, logu — log v),

we have the proposition,.
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Corollaxy. D. p and Di p* have closed extensions 2+ and Dzk". Dk
and . k¥, D _kr and 2 _p* ave adjoinis in L* each others.

§6. A lemma on Volterra’s integral eguation.

It is known (cf. [5]) that if the fundamental solution of the heat equation on
R*x D with time variable # and space variables x given by

0 .
(17 l + Lf =0, Lis an operator on D, the condition is given at t =0, is given

by G, Gp = JDG(Z‘, ¥, &)p(£)de, then the fundamental solution E of the equation

(18) ﬂ +(L+K)f=0, K is an operator on D,

is obtained in the form
(19) E—=G+G*H, G*H— J; | 6t —s, x, HGs, 7, Qanas
Here, H is the solution of the following Volterra type integral equation
(20) H+ K:G + Kx:(G*H) = 0.

Lemma 8. In (20), if G satisfies

(21) l Git, x,86) =0, x4& n=<N,

Zm antﬂ

and assume H satisfies the condition

(©)n lim (1 + Kx)(—— atlj(t x, &) =0 implies hm aa;](t x,8=0, n<N, x£¢€,
-0
then
n
(22} im %, 5 8 =0, nZN, 5 e
-0

Proof. Since linmy—o(H + KG + K(G*H)) = limi—o(H + KH) = 0, we have
limeo H(E, x, &) =0, x%4& by (¢)p. Then we get

GitH = —Gs*H = [ —G(t — s)H(s)] SLO + G*Hs; = G*Hs.
Hence we obtain

(23); Hi= —(KG: + KH + K(G*HS)).
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(23); shows lme—oHi(t, x, €) =0, x+#£€&, by {¢)i. In general, we assume that we have

(22) lim P H(t, x &) =0, x £E m=n,
t—o O™
an
(23)x Howy = —(KGuy + nKHn-vy + K(G¥Hw)), Fony means —

ot
then, since Gr*Hony = —Gs*Himy = [—G*Hny 15 + G¥Hnp, we get
Heonp = —(KGensr) + nKHeny + KHeny + K(G*Heni))
= —(KG v + (0 + DEHm + K(G*Hn.n)).
Hence we obtain (23)x,; and therefore we have (22)n41 if # + 1= N by assumption.

Note. If (14 Kx)f =0 implies f =0, for example, K« is an operator given by
multiplying a function, then (22) holds under the assumption (21).

Lemma 9. If G satisfies (21)y and F = F(t, x, £) is a solution of the equation
(24) (L+tKL)F(, x, §) = —KaGlt, x, £),

then F also satisfies (21)y if F is continuous on ¢t =0.
Proof. Since

o" ME on-1f
(25) 3157(1 + Ko F = (1 + tKx) i + nKx‘W,

we have the lemma by induction.

Lemma 10. If G is real analytic in t, t >0, and satisfies (21)w, F, a continuous
solution of (24) on t =0, is also real analytic in t, t >0, and G*F exists, then F
is a solution of (20) if F satisfies (¢)w. Conversely, under the same assumptions on
G, if a solution H of (20) is real analytic in {, t >0, and salisfies (), then H is
a solution of (24).

Proof. To show the first assertion, it is sufficient to show

But since F{t, x, &) = ZZ'MIL—»OJ Glh—s, x, p)F(s -+ ¢, 9, &)dy, to set
D

r4-£
P+t 2,6 = | | Glr 4+t — 5,2, s 4 7 4 £, €)dnds + 507,10,

v
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fr, ) =0(), r—0, and O(), t—0, and for » >0, f(r,?) is real analytic in ¢
although at ¢ =0.
On the other hand, since

At 7
[ B bt s, 2, s+ 7 1, E)dgds

p ot*

v

v+t orE
:j JDG(r+t S, %, 1) (s + 7 4 £, 3, E)dyds + O(),

for any n by lemma 9, we get by the same reason an in the proof of lemma 8

onr "G "G
o —(r+ i, %, §)+KxW(r-l—t x, &) + nKx at" —(r+1, x, 8
rt o F
+Kx(j j Glr -t — 5, % )l (st r-1t,9, E)dnds+2oflr, )+ olt) =
7 D 9 at”
because F satisfies (c)«. But by (26), we also obtain
mr "G o F
e (r +¢,x, E)_l_Kxat”( v+, x, &)+ nKx P —(r+t, %, &
r+2 oK
+ Kx(L JDG(r b, 3, ) s 7 4, g, E)dyds + oft) =

Hence for any #n, (8"/0t")f(r, t) = o(t). This shows f(r, ) =0, » >0, because f(r, {)
is real analytic in ¢ although at £ =0, for » >0. Therefore we get

+t
(26) TEKxF(r +t, %, ) = r JDG(r +t—s, % pF(s+ v+t g, &dyds.

Tends 7 to 0 in (26)', we obtain (26) which shows the first assertion.
To show the second assertion, we note that we obtain

:

Hwy , 7" r"
7l rt = (Kx(G(n)—) + Kx(H(n 1)‘(‘_—15!* + Kx(G*H(n);lT)),
by lemma 8 (and (23)x). Hence we get
= H
nZ-t:O n! r
. G n Hep -1 % Hiny
(Kx(nE—o o )+ er(nX‘,1 o —1)] ") + K (G (Eo_n‘ rn)),

because G and H are both real analytic in ¢, ¢ >0, by assumption. Therefore we
have
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(27) H(t + 7,28 = —KsG(t +7,%,8)+rKH{ + 7,x,8) + Ko(G*(H| tzs57)).
In (27), tends ¢ to 0 and change #» to ¢, H satisfies (24). Hence we obtain the lemma.

Corollary. If G is veal analytic in t, t >0, and salisfies (21)e, Kx is a veal
analytic coefficients differential operator (may be degree is 0), then (20) has a solution
H which satisfies (22)e if (24) has a solution which satisfies (¢)o. Especially, if
deg. K =0, then (20) has a solution H which satisfies (22)c.

§ 7. Construction of the kernels of e 2t+k& =1, 2, on the cylinder.

Asin §3, weset dy, 2= D+ *Fx,r and 4y s p = D+ 1D+ k"

Definition. For any ¢ >0, we set on Y X R*

(28), D ke :a% -+ o)A,
(28). Dohe=(uh+ e)—(% + A

By definitions, D k. are elliptic on ¥ x R*. Their closures (in L?) £ 1 . and
their adjoints & 1 » * are defined and we set

Ay, s ke = T s b D s ke, Ao s, k= D 1+ ke D s ke

Similarly, Dx ke, 4dij+,k 2, =1,2, etc., are defined. Explicitly, they take the
forms

2
(29), Biyo,hiye = =+ (=1 kb Bk 4 e i=1,2,
(29) 1 A] kA, = '_(uk + 8)2 o - Zk%k—l(%k -+ e)—a“ - Heuk“l + 22
s 2T A, auz au >
(29) Ay oo = —(k + 6P — ohut=3{uk + &0 — bl — 1mk-2(uk + )
-2 s~y Ry 4,y ou? ou
— Akuk-t 4 22,
The boundary conditions for these operators are
‘ dr
(30)1, +,¢ fi(0)=0, 2=0, (-&;‘ + ef)u=0 =0, 2<0, for 4y, sk,2,,
ar
(30)2, +,¢ F0)=0, 2=0, (-, -+ &f)umo =0, >0, for dz,,k 1.,

du
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(30)1,-,¢ F0)=0, 220, (S% + AN u=0 =0, 20, for 4, k,2,e, B<1,
Sor do k2, B21,

dr
(30), -, ¢ F0) =0, 2=0, (e 4 2N)|u=0 =0, 2>0, for od - b1,e, k<1,

fO?’ Al_ k 2.¢, k_%l.

2Ty Ay

To construct the elementary solutions of the heat equations associated to
Ai sk, 2,, We set

s i 4,

82
(31)« bijs 2,0 = =53

K =Ki s, pAc={(—1 k""" + 2u* + 26uk), i=1, 2,

LA 2]

o+ &0+ K,

2

9
(31)- di, ke = —E°

o T K K=Ki ke i=1,2,

2

0
Ky, k2,6 = —(u2* + 2eu®)

]
_ k-1(,,k Yo k-1
P 2ku*-Yu” + ¢) ” ARyt

0% _ )
Ko k2, = —(u + ZEuk)W — 2huk-Yyk + a)%—

Ty Yy

— Rk — Lyuk~%uk + &) — Mk,

The fundamental solutions of 3/0¢t — 32/0u® + €222 (and 9/0f — §20%/0u® + A2) with
the boundary conditions (30);,+,e, ¢ =1, 2, (and (30);,-,, ¢ =1, 2,) are given in [4]
and they satisfy the assumptions of lemma 10, Hence we may construct the funda-
mental solutions of 8/0t —4 i . r,1, =1, 2, (and 3/8t — 4;,_ r,2,e, 1 =1, 2,) with

the boundary conditions (30)i,+,:, ¢ =1, 2, (and (30);,_,¢, =1, 2,) by lemma 10. In
this §, we treat /0t — 4i 4 k,2,c, =1, 2.

3 ey Ay

Since Ki i k2

[ Rt

e, =1, 2, are the operators of order 0, the solutions of the
equation (24) is given by

F(ta U, U) = Fi,+,k,],6(t, U, ’l))

()RR 2wt + 26uk)) G2, u,v) 1
T 1+ (—D)fRaukt 4 22wtk - 2euk)ys 0 0T

Here, G = Gi,4,1,e(t,u,v), i =1, 2, are the kernels of the fundamental solutions of
8/0t — 3*/au® + €222 with the boundary conditions (30);,.,{ =1, 2, given by ([4])

Gi s, 2,68, u,0) = iz_:;{exp( —(u4t— 1))2> _exp<_—w4;|_—v)2)}’

A=0, fori=1, A0, for i=2,
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Gi, s, 0,6(t, u,0) = e;::; {exp( —(u4t—~ v)z) N exp<:%_;t}’_>i>}

u -+ v
2/t

—e&|aesirlcu+vy erfe, {

+el2lv/ T},

erfe(x) Tetide. 2<0, for i=1, 10, for i =2

__2 J
e

Hence lim s—oGi, 4,4, = Gi 1,0 in H® for any s=0, where Gi ., means the funda-

mental solution of 3/0¢ — 9%/3u® with the boundary condition (14),. Therefore we

have

(=1 kAuk=t + 22u2k)Gi 4 oft, u,v)

{Z%Fi:hk,l,e(t:uyv) = =" 1 +{(—1)ik2uk‘1+22u2k}t » 1=1,2,

where the right hand side is the solution of (24) with G = Gi 4,0 and K= K; 4 k2
= (—1)'haukt 4+ %% { =1, 2. Then, since

(32)i 14 {(—1) kb=t + 22utk}t <1+ {(—1) hAuk~r + 2%(uk + 2euk)}t,

(32)ii 1+ {(—1YRauk~t - 2020t =1, B <1, or k> 1 and (—1)'A=0,

(32): L {(— kgt + iy =1 — LB D (B )

|2|2/Ck+D),
2 2

(—=1)2<0, k> 1,

we obtain

Lemma 11. (i) If <1, or B>1 and (—1)2A=0, the fundamental solutions of
the equations 9/dt — 4;, 4 k2,6, = 1,2, with the boundary conditions (30)i,+,e, i = 1,2,
tend to the fundamental solutions of the equations 8/dt — di . k2, i =1,2, with the
boundary conditions (14), in H® for any s=0 and this convergence is uniform in A.
(i). If B>1 and (—1)2<0, we set L% (or H%) the subspace of L? (or H*) spanned
by {¢2]12]<C}, then the fundamental solution of 8/3t — Ai k2, with the boundary

condition (30):, ., tends to the fundamental solution of the equation 8/0t — 4 i k2
with the boundary condition (14), in L% (or H°:) on the interval

(33)

2( - )(k—%kﬂ) CHk*?) >4 =0,

k—1

and this convergence is unijform in Aif |2 < C).

Proof. By (32)i and (32)i, to show (i), we only need to show the uniformity of
the convergence in 2, But, since Gy .2, tends to O at least in the order of exp
{—&22%) becouse erfc (x) = O(exp(—=x?)), we have the uniformity in 2.
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On the other hand, by (32)i and (32)iii, Fj . 24 is continuous on
0=t <22/(k—1))h-DICk+Ly| 2] -2k*D | we get (ii).

Corollary. (i). If k=1, denote the kernels of exp(—tdy . re) —exp(—tds ik,e)
and exp(—tdy . k) — exp(—ids . &) in L* DyF. &, y,u) and F. ilt, y,u), we have in
LZ

(34) mFy pe(t,y,u)=F, nt,y,u), 0=1<oo.
e—D

(it). If k> 1, denote the kernels of exp(—tdy vr,e) — exp(—ids, 1 k) and exp(—idy , »)
— exp(—tds, +, k) in L% by F.i b clt,y,u) and F, rc(t, y,4), we have in L

] 2 (k=1)/(k+1)
(34} ll?’};l)F+,le,s,c(ll,y,u):F.;.,k,c(t,y,u), O§t<2( ) ’

- C%/(k + 2).

On the other hand, since fime—o Fi 4, 2,6(t,%,0) =0, uz%v, for €20, to set

m Fopolt,y,u)dydu = Fo po(t), <1,
0JY

o] P b oltsddydi = Fopelt), 1>1,

we obtain

(%t Fonlt) = lim[ | (Groelt, 5,0) = Gapoelt, ) dydu, 1,

t—0 =070

(35)i zl'mF.‘,k,e,C(t):zmj J (Guveclt, 9, 8) — Ga s olt, 9,0)) dydu, k> 1.
[sdi] =0/ 0/Y

Here, Gi ., and Gi, . ¢,c are the kernels of exp(—i#d; . ) on L? or on L%;, where
4i, e mean — 9%/du® + &2A® with the boundary conditions

(36)0,1 (PAY5,00=0, (I=P(Z+4a) s} =0, i=1,
(36)., 5 (1= P))t,0) =0, P{L+ 4) 5} (5,00 =0, i=2

Then by [4], to set G, «(t) :Jj[y@l,+,a(t, 9,1) — Gy 4. olt, 9, 1)) dydu and

Gl clt) = J JyG1,+,s,C(t,y,u) — Gy, +,e,clt, y,u)} dydu, they are both defined on
0

0=t<co and we get
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* h 1 1
37) +,€ —}5dt = — == —)&2p(2s),
(37) Jo 16t + et = — DT s + ez
, °° Plysmigp— 1 Lygmas
(37)i JO Gaect) + 2}’ i = 5Tl o Jesopl2s),

where % = dim. ker. A, 5(s) is the p~function of A given by
2110, 1€ spec, 4 sign 212]75 and ncls) = Dlizo, 1€ spec. 4, 1] <c sign 4| 2|75, Hence, if
Giyes Guyec, Fure and Fy ke ¢ have asymptotic expansions at £ — 0 of the forms

PR

(38)i G.,,’s(t) = 2 a+,m,et’"/2, F+,k,e(t) = 2 b.hm, k,etmlz, k é l,
mZ—in mz=—n
(38)ii G+:e,c(t) = Z (l+,m,e,cl‘m/2, F+,k,s,c(l() = Z b+,m, k,s,cllmlz, k > 1,
mz=—in M= —n

we have by (35) and (37)

(39) §O) = — 2200 e+ H) = (2o pe+ B), REL,
(39)i 7c(0) = —(2a4,0,5,c + h) = —(2b4,0,k,e,c + k), B> 1

Therefore we obtain

Proposition 2. (1). If k<1 and G,,., Fy r: have asymptotic expansions of the
Jorm (38)i, then their cofficients of the terms of order 0 do not depend on & and k.

(i) Ifk>1 and G. e c, Fy ke c have asymptotic expansions of the form (38)ii,
then theiv coefficients of the terms of degree 0 do not depend on & and k and their
limits at C — oo exist.

In the rest, we set these constants by a,, and a. ¢ Hence we get

(39)ir (0) = —(2a4,0 + A),

(39)ii' 7]0(0) = *"‘(2&1_;,0,0 -+ h), lim As,0,¢c = G+,0.

0

§8. Construction of the kernels of e ?4i-% i = 1,2, on the cylinder, I

Lemma 12, The fundamental solutions of 0/0t — €26%/0u® + 2% with the boundary
conditions (30)i,.,s, 1 =1,2, tends to the fundamental solution of 0/t +v® on (¢, u)
— space if u>0.

Proof. Since the fundamental solutions are given

Gi, -, 2,6t u,0) = %— f/—Z;z—tt [exp{ _(118;;0)2} —exp{hj%ﬁ}],

A=0 for i=1, 2=0 for i = 2,
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~22t

it = [ ool ) o)

u-+v
2e0/ t

20 fori=1, 2>0 for i =2,

——H[ef“/“””)erfc.{ =42 [«/tH

and

L2'—[""eu|/e<"+v>erfc. {”“szt} Flw)do

€ Jo 264/ t
:ZIZIJTJZ%‘/teZHIW“’erfc (w -+ A/ T A2 Tw — w)dw,

J:ezl%l»/7werfc. {w+lll«/?}dw~2|lh/_(e 11— erfe, (|214/F),
we have
(40): {m(z)Gl,_,;,e(z‘ #,v) = e Moy, u 0,

lsi%Gi,—,z,e(t,O,v):O, 2=0 for i=1, A=0 for i =2,
(40 lzm Gi, - 2, elt,18,0) = e 28y, u 40,

ltm Gz,_,x,s(t 0,v) = {e % 4 erfc. (|2]a/ ¢ )} 50,
A0 for i=1, 2 >0 for i =2,

n (Cel)*, the dual space of compact support Cl-class functions. Here, dx means
the Dirac measure concentrated at {u«}. Because we get

lim J e W F(2ea/ t w — u)dw
e—0 Ju/2e)t

=lim { _eRlalvEw erfe, {w 4214/ £} F(260/ t w — u)dw =0,
e—0 Ju/2e/t

=0, reC.u
Hence we obtain the lemma.

Corrolary. Let H.= H; .= Hi ;. be a solution of the equation

i | 1@ ,
(41) aT/tEHi’R'k’E(t’u’v) ” zkH’ 2, ket v) = —Gi - aelt,u,0), i=1,2,

T

and assume Ge - Ge*He and lime—y Ge + G*H. both exist and He tends to a solution
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of RH/ou* — Hy/tu** = —(e~*¢/1)6.®. Then the fundamental solution of 8/df —
(u2k 4 &%) g2/ou® + A% given by G.-+G*H. tends to a fundamental solution of 9/t —
uPRRE/ou + 22 on 1 >0 if limeoHe(t, u,v) = u*5,®, Here, G:= G, means Gi,~ ;e

Proof. First we note that H; is given by e **H, H, if H, exists. Then, since
tut* Ho wo — Hy = —u*5,%, we have u?*Ho uy = Ho,+ and therefore

(42) quH]’uu — H]ls = XZHZ.

On the other hand, since we get by (40)

lim Ga,e + Gt Hy o = e=38, + J e (s u, v)ds,

e—(

we have

(gt uh-L o 9 ¢+ 2l Gre + o, Hy, )

£
2 2 2
= H(t,u,v) — utke= 445, — y2ke-4 ‘[ e? SH;, unls, u,v)ds.
0

Hence 8/0t{eX"4(3/ot — u**d*/du? + BYlimeoGae + G, e¥H; ')} =0 by (42). Then,
Since to set

<gt qu +12)(lszxe+G“H“)—e"“C

. . » 2 2 t 2 .
C is given by Ime—o{H(t, u,v) — utle=2"15,3 — y2ke-2"t [ et SH uu(s, u, v)ds) = limzi-g
0

{(Ha{t,u,v) — u?*5,®)}, we obtain the corollary.
To solve the equation (41), we set

1 ut- k ] ul—-k

A, = /1 - £
yilt,u) = &/t Jiji- 2k|(«/ ;1= k)’ yolt, ) '\/MYI/IZ—zkI(\/ PR k)’ k1,
yilt ) = Suu” T gyl u) = ™ =1,

where J« and Yp are a-th Bessel function and g-th Bessel function of the second
kind. Then y; and y; are the solutions of the equation d%y/du®— y/tu** =0 ([107,
[187]) and their Wronskians W({yi, ys) are given by

W(A’hh)“%%““ B1, Wiy, ) = \/14——— =1,

Hence a solution of (41) is given by
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ki3
(43) Helt ,0) = = Gelt,w,0) = 5 [ gt w)Gult, w,0)dw,

11, 1,0) = g 5l V)t ) — (L, wDlt, ).

By (43) and (40), we have

(44) lff’é H. (t,u,0) = —e“zt{%u + %;—v)g(t,u,v)}, u>0, v>0, in (Cot)t,

In other word, lime—oH: (f,u,v) tends to a solution of the equation
PH/ou* — H/tuk = — (et /1)8,® in (C2)* if u > 0.

Definition. For k>0, we set

-k
(Taf) = A0~ )ah), v 0 s,

(Tof)w) = Fle?), v=1log.w, k=1,

and define the subspaces 57 of the space of cotinuous funnctinons in v-space by

r = £\ Tk («/—f7_>(w) is continuwous on 0 < arg. wé%, holomorphic on

0 < arsg. w<g, w %0, IT13<7%>(7@/~:10)| :O(e-r‘”), y oo, for

T

some € >0, w=re/ 10, ogggg}, kA1,

Gy = {F|T: (:/—%)(w) is continuous on 0 < arg. w < w, holomorphic on
s — X
0<arg w<x, |Ta(2)(rer o) €LH0, c0)).

We denote by . the Laplace transform and by H., the v»—th Hankel transform
given by Hu(/}x) = V:x‘”y”“]v(xy)f(y)dy, Re. v = —1/2. We know that H.(H.(f))
= f if f is C» and rapidly decreasing at o ([ 2], [6], [18]).

Definition, We define the subspaces Zr of the space of conitinuous functions in

I-space by

1 =lolp = Hynnin)|J=2). resra, k21,
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i =lplp = 20y SL), reay.

Zr and & are both considered to be topological vector spaces (not complete)
with the uniform convergence topology. Then we obtain by (44) and the corollary

of lemma 12

Lemma 13. There exist fundamental solutions E. of the equation %—(uk2+82)

92/0ut+ 22 (with the boundary conditions (30)i,-) which tend to a fundamental solution
E of 8/at—utko?/ou+ 22 in (Zr)*Q(571)*, and this E satisfies

(45) Supp. E C B x {{u,v)|u =v)}.

Proof. By Hankel’s inversion theorem ([2], [6], [18]), d» is approximated by
the solutions of 3*H/ou?® — H/tu?* =0 in (_F r)*@(Zr)}*. On the other hand,
(e~#*/t20%*) g(t,u,v) is a solution of 3*H/gu? — H/tu** = 0. Then, since

“Z(k_“‘l).«/ Fpk e i 1 1=k _ -k
g(t,u,v) a1 tuky [sm{\/ ; 1“k(u v )}

+%~ki~dt( k-1 _ pk-1 cos{\/h k(ul—k _01—k)}+...], B£1,

tuv w174 p\V1i+1/4
g(t’”’”>_‘/t+4[(_v“) - () [

lime—o(Gs + G*[(—e 2"t /2p* ) {1 — Y{(u — v)} g(t,u,v)]) is defined as an element of
(F r)* Q(27,)* if u>0. Hence we obtain the lemma.

Corollary 1. There exist fundamental solutions Ei,e of the equations 9/t —
(u* -+ )2%/ou® + 22 which tend to a fundamental solution E of 9/ot — ut*9*/ou® + 2
n ((F )* Q ()", which satisfies (45).

Proof. By lemma 10, a fundamental solution of /6t — (u* + €)282/3u® + 2% is

obtained from E. by solving the equation

(’/‘ZH],i - Hl, e azEe
ut 2Aut Tt

The solution H;,. of this equation is given by

i
Hiodlt,u,0,) = —% | gt 0) B e, w, v},
c

_ m/Et T vtk . —1 uthe
ge(t, u,v) = m]ﬂl%kl (\/ 267 9 — k) Yiie-ri (\/2—51‘_ 2—/3)
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T yl-ke A ke
*]1/[2—k|<\/—1—“—) Y1/12»k|< L >, k2,

28t 2—Fk 28 2—Fk
B Ttuv_ (ﬁ) V1/4+1/8¢t . (l}_) V'1/4+1/8¢t } 9
ge(t’u’v)_‘/lJrZet { v u , k=2

Hence lime—oHy,e ¥*E: =0 by (45) because lime—og:(¢,u,u) = 0.

Corollary 2. There exist fundamental solutions Es . of the equation 8/0t—4;,- k,1,¢

rTa e 4y

on (t,u)-space which tend to a fundamental solution E of the equation 3/3t—u>*3*/ou’
+22in ((F r)* @ (7r)* and this E satisfies (45).

Proof. By lemma 10, a fundamental solution of 8/8f—4; . k, 1, is obtained from

ERaE AP RS

Ey,: by solving the equation

AHsie 1R+ 8iolk — Vb + &)}
o {2k~ k1 €)) nh

_—l aE1,s . Au + 5{}2(1@ — 1)(uk -+ 8)
t ou 2u(u® + €)

Eie, 81,2=0, 0g2=1

A solution of this equation is

(46) Hz i€ c(l‘,%,l})

(RS RS}

B 2 u 1 — kt{lxk"l + 55’2(;3 — l)xk—Z(xk + 6)}
J [exp Jw H2Rxk 1 (x + *e)) dx}

c

_Aw + 9i5(k — (w* + &)
Jw(wk + &)

I:_l_ 3E1, e

P (£, w,v)

Eye(t, w,v) ]dw.

Hence in (\F #)* @ (7 r)*, lime—oHs i e *E1 s =0 by (45) and we have the lemma.

“r 5%y

Note. The fundamental solution of 3/4¢f — u~*3%/3u® is given in [8] (cf. [87,
[97]). It takes similar form as our solution.

§9. Construction of the kernels of e—~t4i:—k § =12 on the cylinder, IL

By the corollary 2 of lemma 13, we obtain

Lemma 14. There exist fundamental solutions Fi _ n.c of the equation 9/dt
—4i,_ ks which tend to a fundamental solution Fi _ kc of 3/0t—di _r in ((F #)*®

» T ¥

(2 R)*QH(Y) for any C >0, and these fundamental solutions satisfy

Fi:':k)s)cl“ﬁk)* ®(%k)* ®HSC(Y) = Fi,‘y/?,e:C>
Fi_ ke[ F 0 @20 Q H(Y) = Fi,_ r,c,

Tl

if C'>C.
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Proof. By (46), the convergence of Ey .= Ey ¢ to Ee = E: ; is uniform in 2 if
2] £C. Hence we have the lemma.

Corollary. There exist fundamental solutions Fi _ . of the equation €/t —
d; _ re densely defined in ( F r)* R (k)" Q HY) which tends to a fundamental

solution Fi _ r of 0/6t — 4di,_,r densely defined in (_F »)* @ (£ r)* Q LXY).
We denote the inclusion from & » ® &7, @ H(Y) into H*R*XR*XY) by ir,s.
The dual of ¢r,s is denoted by iz s*, and set

(47) ker.ir, s* = A ks

If s=n+1(dim. Y=#n-—1), then .#7 s 0. But, since we know
Ce, (1 —k)/2)> c z2p*, B<1, Coh-1e™ C 2%, B<1,

we have

(48) Ce, sy *(BRXBXY)N .t "k,s = 0,

Here, Cc rar1*(R xR xY) is considered to be a subspace of HS(R*xXR* xY).
In( F 1) Q(S7r)* @ HNY), lime—otrace [exp (—1tdy,- r,c) — exp (—tdsy, - r )] coin-

cides to limworj Gy, -t v,1n) — G, _ (£, y,u)}dydu, because lime—o(Ee — Ge)(t,y,u) =
0/Yy

lime oHy, <(t, u, ) = lime—oHs o(t,u,u) = 0. Hence we get

) iona _
(49) {z_ng trace[e t4i,- ke — €7ty - ke | = —%Spec o 51g2n erfc. (|Ala/ ¢), k<1,

signi

:Ze erfc. (|A|a/ 1), E=1,
2

spec, A, A#0

because Gi,_,s(z‘,y,u):%Gi(t,y,u/é‘), where Gi(t,y,u), i=1,2, are the kernels of
a/ot — d;, i =1,2, with the boundary conditions (36);, i = 1,2 (cf. [4]). Therefore,

to set
F_ pet) = JO jy{Fl,_,k,e(t,y,u) — Fz,_,k,s(t,y,u)}dydu,

if F_ r(t) has asymptotic expansion at -0,

(50) Fopol) ~3 bk o™,

mz=n

we have by (49)
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(61) 7(0) = lim — (2b_0,r,c + 1), k<1,
e—()
=1lm (2b. 0,k + h), B=1.
£—0

Summarising these, we obtain

Proposition 8. If F_ r e has asymptotic expansion (50) at t — 0, then lime—ob_ o,k <
exists and we have
(52) limb_,o, ke = a0, k<1,
e—0

= —ao, kg 1,
where av = a0 is determined by the asymptotic expansion of G{t) at t — 0 given by

G(t) ~ Z amt™'*,

M~ N
Here G(t) means JWJ {Gilt, y,u) — Golt, y,u)} dydu.
0Jy
§10. Indexes of degenerate operators, I.
Let X be a real analytic n-dimensional compact Riemannian manifold with
boundary Y and D =D, or D_ be first order differential operators defined on

C»(X,E) and map it into C=(X, F) such that on a neighborhood Y xI (I=[0,1]) of
the boundary of X

D, r= a(—a@;t - ukA>, k>0,

D v =o(ut—+ 4), k>0,

Here, # €1 is the (real analytic) normal coordinate, ¢ =op (du) is the bundle
isomorphism E—F, A= Au:C®Y,Ey)— C=Y,Ey})— C=(Y,Fy) is a first order
selfadjoint elliptic operator on Y which is independet of .

We denote by X the double of X. Then D.,r and D._ ; define differential
operators ﬁ+,k and JAD_,/Z both defined on C“()?, 2\2) and map it into C° ()/f, ﬁ). They
are elliptic on X-v but degenerate on Y.

Definition. We define differential operators D, re and D_ r: on X by

D,,,k,e:(%ﬂuueem), €0, on Y XTI, Dy e=Dsp, on X — Y x1,
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Do ke =((ut + Se)%JrA), €0, on Y XTI, D_pe=D_p, on X— Y x L

Here e = e(y,u) is a C~—function given by e(y, u) = e;(#) where e;(u) is a C~—function
on I such that

OZeu) <1, eu)=1, ogusé, ei(u) =0, %gu

IA

1.
Definition. For 0< &' <1, we set

uker =uk, if b is an even integer,

u

ukd =uk, u=¢, uks=uyk <1 — e <?

)), 0=u=<e, ifkis not an even
integer,

and define differential operators Dy ke and D_ pe e by

[N Rt

D+,k,€’s’ =0 (% + (Mka’ + 88)A>, on'Y x I, D.;.,k,s,e’ = D.;.,k, on X—Y x I,
_ A 0 _
D_pyeer = o ((uber +Ee)5ﬁ+A), on Y XTI, D_pee=D_p on X—¥ xL

By definitions, the operators D\+,k,e,e’ and D\_’k,e’e’ defined from Dy pe s and
D_ pe et on X are C=—cofficients elliptic operators on X. Hence under the boundary
conditions Pf(0,y) =0, for Di pee and D_ pee, k<1, and (I —P)f(0,y)=0,
for D_ e, k=1, they have finite indexes and there exist differential forms
ke, er(x)dx and a_ g e er(%)dx on X such that (cf. [3], [4], [13]),

(53). index D+, g,e,er = J @y, e, er{%)dx — M,
X 2
(53)-,1 index D_ ¢ e = [Xd_,k,e’e/(x)dx - ﬁé]@, k<1,
(53)_,2 index -D—,k,E,EI = J (X..’k,s)s’(x)dx + (O) —h , k g 1.
X

Here, index_D means the index of D with the boundary condition (I—P)7(0,y)=0.

Lemma 15. Under the boundary conditions Pf(0,y) =0, for Di . and D_ e,

k<1, and (1 —P)f(0,y)=0, for D_pe, k=1, D, e and D_ s have finite indexes
and we have

(54), index D, p, =index D, p, ¢ e,
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(54)'-,1 index D_ s =index D_ pecr, £<1,

H

(54),_ 2 il’ldeX_D_’ ke = indeX_D_, ke ety k=1,

]

Proof. Take a to satisfy ¢ >a >¢ and

2<ukﬁ,+3)guk+sgukel—{—8, Oéuéa, fOi’ D+,k,e,e’,

k2 = 12 = /l >
ut + & uker -+ & uk + &

0=fu<a, for D_ e

Then, since on Y x [0,a], the equations Dy ;ef =0 and Dx ,¢,:8 =0 reduce (on

each eigenspace of A)
ifx Bt Auf 4+ &) fape=0
d% s Ry 3 #y b

d
*J&gx,k,s,e’ -+ Z(Mke' + E)g/l,k,e,s’ :O, f07’ D.'.)k,e, and D+,kls,s',

d

(u* + ¢€) 7

fX,—k,S + /zfl,—k,5 = 05

d
(uker + E)E—dgx}_k,s,s' + Aga, ket =0, for D_ pe and D_p e,

the equations Dz p,eerg =0 with the boundary condition g(a,y)= f(a,y) have
unique solution on Y x [0,a] if D pf =0 by the choice of «. Moreover, since
Flu,y) = Zazof 2+, Wpa(y) if Pr(0,y) =0 and flu,y) = Jh<ols, -k, (u)pa(y) if
(I[—P)70,y) =0 on Y x[0,a], this g satisfies Pg(0,y)=0 if Ps{0,y)=0 and
(I—P)g0,y) =0 if (I-P)r(0,y) =0. Therefore, since Dx, peer = Dx ks On some
neighborhood of Y x {a} in X, to define a function g on X by

g=/, mX—-Yx[0,a], g€=g onYx[04d],

g is a solution of Dy, pee on X with the boundary condition Pg(0,%) =0 (or
(I—P)g(0,%)=0). This shows dim. ker. Dy, pyser = dim. ker. Dz pe Similarly,
we get dim. ker. Dx pe e = dim. ker. D+ p. and we have dim. ker. Dz p e =
dim. ker. D4 . By the same reason, we have dim. ker. Dy k. * = dim. Kker.

R el

Dy p,e. This shows the lemma.

§ 11. Indexes of degenerate operators, II

Lemma 16. (i). Under the boundary condition Pf(0,y) =0, D. ; has finite index
and for sufficiently small €, we have

(54) index D, = index Dy, p,e.
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(ii). Under the boundary condition

(Bp) Pr(0,y)=0, for D pf =0, lim(I-— P)u*g(u,y) =0, for D ,*g=0,
#—0

D_, 1, has finite index for k<1, and for sufficiently small ¢, we have

(64)-,1 indexzD. ; = index D_ p,e.

Here indexpD means the index of D with the boundary condition (Bp).
(iii). Under the boundary condition

(B-#) (I—P)f(0,9) =0, for D_ 5 =0, limOP(ukg(u,y» =0, for D_1*g=0,
26—

D_ 1, has finite index for k=1, and for sufficiently small ¢, we have

(54)-,3 index-3D_ p = index_D_ ..

Here index_pD means the index of D with the boundary condition (B.p).

Proof. Let §<{1/5 and take b to satisfy 1—¢&>b>3s. On Y x [0,b], the
equations D, = f =0 and D« ,*g =0 reduce

a d

dufz,k—l—/mkfx,k:(), Sor Dy p, uk%fx,-k—klfx,_kzo, for D_, 1,
d L .

T Shk — T8, =0, for D._ ;*,

%k%gz,-k + (kutt — g1, =0, for D_z*

The solutions of these equations are

- ki1 - Neu'lTk -

Fa b= cae"WEeDUT" ) o= caem AR DR oL = cau”h,
kt+1 _ _ 1-% -

g,k = cze“/k“)” , 1,k = Clh ka(i/t k)u , kA 1, 81,1 = chl 1

Then, since

kt1

0 < e/krnut™t < e(Akrnyukt ey 6(2/k+1)(u+e/k+1)(”k+1))’3“, 1=0,

we obtain (i).

To show (ii) and (iii), we use the inequalities

U

dv
0= exp(Jo vk e

. utah, k,€)
)ge(xn—k)u kgequ ’ v ), k<1, 220,

0 vk + €
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ul-k “ dy “ dy

1~k<L,vk+&’ logu<L’v+8, u<b,

pr-k Bhke)  dy BB L) Iy

> e > [T 0B ) <,

N4
where a(b,k, &) is the twice of infimum value of these « thet satisfy J (1/(w*+¢))
0

dv > Ju(é/vk(vk + &))dv, 0=n=0b and therefore lime—oa(b,k,¢)=0. Hence we get
0

(ii). On the other hand, since line—oB(b,k,&) = 2YC~k)3p, k> 1, lime—of(b,1,6)=a/0,

to take b <1/3 and set

1
exl) = elclk)), c(k) <2736, B>1, c(1)<~2?1¢7,

9

D-,r& = ol(u + eer)y

+ 4),

we have for sufficiently small &,
index_D_ r e = index_zD_ x, k=1.

But since index_D_ #,¢ = index-D. 1. by the same reason as lemma 16, we get (iii).

Lemma 17, To set

Hr={0yu{r|D_,xf =0, 70,9 +#0, Ar(0,y) =0},
Hpx = {0y U{FID2*f =0, 0,3 #0, Ar(0,y) =0},
dim. Hp = hr, dim. Hpx=hp*,

we have

). he=h, and hrx<h.

(ii). If D.,r is a real analytic coefficients operator, then hr does not depend on
D~ and hrx depends only on k.

(iii). To set indexoD the index of D with the 0-boundary condition, that is mu—o
Flu,y) =0, we have

(65) indexoD- r = index_zD_ r — (ht — ha*), k=1

Proof. If feHy (or Hrx), then f(u,y) = 2lifi(u)gi(y), Agi(y) =0, on Yx[0,1].
Then, since D_ r and D. p are first order elliptic operators, unique continuity is
hold for the solutions of D_ r and D_ z*, we get (i).

If D_ r is areal analytic coefficients operator, then above fi(#) are constants
for all 7 along any integral curve of real analytic normal vector field of Y starts
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from a point of Y. By the same reason, Hp* is determined by % and we obtain (ii).

Let D_,z =0and D_ ;* g =0, then to set f =2li<of2(#)p2(y), &=>2D1=082()p2(y)
on Yx[0,1], we get

lim fa(u) =0, 2>0, Imgiu) =0, 1<0.

#—0 7—0

This shows (55).

By(53), lemma 15, lemma 16 and lemma 17, we obtain

Proposition 4. (i). Under the boundary condition Pf(0,y)=0, D, has finite
index and we have

(56)+ index D, r = J a’+,k,s,s’(x)dx — —]/LZW(-O—)—
X

(it). Under the boundary condition (Br), D_ 5, k<1, has finite index and we have

(56)-,1 index;D_ r = JX(X_,k’s,a’(x)dx - h+T77(O), kB>1.

(iii). Under the O-bondary condition, D_ r, k=1, has finite index and we have

(66)_,2 indexoD. r = JXa_,k,e,el(x)dx + ﬁ(O)T_h — (e — hey), k=1

Here hp = h, hex<h and if D_. ;, is a real analytic coefficients operator, kz does
not depend on D_ r and hz+ depends only on .

§ 12. Fundamental solutions of % 4 4.

We denote the closed extensions of D\J_r, £ and ﬁi,k* by éi,k and éi,k*.
Then set

N N N AN ~ FaN
i r=D ¥ D2k, do £,k = D s 2D+ k"

For simple, we denote a instead of 21\1,+,k, etc.. By definition, 4 is elliptic on
X—(Yx[—1,1]). On the other hand, 4i . and 4 _s k<1, i=1, 2, have
smoothing operators in L¥Y x[—1,1]) by lemma 7, (i}, and Al':\_,k, k=1, i=1,2,
have smoothing operators in Hparn 28V +23[ ¥V x [—1,17], by lemma 7, (ii). Hence
we have (cf. [3])

Lemma 18, (i). 21-, + & and Zl\,-,_, r, k<1, i=1,2, have parametrixes in L? (f).
(ii). 21\5,_,13,, k=1, i=1,2, have parametrixes in H([2k]’)[2k:|l+2"()?). Here
H([zk]')[zk]’+2’2()/(\) is the Sobolev space of these functions on X that vanishes on Y al
least order [2F].
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Corollary. (i), a/ot + AAimk and 8/0t + A/z\',_,k, k<1, i=1,2, have fundamental
solutions with C=—kernels on (X — ¥) x (X — ¥) x (R* — {0}) in L¥X).
(i), a/at+2,-,_,k, k=1, i =1,2, have fundamental solutions with C=-kernels on
(X — V)< (X — V)X (R —{0}) in Hegaman™ "+ X).

We denote the kernels of the fundamental solution of 3/df + Zl\z',:l:,k by
Fi,i—,k(t,x), i=1,2

By the definitions of A/;,i,k, on Yx[—a,a], we have
(57). Joyu k= 0uldy, s,k + 2k |ul 51 A),
(57). Do yi = o (dy, b — (e — 1)|u[*4-), <1,

= o_(dy,,n + Bk — D)]u|®), k=1

Here o+ are bundle isomorphisms. Hence by lemma 10, to define a C=-function ez
on X by

ealtt, y) = eslu), O=< ez =1, esu) =0, m;g%,

efw) =1, [ul =2 o0 Yx[-1,1],

e2=1, on X Yx[—1,1],
we have
Fo pt, x)es(x) ~ Fu v(t, x) + Ha (2, x), tlw? Hy wlt,x) =0,

Fy w(t,x) = Fy +,(t,x) — Fy = r(t, %).

Then, since F 1 Q Ik Q HN(Y)U HezryS(X) if s=[2k] + 2n and if r satisfies 0—
boundary condary condition and D_ rf =0o0r D_z*F =0, then f&€ ¥ r ® 1 Q H
(Y), k=1, we have by proposition 2, proposition 3, proposition 4 and lemma 18

Theorem (i). For D, r, there exists a differential form o, r(x)dx on X such that

(58)+ indeX D+,k = JX (x+,k(x)dx — _ﬁéyio_)_'

(ii). For D_ r, k<1, there exists a differential form a_ ip(x)dx on X such that

_ Fe+9(0)

(58)_ . index 1D 1 = an_,k(x)dx .

(iil). For D_r, k=1, there exists a diffevential form a_ i (x)dx on X such that
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(58)-—,2 indeXOD_,k = 4[ o, k(x)dx -+ h__)_.LO)_.
X 2

Proof. We only need to show (ii). But since indexoD- r=0 if 2<1, we have
indexzD_ & = indexrD_ r + indexeD_ r, and by lemma 2, we have indexiD._ =

jXﬁk(x)dx — (h + 9(0))/2)for some differential form fr (x)dx on X and indeXkﬁ_,k =
Jer(x)dx for some 7r(x)dx, we obtain (ii).

Covollaxy. Let € >¢&' >0 and € is sufficiently small, then

(59). J a+,k(x)dx=J & ke et (%)d%,
X X

(59)-. 1 j a_,k(x)dxzj o e e (K)dr, B 1,
X X

(59). 2 [ -, o(x)dx = j o be,er(%)dx — (e — haw), R 1.
X X

Note. If we consider
Do = a(a—i— +utA), on Yx[0,17,
instead of D_ x, index D¢ p) exists if k<1 and we have with suitable differential
form ac-m(x)dx,

index Dc_p) = JXa(_k)(x)dx — —}L——F;?i), k<1

On the other hand, since we get D_m* = ¢ 1D rye* on L¥0,1] R ker. A, to set
Hey ={0}U{f|Dc-inf =0, (0,3 #0, Ar(0,5) =0},
Hpey ={0}U {g|D-my*g =0, g(0,9)#0, Ag(0,3) =0},

H¢py is isomorphic to He#. Therefore we have

(60) index_D¢.r) = indexoD-py, A= 1.

- Hence we get with suitable differential form e z)(x)dx on X

index_D¢_p) = JXa(_k)(x)dx + ﬁ%@, k=1,

and for this ac.m(x)dx, we have
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J ac-p(x)dx :J ac-i, e, (x)dx, k=1,
X X

if ¢ and ¢ are sufficiently small. Here ac_p),: e (x)dx is the differential form con-
structed for Differential operator D¢z, given by

O A
D(—k),e,al—o'(au +uks’+se>, on Y x 1,

=D, om X—Y XL



