Indexes of Some Degenerate Operators

By Akira Asada

Department of Mathematics, Faculty of Science Shinshu University (Received July 13, 1977)

§ 5. Fundamental solutions on the cylinder.

Let $A: C^{\infty}(Y, E) \to C^{\infty}(Y, E)$ be a 1-st order selfadjoint elliptic operator, where Y is a compact oriented Riemannian manifold and E is a (complex) vector bundle over Y. On $Y \times \mathbb{R}^+$, We consider differential operators $D_+ = D_{+,k}$ and $D_- = D_{-,k}$ given by

$$(15)_{+,k} = \frac{\partial}{\partial u} + u^k A, \ k > 0,$$

(15)_{-,k}
$$D_{-,k} = u^k \frac{\partial}{\partial u} + A, k > 0.$$

By definitions, $D = D_{+,k}$, or $D_{-,k}$, is a differential operator from $C^{\infty}(Y \times \mathbb{R}^+, E)$ into itself. Here $E = \pi^*(E)$ is the induced bundle of E on $Y \times \mathbb{R}^+$ by the projection $\pi: Y \times \mathbb{R}^+ \to Y$.

Since $u^k \neq 0$ on $Y \times (\mathbb{R}^+ - \{0\})$, D_+ $(=D_+,k)$ and $D_ (=D_-,k)$ are both elliptic on $Y \times (\mathbb{R}^+ - \{0\})$ and their formal adjoints are given by

$$(15)_{+,k}^{*} = -\frac{\partial}{\partial u} + u^{k}A,$$

$$(15)_{-,k}^* = -u^k \frac{\partial}{\partial u} - ku^{k-1} + A.$$

The eigenvalues and eigenfunctions of A are denoted by λ and ϕ_{λ} . The projection from $C^{\infty}(Y,E)$ onto the space spanned by $\{\phi_{\lambda}|\lambda\geq 0\}$ is denoted by P. We set $C^{\infty}(Y\times\mathbb{R}^+,E;P)=\{f(y,u)|(Pf)(y,0)=0.\}$ $C^r(Y\times\mathbb{R}^+,E;P)$, etc., are similarly defined. The adjoint condition of (Pf)(y,0)=0 is ((I-P)f)(y,0)=0. The space $C^{\infty}(Y\times R^+,E;I-P)$, etc., are similarly defined,

As in § 2, $L^2 = L^2(Y \times \mathbb{R}^+)$, $H^t = H^t(Y \times \mathbb{R}^+)$, etc., mean the Hilbert space, t-th Sobolev space, etc., on $Y \times \mathbb{R}^+$, etc.. C_c^{∞} . means the space of compact support C^{∞} -functions (or cross-sections) and set $(n = \dim Y + 1)$

$$H^{t}(s) = \{f \mid f \in H^{t}, \ f(y,0) = \frac{\partial f}{\partial u}(y,0) = \dots = \frac{\partial^{s} f}{\partial u^{s}}(y,0) = 0\}, \ s \leq t - \left[\frac{n}{2}\right],$$

$$C_{(s)}^{\infty} = \{f \mid f \in C^{\infty}, \ f(y,0) = \frac{\partial f}{\partial u}(y,0) = \dots = \frac{\partial^{s} f}{\partial u^{s}}(y,0) = 0\}, C_{c,(s)}^{\infty} = C_{c}^{\infty} \cap C_{(s)}^{\infty}.$$

Definition. Let g(y,u) be a cross-section of E such that $g(y,u) = \sum g_{\lambda}(u)\phi_{\lambda}(y)$ Then we define operators $Q_{+,k}$ and $Q_{-,k}$ by

(16)
$$Q_{+,h}(g) = \sum_{\lambda} Q_{\lambda,h}(g_{\lambda})(u)\phi_{\lambda}(y), \quad Q_{-,h}(g) = \sum_{\lambda} Q_{\lambda,-h}(g_{\lambda})(u)\phi_{\lambda}(y), \quad 0 < h < 1,$$
$$g_{\lambda} \in C_{c}^{\infty}(y \times \mathbb{R}^{+}, E),$$

$$(16)_{-} \qquad \qquad Q_{-,k}(g) = \sum_{i} Q_{\lambda,-k}(g_{\lambda})(u)\phi_{\lambda}(y), \quad k \geq 1, \quad g_{\lambda} \in C_{c}, \lceil \lceil k' \rceil_{-1} \rceil^{\infty}(Y \times \mathbb{R}^{+}, E).$$

Proposition 1. $Q_{\pm,k}$ are the fundamental solutions of $D_{\pm,k}$ with the following properties.

- (a). The kernels $Q_{\pm,k}(y, u; z, v)$ of $Q_{\pm,k}$ are C^{∞} for $u \neq v, u \neq 0, v \neq 0$.
- (b). (i). $Q_{+,k}$ and $Q_{-,k}$, 0 < k < 1, are defined on $C_c^{\infty}(Y \times \mathbb{R}^+, E)$ and map it into $C^{\infty}(Y \times (\mathbb{R}^+ \{0\}), E)$.
 - (ii). $Q_{,k}^-$, $k \ge 1$, is defined on $C_{c, \lfloor \lfloor k \rfloor'-1 \rfloor}^{\infty}(Y \times \mathbb{R}_+, E)$ and maps it into $C^{\infty}(Y \times (\mathbb{R}^+ \{0\}), E) \cap C^0(Y \times \mathbb{R}^+, E; P)$.
- (c). For any 0 < m < M, $Q_{\pm,k}$ is extended to a continuous map $L^2(Y \times [m, M] \rightarrow L^2_{loc.})$. More precisely, we have
 - (i). $Q_{+,k}$ is extended to a continuous map $Q_{+k}: L^2 \to L^2_{loc}$.
 - (ii). $Q_{-,k}$, $k \ge 1$, is extended to a continuous map $Q_{-k}: H_{([k]'-1)}^{(k)'+1}[0, L] \rightarrow L^2_{loc.}$, for any L > 0.

Proof. Except (a), the proposition follows from lemma 2 and lemma 6. To show (a), as [4], we set

$$K_A(u) = Y(u)e^{-u|A|}P - Y(-u)e^{u|A|}(I-P),$$

 $Y(u)$ is the characteristic function of \mathbb{R}^+ , $|A| = AP - A(I-P).$

Then, it is known that the kernel $E_A(y, z, u)$ of K_A is a C^{∞} function on $Y \times Y \times \mathbb{R}^+$ ([4], I). Then, since

$$\begin{aligned} & Q_{+,k}(y, u; z, v) = E_{(A/(k+1))}(y, z, u, x^{k+1} - v^{k+1}), \\ & Q_{-,k}(y, u; z, v) = v^{-k} E_{(A/(1-k))}(y, z, u^{1-k} - v^{1-k}), \ k \neq 1, \\ & Q_{-,1}(y, u; z, v) = v^{-1} E_{A}(y, z, \log u - \log v), \end{aligned}$$

we have the proposition.

Corollary. $D_{\pm,k}$ and $D_{\pm,k}^*$ have closed extensions $\mathscr{D}_{\pm,k}$ and $\mathscr{D}_{\pm,k}^*$. $\mathscr{D}_{+,k}$ and $\mathscr{D}_{+,k}^*$, $\mathscr{D}_{-,k}$ and $\mathscr{D}_{-,k}^*$ are adjoints in L^2 each others.

§ 6. A lemma on Volterra's integral equation.

It is known (cf. [5]) that if the fundamental solution of the heat equation on $\mathbb{R}^+ \times D$ with time variable t and space variables x given by

(17)
$$\frac{\partial f}{\partial t} + Lf = 0$$
, L is an operator on D , the condition is given at $t = 0$, is given by G , $G\varphi = \int_{D} G(t, x, \xi) \varphi(\xi) d\xi$, then the fundamental solution E of the equation

(18)
$$\frac{\partial f}{\partial t} + (L + K)f = 0$$
, K is an operator on D,

is obtained in the form

(19)
$$E = G + G^*H, \ G^*H = \int_0^t \int_D G(t - s, x, \eta) H(s, \eta, \xi) d\eta ds.$$

Here, H is the solution of the following Volterra type integral equation

(20)
$$H + K_x G + K_x (G^* H) = 0.$$

Lemma 8. In (20), if G satisfies

$$(21)_N \qquad \lim_{t \to 0} \frac{\partial^n}{\partial^n t^n} G(t, x, \xi) = 0, \ x \neq \xi, \ n \leq N,$$

and assume H satisfies the condition

$$\lim_{t\to 0} (1+K_x)(\frac{\partial^n H}{\partial t^n}(t, x, \xi)) = 0 \quad \text{implies } \lim_{t\to 0} \frac{\partial^n H}{\partial t^n}(t, x, \xi) = 0, \ n \leq N, \ x \neq \xi,$$

then

(22)_N
$$\lim_{t\to 0} \frac{\partial^n H}{\partial t^n}(t, x, \xi) = 0, \ n \le N, \ x \ne \xi.$$

Proof. Since $\lim_{t\to 0}(H+KG+K(G^*H))=\lim_{t\to 0}(H+KH)=0$, we have $\lim_{t\to 0}H(t,x,\xi)=0$, $x\neq \xi$ by $(c)_0$. Then we get

$$G_t^*H = -G_s^*H = [-G(t-s)H(s)]_{s=0}^t + G^*H_s = G^*H_s.$$

Hence we obtain

(23)₁
$$H_t = -(KG_t + KH + K(G^*H_s)).$$

 $(23)_1$ shows $\lim_{t\to 0} H_t(t, x, \xi) = 0$, $x \neq \xi$, by $(c)_1$. In general, we assume that we have

(22)_n
$$\lim_{t\to 0} \frac{\partial^m}{\partial t^m} H(t, x, \xi) = 0, x \neq \xi, m \leq n,$$

(23)_n
$$H_{(n)} = -(KG_{(n)} + nKH_{(n-1)} + K(G^*H_{(n)})), \quad F_{(n)} \text{ means } \frac{\partial^n F}{\partial t^n},$$

then, since $G_t^*H_{(n)} = -G_s^*H_{(n)} = [-G^*H_{(n)}]_0^t + G^*H_{(n+1)}$, we get

$$H_{(n+1)} = -(KG_{(n+1)} + nKH_{(n)} + KH_{(n)} + K(G^*H_{(n+1)}))$$

= $-(KG_{(n+1)} + (n+1)KH_{(n)} + K(G^*H_{(n+1)})).$

Hence we obtain $(23)_{n+1}$ and therefore we have $(22)_{n+1}$ if $n+1 \leq N$ by assumption.

Note. If $(1 + K_x)f = 0$ implies f = 0, for example, K_x is an operator given by multiplying a function, then (22) holds under the assumption (21).

Lemma 9. If G satisfies $(21)_N$ and $F = F(t, x, \xi)$ is a solution of the equation

$$(24) (1 + tK_x)F(t, x, \xi) = -K_xG(t, x, \xi),$$

then F also satisfies $(21)_N$ if F is continuous on $t \ge 0$.

Proof. Since

(25)
$$\frac{\partial^n}{\partial t^n} (1 + tK_x) F = (1 + tK_x) \frac{\partial^n F}{\partial t^n} + nK_x \frac{\partial^{n-1} F}{\partial t^{n-1}},$$

we have the lemma by induction.

Lemma 10. If G is real analytic in t, t > 0, and satisfies $(21)_{\infty}$, F, a continuous solution of (24) on $t \ge 0$, is also real analytic in t, t > 0, and G^*F exists, then F is a solution of (20) if F satisfies $(c)_{\infty}$. Conversely, under the same assumptions on G, if a solution H of (20) is real analytic in t, t > 0, and satisfies $(c)_{\infty}$, then H is a solution of (24).

Proof. To show the first assertion, it is sufficient to show

(26)
$$tK_x F(t, x, \xi) = K_x (G^* F(t, x, \xi)).$$

But since $F(t, x, \xi) = \lim_{h\to 0} \int_D G(h-s, x, \eta) F(s+t, \eta, \xi) d\eta$, to set

$$tK_xF(r+t, x, \xi) = \int_r^{r+t} \int_D G(r+t-s, x, \eta)F(s+r+t, \eta, \xi)d\eta ds + f(r, t),$$

f(r, t) = O(r), $r \to 0$, and O(t), $t \to 0$, and for r > 0, f(r, t) is real analytic in t although at t = 0.

On the other hand, since

$$\int_{r}^{r+t} \int_{D} \frac{\partial^{n} G}{\partial t^{n}} (r+t-s, x, \eta) F(s+r+t, \eta, \xi) d\eta ds$$

$$= \int_{r}^{r+t} \int_{D} G(r+t-s, x, \eta) \frac{\partial^{n} F}{\partial s^{n}} (s+r+t, \eta, \xi) d\eta ds + O(t),$$

for any n by lemma 9, we get by the same reason an in the proof of lemma 8

$$\frac{\partial^n F}{\partial t^n}(r+t, x, \xi) + K_x \frac{\partial^n G}{\partial t^n}(r+t, x, \xi) + nK_x \frac{\partial^n G}{\partial t^n}(r+t, x, \xi)$$

$$+ K_x \left(\int_r^{r+t} \int_D G(r+t-s, x, \eta) \frac{\partial^n F}{\partial s^n}(s+r+t, \eta, \xi) d\eta ds + \frac{\partial^n}{\partial t^n} f(r, t) + o(t) = 0,$$

because F satisfies $(c)_{\infty}$. But by (26), we also obtain

$$\frac{\partial^{n} F}{\partial t^{n}}(r+t, x, \xi) + K_{x} \frac{\partial^{n} G}{\partial t^{n}}(r+t, x, \xi) + nK_{x} \frac{\partial^{n} F}{\partial t^{n}}(r+t, x, \xi)$$

$$+ K_{x} \left(\int_{r}^{r+t} \int_{D} G(r+t-s, x, \eta) \frac{\partial^{n} F}{\partial s^{n}}(s+r+t, \eta, \xi) d\eta ds + o(t) = 0.$$

Hence for any n, $(\partial^n/\partial t^n)f(r, t) = o(t)$. This shows f(r, t) = 0, r > 0, because f(r, t) is real analytic in t although at t = 0, for r > 0. Therefore we get

(26)'
$$TK_x F(r+t, x, \xi) = \int_r^{r+t} \int_D G(r+t-s, x, \eta) F(s+r+t, \eta, \xi) d\eta ds.$$

Tends r to 0 in (26), we obtain (26) which shows the first assertion.

To show the second assertion, we note that we obtain

$$\frac{H_{(n)}}{n!}r^n = -(K_x(G_{(n)}\frac{r^n}{n!}) + K_x(H_{(n-1)}\frac{r^n}{(n-1)!} + K_x(G^*H_{(n)}\frac{r^n}{n!})),$$

by lemma 8 (and $(23)_n$). Hence we get

$$\begin{split} &\sum_{n=0}^{\infty} \frac{H(^n)}{n!} r^n \\ &= - (K_x(\sum_{n=0}^{\infty} \frac{G_{(n)}}{n!} r^n) + r K_x(\sum_{n=1}^{\infty} \frac{H_{(n-1)}}{(n-1)!} r^{n-1}) + K_x(G^*(\sum_{n=0}^{\infty} \frac{H_{(n)}}{n!} r^n)), \end{split}$$

because G and H are both real analytic in t, t>0, by assumption. Therefore we have

(27)
$$H(t+r,x,\xi) = -K_x G(t+r,x,\xi) + rK_x H(t+r,x,\xi) + K_x (G^*(H|_{t=s+r})).$$

In (27), tends t to 0 and change r to t, H satisfies (24). Hence we obtain the lemma.

Corollary. If G is real analytic in t, t > 0, and satisfies $(21)_{\infty}$, K_x is a real analytic coefficients differential operator (may be degree is 0), then (20) has a solution H which satisfies $(22)_{\infty}$ if (24) has a solution which satisfies $(c)_{\infty}$. Especially, if deg. K = 0, then (20) has a solution H which satisfies $(22)_{\infty}$.

§ 7. Construction of the kernels of $e^{-t\triangle i,+,k}$, i=1,2, on the cylinder.

As in §3, we set $\Delta_{1,\pm,k} = \mathscr{D}_{\pm,k}^* \mathscr{D}_{\pm,k}$ and $\Delta_{2,\pm,k} = \mathscr{D}_{\pm,k} \mathscr{D}_{\pm,k}^*$.

Definition. For any $\varepsilon > 0$, we set on $Y \times R^+$

$$(28)_{+} D_{+,k,\varepsilon} = \frac{\partial}{\partial u} + (u^{k} + \varepsilon)A,$$

(28)_
$$D_{-,k,\varepsilon} = (u^k + \varepsilon) \frac{\partial}{\partial u} + A.$$

By definitions, $D_{\pm, k, \varepsilon}$ are elliptic on $Y \times R^+$. Their closures (in L^2) $\mathscr{D}_{\pm, k, \varepsilon}$ and their adjoints $\mathscr{D}_{\pm, k, \varepsilon}^*$ are defined and we set

$$\Delta_{1,\pm,k,\varepsilon} = \mathscr{D}_{\pm,k,\varepsilon}^* \mathscr{D}_{\pm,k,\varepsilon}, \ \Delta_{2,\pm,k,\varepsilon} = \mathscr{D}_{\pm,k,\varepsilon} \mathscr{D}_{\pm,k,\varepsilon}^*.$$

Similarly, $D_{\pm,k,\lambda,\epsilon}$, $A_{i,\pm,k,\lambda,\epsilon}$, i=1,2, etc., are defined. Explicitly, they take the forms

$$(29)_{+} d_{i,+,k,\lambda,\varepsilon} = -\frac{\partial^{2}}{\partial u^{2}} + (-1)^{i} k u^{k-1} + \lambda^{2} (u^{k} + \varepsilon)^{2}, \quad i = 1, 2,$$

$$(29)_{-,1} \qquad \qquad \Delta_{1,-,k,\lambda,\varepsilon} = -(u^k + \varepsilon)^2 \frac{\partial^2}{\partial u^2} - 2ku^{k-1}(u^k + \varepsilon) \frac{\partial}{\partial u} - \lambda ku^{k-1} + \lambda^2,$$

(29)_{-,2}
$$\Delta_{2,-,k,\lambda,\varepsilon} = -(u^k + \varepsilon)^2 \frac{\partial^2}{\partial u^2} - 2ku^{k-1}(u^k + \varepsilon) \frac{\partial}{\partial u} - k(k-1)n^{k-2}(u^k + \varepsilon)$$
$$- \lambda ku^{k-1} + \lambda^2.$$

The boundary conditions for these operators are

$$(30)_{1,+,\varepsilon} \qquad f_{\lambda}(0) = 0, \ \lambda \ge 0, \ (\frac{df}{du} + \varepsilon \lambda f)|_{u=0} = 0, \ \lambda < 0, \ \text{for } \Delta_{1,+k,\lambda,\varepsilon},$$

$$(30)_{2,+,\epsilon} \qquad f_{\lambda}(0) = 0, \ \lambda \leq 0, \ (\frac{df}{du} + \epsilon \lambda f)|_{u=0} = 0, \ \lambda > 0, \ \text{for } \Delta_{2,+,k,\lambda,\epsilon},$$

$$(30)_{1,-,\epsilon} f_{\lambda}(0) = 0, \ \lambda \ge 0, \ (\epsilon \frac{df}{du} + \lambda f)|_{u=0} = 0, \ \lambda < 0, \ \text{for } \Delta_{1,-,k,\lambda,\epsilon}, \ k < 1,$$

$$for \ \Delta_{2,-,k,\lambda,\epsilon}, \ k \ge 1,$$

$$(30)_{2,-,\epsilon} f_{\lambda}(0) = 0, \ \lambda \le 0, \ (\epsilon \frac{df}{du} + \lambda f)|_{u=0} = 0, \ \lambda > 0, \ \text{for } 2\Delta_{,-,k,\lambda,\epsilon}, \ k < 1,$$

$$for \ \Delta_{1,-,k,\lambda,\epsilon}, \ k \ge 1.$$

To construct the elementary solutions of the heat equations associated to $\Delta_{i,\pm,k,\lambda,\epsilon}$, we set

(31)₊

$$\Delta_{i,+,k,\lambda,\varepsilon} = -\frac{\partial^{2}}{\partial u^{2}} + \varepsilon^{2}\lambda^{2} + K,$$

$$K = K_{i,+,k,\lambda,\varepsilon} = (-1)^{i}k\lambda u^{k-1} + \lambda^{2}(u^{2k} + 2\varepsilon u^{k}), \quad i = 1, 2,$$
(31)₋

$$\Delta_{i,-,k,\lambda,\varepsilon} = -\varepsilon^{2}\frac{\partial^{2}}{\partial u^{2}} + \lambda^{2} + K, \quad K = K_{i,-,k,\lambda,\varepsilon}, \quad i = 1, 2,$$

$$K_{1,-,k,\lambda,\varepsilon} = -(u^{2k} + 2\varepsilon u^{k})\frac{\partial^{2}}{\partial u^{2}} - 2ku^{k-1}(u^{k} + \varepsilon)\frac{\partial}{\partial u} - \lambda ku^{k-1},$$

$$K_{2,-,k,\lambda,\varepsilon} = -(u^{2k} + 2\varepsilon u^{k})\frac{\partial^{2}}{\partial u^{2}} - 2ku^{k-1}(u^{k} + \varepsilon)\frac{\partial}{\partial u}$$

$$-k(k-1)u^{k-2}(u^{k} + \varepsilon) - \lambda ku^{k-1}.$$

The fundamental solutions of $\partial/\partial t - \partial^2/\partial u^2 + \varepsilon^2\lambda^2$ (and $\partial/\partial t - \varepsilon^2\partial^2/\partial u^2 + \lambda^2$) with the boundary conditions $(30)_{i,+,\varepsilon}$, i=1,2, (and $(30)_{i,-,\varepsilon}$, i=1,2,) are given in [4] and they satisfy the assumptions of lemma 10. Hence we may construct the fundamental solutions of $\partial/\partial t - \Delta_{i,+,k,\lambda,\varepsilon}$, i=1,2, (and $\partial/\partial t - \Delta_{i,-,k,\lambda,\varepsilon}$, i=1,2,) with the boundary conditions $(30)_{i,+,\varepsilon}$, i=1,2, (and $(30)_{i,-,\varepsilon}$, i=1,2,) by lemma 10. In this §, we treat $\partial/\partial t - \Delta_{i,+,k,\lambda,\varepsilon}$, i=1,2.

Since $K_{i,+,k,\lambda,\epsilon}$, i=1,2, are the operators of order 0, the solutions of the equation (24) is given by

$$\begin{split} F(t, u, v) &= F_{i,+,k,\lambda,\varepsilon}(t, u, v) \\ &= -\frac{\{(-1)^i k \lambda u^{k-1} + \lambda^2 (u^{2k} + 2\varepsilon u^k)\} G(t, u, v)}{1 + \{(-1)^i k \lambda u^{k-1} + \lambda^2 (u^{2k} + 2\varepsilon u^k)\} t}, \ i = 1, \ 2. \end{split}$$

Here, $G = G_{i,+,\lambda,\epsilon}(t,u,v)$, i = 1, 2, are the kernels of the fundamental solutions of $\partial/\partial t - \partial^2/\partial u^2 + \varepsilon^2\lambda^2$ with the boundary conditions (30)_{i,+,\epsilon}, i = 1, 2, given by ([4])

$$G_{i,+,\lambda,\epsilon}(t,u,v) = \frac{e^{-\epsilon z \lambda^2 t}}{\sqrt{4\pi t}} \left\{ \exp\left(\frac{-(u-v)^2}{4t}\right) - \exp\left(\frac{-(u+v)^2}{4t}\right) \right\},$$

$$\lambda \ge 0, \quad \text{for } i = 1, \quad \lambda \le 0, \quad \text{for } i = 2,$$

$$G_{i,+,\lambda,\epsilon}(t,u,v) = \frac{e^{-\epsilon z \lambda z t}}{\sqrt{4\pi t}} \left\{ \exp\left(\frac{-(u-v)^2}{4t}\right) + \exp\left(\frac{-(u+v)^2}{4t}\right) \right\}$$
$$-\epsilon |\lambda| e^{\epsilon |\lambda|(u+v)} \text{ erfc. } \left\{ \frac{u+v}{2\sqrt{t}} + \epsilon |\lambda|\sqrt{t} \right\},$$
$$\text{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-\xi z} d\xi, \ \lambda < 0, \ \text{for } i = 1, \ \lambda > 0, \ \text{for } i = 2.$$

Hence $\lim_{\epsilon \to 0} G_{i,+,\lambda,\epsilon} = G_{i,+,0}$ in H^s for any $s \ge 0$, where $G_{i,+,0}$ means the fundamental solution of $\partial/\partial t - \partial^2/\partial u^2$ with the boundary condition (14)₊. Therefore we have

$$\lim_{\varepsilon \to 0} F_{i,+,k,\lambda,\varepsilon}(t,u,v) = -\frac{\{(-1)^i k \lambda u^{k-1} + \lambda^2 u^{2k}\} G_{i,+,0}(t,u,v)}{1 + \{(-1)^i k \lambda u^{k-1} + \lambda^2 u^{2k}\} t}, \quad i = 1, 2,$$

where the right hand side is the solution of (24) with $G = G_{i,+,0}$ and $K = K_{i,+,k,\lambda}$ = $(-1)^i k \lambda u^{k-1} + \lambda^2 u^{2k}$, i = 1, 2. Then, since

$$(32)_{i} 1 + \{(-1)^{i}k\lambda u^{k-1} + \lambda^{2}u^{2k}\}t \leq 1 + \{(-1)^{i}k\lambda u^{k-1} + \lambda^{2}(u^{2k} + 2\varepsilon u^{k})\}t,$$

(32)ii
$$1 + \{(-1)^i k \lambda u^{k-1} + \lambda^2 u^{2k}\} t \ge 1, k \le 1, \text{ or } k > 1 \text{ and } (-1)^i \lambda \ge 0,$$

(32)iii
$$1 + \{(-1)^{i}k\lambda u^{k-1} + \lambda^{2}u^{2k}\}t \ge 1 - \frac{t(k+1)}{2} \left(\frac{k-1}{2}\right)^{(k-1)/(k+1)} |\lambda|^{2/(k+1)},$$
$$(-1)^{i}\lambda < 0, k > 1,$$

we obtain

Lemma 11. (i). If $k \leq 1$, or k > 1 and $(-1)^i \lambda \geq 0$, the fundamental solutions of the equations $\partial/\partial t - \Delta_{i,+,k,\lambda,\varepsilon}$, i = 1,2, with the boundary conditions $(30)_{i,+,\varepsilon}$, i = 1,2, tend to the fundamental solutions of the equations $\partial/\partial t - \Delta_{i,+,k,\lambda}$, i = 1,2, with the boundary conditions $(14)_+$ in H^s for any $s \geq 0$ and this convergence is uniform in λ . (ii). If k > 1 and $(-1)^i \lambda < 0$, we set L^2_C (or H^s_C) the subspace of L^2 (or H^s) spanned by $\{\phi_{\lambda} | |\lambda| < C\}$, then the fundamental solution of $\partial/\partial t - \Delta_{i,k,\lambda,\varepsilon}$ with the boundary condition $(30)_{i,+,\varepsilon}$ tends to the fundamental solution of the equation $\partial/\partial t - \Delta_{i,+,k,\lambda}$ with the boundary condition $(14)_+$ in L^2_C (or H^s_C) on the interval

(33)
$$2\left(\frac{2}{k-1}\right)^{(k-1)/(k+1)} C^{-2/(k+2)} > t \ge 0,$$

and this convergence is uniform in $\lambda(if |\lambda| < C)$.

Proof. By (32)_i and (32)_{ii}, to show (i), we only need to show the uniformity of the convergence in λ , But, since $G_{i,+,\lambda,\varepsilon}$ tends to 0 at least in the order of exp $(-\varepsilon^2\lambda^2)$ becouse erfc $(x) = O(\exp(-x^2))$, we have the uniformity in λ .

On the other hand, by (32)_i and (32)_{iii}, $F_{i,+,k,\lambda,\epsilon}$ is continuous on $0 \le t < 2(2/(k-1))^{(k-1)/(k+1)} |\lambda|^{-2/(k+2)}$, we get (ii).

Corollary. (i). If $k \leq 1$, denote the kernels of $\exp(-t\Delta_{1,+,k,\epsilon}) - \exp(-t\Delta_{2,+k,\epsilon})$ and $\exp(-t\Delta_{1,+,k}) - \exp(-t\Delta_{2,+,k})$ in L^2 by $F_{+,k,\epsilon}(t,y,u)$ and $F_{+,k}(t,y,u)$, we have in L^2

(34)i
$$\lim_{\varepsilon \to 0} F_{+,k,\varepsilon}(t,y,u) = F_{+,k}(t,y,u), \quad 0 \le t < \infty.$$

(ii). If k > 1, denote the kernels of $\exp(-t\Delta_{1,+k,\epsilon}) - \exp(-t\Delta_{2,+,k,\epsilon})$ and $\exp(-t\Delta_{1,+k}) - \exp(-t\Delta_{2,+,k})$ in L^2_C by $F_{+,k,\epsilon,C}(t,y,u)$ and $F_{+,k,C}(t,y,u)$, we have in L^2_C

(34)ii
$$\lim_{\varepsilon \to 0} F_{+,k,\varepsilon,C}(t,y,u) = F_{+,k,C}(t,y,u), \quad 0 \le t < 2\left(\frac{2}{k-1}\right)^{(k-1)/(k+1)} C^{-2}/(k+2).$$

On the other hand, since $\lim_{t\to 0} F_{i,+,\lambda,\varepsilon}(t,u,v) = 0$, $u \neq v$, for $\varepsilon \geq 0$, to set

$$\int_0^\infty \int_Y F_{+,k,\epsilon}(t,y,u) dy du = F_{+,k,\epsilon}(t), \quad k \le 1,$$

$$\int_0^\infty \int_V F_{+,k,\epsilon,C}(t,y,u) dy du = F_{+,k,\epsilon,C}(t), \quad k > 1,$$

we obtain

(35)
$$\lim_{t\to 0} F_{+,k,\epsilon}(t) = \lim_{t\to 0} \int_{0}^{\infty} \left\{ G_{1,+,\epsilon}(t,y,u) - G_{2,+,\epsilon}(t,y,u) \right\} dy du, \quad k \leq 1,$$

$$\lim_{t\to 0} F_{+,\,k,\,\varepsilon,\,c}(t) = \lim_{t\to 0} \int_0^\infty \int_Y \{G_{1,\,+,\,\varepsilon,\,c}(t,\,y,u) - G_{2,\,+,\,\varepsilon,\,c}(t,\,y,u)\} \, dy du, \quad k>1.$$

Here, $G_{i,+,\epsilon}$ and $G_{i,+,\epsilon,C}$ are the kernels of $\exp(-t\mathcal{L}_{i,+,\epsilon})$ on L^2 or on L^2_C , where $\mathcal{L}_{i,+,\epsilon}$ mean $-\partial^2/\partial u^2 + \varepsilon^2 A^2$ with the boundary conditions

$$(36)_{+,1} \qquad (Pf)(y,0) = 0, \quad (I-P)\Big\{\Big(\frac{\partial}{\partial u} + A\Big)f\Big\}(y,0) = 0, \quad i = 1,$$

$$(36)_{+,2} \qquad ((I-P)f)(y,0) = 0, P\left\{\frac{\partial}{\partial u} + A\right\}f (y,0) = 0, \ i = 2.$$

Then by [4], to set $G_{+,\,\varepsilon}(t)=\int_0^\infty\!\!\int_Y G_{1,\,+,\,\varepsilon}(t,\,y,\,u)-G_{2,\,+,\,\varepsilon}(t,\,y,\,u)\}dydu$ and $G_{+,\,\varepsilon,\,C}(t)=\int_0^\infty\!\!\int_Y G_{1,\,+,\,\varepsilon,\,C}(t,\,y,\,u)-G_{2,\,+,\,\varepsilon,\,C}(t,\,y,\,u)\}dydu, \text{ they are both defined on } 0\leq t<\infty \text{ and we get}$

(37)_i
$$\int_0^\infty \{G_{+,\varepsilon}(t) + \frac{h}{2}\} t^{s-1} dt = -\frac{1}{2s\sqrt{\pi}} \Gamma(s + \frac{1}{2}) \varepsilon^{-2s} \eta(2s),$$

(37)_{ii}
$$\int_0^\infty G_{+,\varepsilon,C}(t) + \frac{h}{2} t^{s-1} dt = -\frac{1}{2s\sqrt{\pi}} \Gamma(s + \frac{1}{2}) \varepsilon^{-2s} \eta_C(2s),$$

where $h = \dim$ ker. A, $\eta(s)$ is the η -function of A given by

 $\sum_{\lambda \neq 0, \ \lambda \in \text{ spec. } A} \operatorname{sign} \lambda |\lambda|^{-s}$ and $\eta_C(s) = \sum_{\lambda \neq 0, \ \lambda \in \text{ spec. } A, \ |\lambda| < C} \operatorname{sign} \lambda |\lambda|^{-s}$. Hence, if $G_{+,\varepsilon}$, $G_{+,\varepsilon}$, $G_{+,\varepsilon}$, $G_{+,\varepsilon}$, and $F_{+,k,\varepsilon}$ have asymptotic expansions at $t \to 0$ of the forms

(38):
$$G_{+,\epsilon}(t) = \sum_{m \geq -v} a_{+,m,\epsilon} t^{m/2}, \quad F_{+,k,\epsilon}(t) = \sum_{m \geq -v} b_{+,m,k,\epsilon} t^{m/2}, \quad k \leq 1,$$

(38)ii
$$G_{+,\,\epsilon,\,c}(t) = \sum_{m \geq -n} a_{+,\,m,\,\epsilon,\,c} t^{m/2}, \quad F_{+,\,k,\,\epsilon,\,c}(t) = \sum_{m \geq -n} b_{+,\,m,\,k,\,\epsilon,\,c} t^{m/2}, \quad k > 1,$$

we have by (35) and (37)

(39)_i
$$\eta(0) = -2(2a_{+,0,\epsilon} + h) = -(2b_{+,0,k,\epsilon} + h), k \le 1,$$

(39)ii
$$n_c(0) = -(2a_{+,0,\epsilon,c} + h) = -(2b_{+,0,k,\epsilon,c} + h), k > 1$$

Therefore we obtain

Proposition 2. (i). If $k \le 1$ and $G_{+,\epsilon}$, $F_{+,k,\epsilon}$ have asymptotic expansions of the form (38), then their coefficients of the terms of order 0 do not depend on ϵ and k.

(ii). If k > 1 and $G_{+, \epsilon, C}$, $F_{+, k, \epsilon, C}$ have asymptotic expansions of the form (38)ii, then their coefficients of the terms of degree 0 do not depend on ϵ and k and their limits at $C \to \infty$ exist.

In the rest, we set these constants by $a_{+,0}$ and $a_{+,0,C}$. Hence we get

$$\eta(0) = -(2a_{+,0} + h),$$

(39)_{ii'}
$$\eta_C(0) = -(2a_{+,0,C} + h), \lim_{C \to \infty} a_{+,0,C} = a_{+,0}.$$

§ 8. Construction of the kernels of e^{-t} $i_{i,-k}$ i=1,2, on the cylinder, I.

Lemma 12. The fundamental solutions of $\partial/\partial t - \varepsilon^2 \partial^2/\partial u^2 + \lambda^2$ with the boundary conditions $(30)_{i,-,\varepsilon}$, i=1,2, tends to the fundamental solution of $\partial/\partial t + \gamma^2$ on $(t,u)-space\ if\ u>0$.

Proof. Since the fundamental solutions are given

$$G_{i,-\lambda,\varepsilon}(t,u,v) = \frac{1}{\varepsilon} \frac{e^{-\lambda^2 t}}{\sqrt{4\pi t}} \Big[\exp\Big\{ \frac{-(u-v)^2}{4\varepsilon^2 t} \Big\} - \exp\Big\{ \frac{-(u+v)^2}{4\varepsilon^2 t} \Big\} \Big],$$

$$\lambda \ge 0 \text{ for } i = 1, \ \lambda \le 0 \text{ for } i = 2,$$

$$G_{i,-,\lambda,\varepsilon}(t,u,v) = \frac{1}{\varepsilon} \left[\frac{e^{-\lambda^2 t}}{\sqrt{4\pi t}} \left[\exp\left\{ \frac{-(u-v)^2}{4\varepsilon^2 t} \right\} + \exp\left\{ \frac{-(u+v)^2}{4\varepsilon^2 t} \right\} \right] - |\lambda| e^{|\lambda|/\varepsilon(u+v)} \operatorname{erfc.} \left\{ \frac{u+v}{2\varepsilon\sqrt{t}} + |\lambda|\sqrt{t} \right\} \right],$$

$$\lambda < 0 \text{ for } i = 1, \ \lambda > 0 \text{ for } i = 2,$$

and

$$\frac{|\lambda|}{\varepsilon} \int_{0}^{\infty} e^{|\lambda|/\varepsilon(u+v)} \operatorname{erfc.} \left\{ \frac{u+v}{2\varepsilon\sqrt{t}} + |\lambda|\sqrt{t} \right\} f(v) dv$$

$$= 2|\lambda|\sqrt{t} \int_{u/2\varepsilon\sqrt{t}}^{\infty} e^{2|\lambda|\sqrt{t}} w \operatorname{erfc.} \left\{ w + |\lambda|\sqrt{t} \right\} f(2\varepsilon\sqrt{t} w - u) dw,$$

$$\int_{0}^{\infty} e^{2|\lambda|\sqrt{t}} w \operatorname{erfc.} \left\{ w + |\lambda|\sqrt{t} \right\} dw = \frac{1}{2|\lambda|\sqrt{t}} (e^{-|\lambda|^{2t}} - \operatorname{erfc.} (|\lambda|\sqrt{t}),$$

we have

(40)_i
$$\lim_{\varepsilon \to 0} G_{i,-,\lambda,\varepsilon}(t,u,v) = e^{-2t}\delta_{u}, \quad u \neq 0,$$

$$\lim_{\varepsilon \to 0} G_{i,-,\lambda,\varepsilon}(t,0,v) = 0, \quad \lambda \geq 0 \text{ for } i = 1, \quad \lambda \leq 0 \text{ for } i = 2,$$
(40)_{ii}
$$\lim_{\varepsilon \to 0} G_{i,-,\lambda,\varepsilon}(t,u,v) = e^{-\lambda^{2}t}\delta_{u}, \quad u \neq 0,$$

$$\lim_{\varepsilon \to 0} G_{i,-,\lambda,\varepsilon}(t,0,v) = \{e^{-\lambda^{2}t} + \operatorname{erfc.}(|\lambda|\sqrt{t})\}\delta_{0},$$

$$\lambda < 0 \text{ for } i = 1, \quad \lambda > 0 \text{ for } i = 2,$$

in $(C_c^1)^*$, the dual space of compact support C^1 -class functions. Here, δ_u means the Dirac measure concentrated at $\{u\}$. Because we get

$$\lim_{\varepsilon \to 0} \int_{u/2\varepsilon\sqrt{t}}^{\infty} e^{-wz} f(2\varepsilon\sqrt{t} w - u) dw$$

$$= \lim_{\varepsilon \to 0} \int_{u/2\varepsilon\sqrt{t}}^{\infty} e^{2|\lambda|\sqrt{t} w} \text{ erfc. } \{w + |\lambda|\sqrt{t}\} f(2\varepsilon\sqrt{t} w - u) dw = 0,$$

$$u \neq 0, \ f \in C_{c}^{-1}.$$

Hence we obtain the lemma.

Corrolary. Let $H_{\varepsilon} = H_{\lambda, \varepsilon} = H_{i, \lambda, \varepsilon}$ be a solution of the equation

$$(41) \qquad \frac{\partial^2}{\partial u^2} H_{i,\lambda,k,\epsilon}(t,u,v) - \frac{1}{tu^{2k}} H_{i,\lambda,k,\epsilon}(t,u,v) = -\frac{1}{t} \frac{\partial^2}{\partial u^2} G_{i,-\lambda,\epsilon}(t,u,v), \quad i = 1, 2,$$

and assume $G_{\varepsilon} + G_{\varepsilon}^* H_{\varepsilon}$ and $\lim_{\varepsilon \to 0} G_{\varepsilon} + G_{\varepsilon}^* H_{\varepsilon}$ both exist and H_{ε} tends to a solution

of $\partial^2 H_{\lambda}/\partial u^2 - H_{\lambda}/tu^{2k} = -(e^{-\lambda^2 t}/t)\delta_u^{(2)}$. Then the fundamental solution of $\partial/\partial t - (u^{2k} + \varepsilon^2) \ e^2/\varrho u^2 + \lambda^2$ given by $G_{\varepsilon} + G_{\varepsilon} * H_{\varepsilon}$ tends to a fundamental solution of $\partial/\partial t - u^{2k}\partial^2/\partial u^2 + \lambda^2$ on u > 0 if $\lim_{t \to 0} H_{\varepsilon}(t, u, v) = u^{2k}\partial_u^{(2)}$. Here, $G_{\varepsilon} = G_{\lambda, \varepsilon}$ means $G_{i, -, \lambda, \varepsilon}$.

Proof. First we note that H_{λ} is given by $e^{-\lambda^2 t} H_0$ H_0 if H_0 exists. Then, since $tu^{2k} H_{0,uu} - H_0 = -u^{2k} \delta u^{(2)}$, we have $u^{2k} H_{0,uu} = H_{0,t}$ and therefore

$$(42) u^{2k}H_{\lambda,uu} - H_{\lambda,\varepsilon} = \lambda^2 H_{\lambda}.$$

On the other hand, since we get by (40)

$$\lim_{\varepsilon \to 0} G_{\lambda,\varepsilon} + G_{\lambda,\varepsilon} * H_{\lambda,\varepsilon} = \mathrm{e}^{-\lambda^2 t} \delta_u + \int_0^t e^{-\lambda^2 (t-s)} H_{\lambda}(s,u,v) ds,$$

we have

$$\begin{split} &\left(\frac{\partial}{\partial t} - u^{2k} \frac{\varrho^2}{\partial u^2} + \lambda^2\right) (\lim_{\varepsilon \to 0} G_{\lambda, \varepsilon} + G_{\lambda, \varepsilon} * H_{\lambda, \varepsilon}) \\ &= H_{\lambda}(t, u, v) - u^{2k} \mathrm{e}^{-\lambda^2 t} \delta_u^{(2)} - u^{2k} \mathrm{e}^{-\lambda^2 t} \int_0^t \mathrm{e}^{\lambda^2 s} H_{\lambda, uu}(s, u, v) ds. \end{split}$$

Hence $\partial/\partial t \{e^{\lambda^2 t} (\partial/\partial t - u^{2k}\partial^2/\partial u^2 + \lambda^2) (lim_{\epsilon \to 0} G_{\lambda,\epsilon} + G_{\lambda,\epsilon} * H_{\lambda'\epsilon})\} = 0$ by (42). Then, Since to set

$$\left(\frac{\partial}{\partial t}-u^{2k}\frac{\partial^2}{\partial u^2}+\lambda^2\right)\left(\lim_{\epsilon\to 0}G_{\lambda,\epsilon}+G_{\lambda,\epsilon}^*H_{\lambda,\epsilon}\right)=\mathrm{e}^{-\lambda^2t}\cdot C,$$

C is given by $\lim_{t\to 0} \{H_{\lambda}(t,u,v) - u^{2k} e^{-\lambda^2 t} \delta_u^{(2)} - u^{2k} e^{-\lambda^2 t} \int_0^t e^{\lambda^2 s} H_{\lambda,uu}(s,u,v) ds\} = \lim_{t\to 0} \{H_{\lambda}(t,u,v) - u^{2k} \delta_u^{(2)}\},$ we obtain the corollary.

To solve the equation (41), we set

$$y_1(t,u) = \sqrt{u} J_{1/|2-2k|} \Big(\sqrt{\frac{-1}{t}} \frac{u^{1-k}}{1-k} \Big), \ \ y_2(t,u) = \sqrt{u} Y_{1/|2-2k|} \Big(\sqrt{\frac{-1}{t}} \frac{u^{1-k}}{1-k} \Big), \ \ k \neq 1,$$
 $y_1(t,u) = \sqrt{u} \cdot u^{-\sqrt{1/t+1/4}}, \ \ y_2(t,u) = \sqrt{u} \cdot u^{\sqrt{1/t+1/4}}, \ \ k = 1,$

where J_{α} and Y_{β} are α -th Bessel function and β -th Bessel function of the second kind. Then y_1 and y_2 are the solutions of the equation $d^2y/du^2 - y/tu^{2k} = 0$ ([10], [18]) and their Wronskians $W(y_1, y_2)$ are given by

$$W(y_1, y_2) = \frac{2(1-k)\sqrt{-1}}{\pi\sqrt{t}}, \ k \neq 1, \ W(y_1, y_2) = \sqrt{1+\frac{4}{t}}, \ k = 1.$$

Hence a solution of (41) is given by

(43)
$$H_{\varepsilon,c}(t,u,v) = -\frac{1}{t}G_{\varepsilon}(t,u,v) - \frac{1}{t^2} \int_{c}^{u} \frac{1}{w^{2k}} g(t,u,w)G_{\varepsilon}(t,w,v)dw,$$
$$g(t,u,v) = \frac{1}{W(y_1,y_2)} \{y_1(t,v)y_2(t,u) - y_1(t,u)y_2(t,v)\}.$$

By (43) and (40), we have

(44)
$$\lim_{\varepsilon \to 0} H_{\varepsilon,\varepsilon}(t,u,v) = -e^{-\lambda^2 t} \left\{ \frac{\partial u}{t} + \frac{Y(u-v)}{t^2 v^{2k}} g(t,u,v) \right\}, \quad u > 0, \quad v > 0, \quad \text{in } (C_C^1)^*.$$

In other word, $\lim_{\epsilon \to 0} H_{\epsilon,\epsilon}(t,u,v)$ tends to a solution of the equation $\partial^2 H/\partial u^2 - H/t u^{2k} = -(\mathrm{e}^{-\lambda^2 t}/t)\delta_u^{(2)}$ in $(C_c^2)^*$ if u > 0.

Definition. For k > 0, we set

$$(T_k f)(w) = f(\{1 - k)v\}^{1/(1-k)}, \quad v = \frac{w^{1-k}}{1 - k}, \quad k \neq 1,$$

$$(T_1 f)(w) = f(e^v), \quad v = \log_v w, \quad k = 1,$$

and define the subspaces \mathcal{H}_k of the space of cotinuous funnctions in v-space by

$$\mathcal{H}_k = \{f \mid T_k \left(\frac{f}{\sqrt{v}}\right)(w) \text{ is continuous on } 0 \leq \arg w \leq \frac{\pi}{2}, \text{ holomorphic on}$$

$$0 < \arg w < \frac{\pi}{2}, w \neq 0, \mid T_k \left(\frac{f}{\sqrt{v}}\right)(re^{\sqrt{-1}\theta})| = O(e^{-r^{1+\varepsilon}}), r \to \infty, \text{ for }$$

$$some \ \varepsilon > 0, \ w = re^{\sqrt{-1}\theta}, \quad 0 \leq \theta \leq \frac{\pi}{2}\}, \quad k \neq 1,$$

$$\mathcal{H}_1 = \{f \mid T_1\Big(\frac{f}{\sqrt{v}}\Big)(w) \text{ is continuous on } 0 \leq arg. \ w \leq \pi \text{ , holomorphic on }$$

$$0 < arg. \ w < \pi, \quad |T_1\Big(\frac{f}{v}\Big)(r\mathrm{e}^{\sqrt{-1}\theta})| \in L^1(0,\infty)\}.$$

We denote by \mathscr{L} the Laplace transform and by H_{ν} , the ν -th Hankel transform given by $H_{\nu}(f)(x) = \int_{0}^{\infty} x^{-\nu} y^{\nu+1} J_{\nu}(xy) f(y) dy$, Re. $\nu \ge -1/2$. We know that $H_{\nu}(H_{\nu}(f)) = f$ if f is C^{∞} and rapidly decreasing at ∞ ([2], [6], [18]).

Definition. We define the subspaces \mathscr{G}_k of the space of conitinuous functions in t-space by

$$\mathscr{G}_k = \{ \varphi \mid \varphi = \mathcal{H}_{1/|2-k|}(f) \left(\sqrt{\frac{-1}{t}} \right), \ f \in \mathscr{H}_k \}, \ k \neq 1,$$

$$\mathcal{G}_1 = \{ \varphi \, | \, \varphi = \mathcal{L}^{-1}(f) \Big(\sqrt{\frac{-1}{t}} \Big), \ f \in \mathcal{H}_1 \}.$$

 \mathcal{H}_k and \mathcal{G}_k are both considered to be topological vector spaces (not complete) with the uniform convergence topology. Then we obtain by (44) and the corollary of lemma 12

Lemma 13. There exist fundamental solutions E_{ε} of the equation $\frac{\partial}{\partial t} - (u^{k2} + \varepsilon^2)$ $\frac{\partial^2}{\partial u^2} + \lambda^2$ (with the boundary conditions (30)_{i,-}) which tend to a fundamental solution E of $\frac{\partial}{\partial t} - u^{2k} \frac{\partial^2}{\partial u^2} + \lambda^2$ in $(\mathscr{G}_k)^* \otimes (\mathscr{H}_k)^*$, and this E satisfies

(45)
$$Supp. E \subset \mathbb{R}^1 \times \{(u,v) | u \geq v\}.$$

Proof. By Hankel's inversion theorem ([2], [6], [18]), δ_u is approximated by the solutions of $\partial^2 H/\partial u^2 - H/tu^{2k} = 0$ in $(\mathscr{F}_k)^* \otimes (\mathscr{H}_k)^*$. On the other hand, $(e^{-\lambda^2}/t^2v^{2k})g(t,u,v)$ is a solution of $\partial^2 H/\partial u^2 - H/tu^{2k} = 0$. Then, since

$$\begin{split} g(t,u,v) &\sim \frac{2(k-1)}{\pi \sqrt{-1}} \sqrt{t u^k v^k} \left[\sin \left\{ \sqrt{\frac{-1}{t}} \ \frac{1}{1-k} (u^{1-k} - v^{1-k}) \right\} \right. \\ & + \frac{|1-k|}{2\sqrt{-1}} \sqrt{t} (u^{k-1} - v^{k-1}) \cos \left\{ \sqrt{\frac{-1}{t}} \ \frac{1}{1-k} (u^{1-k} - v^{1-k}) \right\} + \cdots \right], \ k \neq 1, \\ g(t,u,v) &= \sqrt{\frac{t u v}{t+4}} \left[\left(\frac{u}{v} \right)^{\sqrt{1/t+1/4}} - \left(\frac{v}{u} \right)^{\sqrt{1/t+1/4}} \right], \ k = 1, \end{split}$$

 $\lim_{\varepsilon \to 0} (G_{\varepsilon} + G_{\varepsilon}^* [(-e^{-\lambda^2 t}/t^2 v^{2k})\{1 - Y(u - v)\}g(t, u, v)])$ is defined as an element of $(\mathscr{F}_k)^* \otimes (\mathscr{H}_k)^*$ if u > 0. Hence we obtain the lemma.

Corollary 1. There exist fundamental solutions E_1 , of the equations $\partial/\partial t - (u^k + \varepsilon)^2 \partial^2/\partial u^2 + \lambda^2$ which tend to a fundamental solution E of $\partial/\partial t - u^{2k} \partial^2/\partial u^2 + \lambda^2$ in $(\mathscr{F}_k)^* \otimes (\mathscr{H}_k)^*$, which satisfies (45).

Proof. By lemma 10, a fundamental solution of $\partial/\partial t - (u^k + \varepsilon)^2 \partial^2/\partial u^2 + \lambda^2$ is obtained from E_{ε} by solving the equation

$$\frac{\partial^2 H_{1,\varepsilon}}{\partial u^2} - \frac{H_{1,\varepsilon}}{2tu^k} = -\frac{1}{t} \frac{\partial^2 E_{\varepsilon}}{\partial u^2}.$$

The solution $H_{1,\epsilon}$ of this equation is given by

$$H_{1,\varepsilon,c}(t,u,v,) = -\frac{1}{t} \int_{c}^{u} g_{\varepsilon}(t,u,w) E_{\varepsilon,ww}(t,w,v) dw,$$

$$g_{\varepsilon}(t,u,v) = \frac{\pi \sqrt{\varepsilon t}}{(2-k)\sqrt{-1}} J_{1/\lfloor 2-k \rfloor} \left(\sqrt{\frac{-1}{2\varepsilon t}} \frac{v^{1-k/2}}{2-k} \right) Y_{1/\lfloor 2-k \rfloor} \left(\sqrt{\frac{-1}{2\varepsilon t}} \frac{u^{1-k/2}}{2-k} \right)$$

$$-J_{1/|2-k|}\left(\sqrt{\frac{-1}{2\varepsilon t}} \frac{u^{1-k/2}}{2-k}\right) Y_{1/|2-k|}\left(\sqrt{\frac{-1}{2\varepsilon t}} \frac{v^{1-k/2}}{2-k}\right), \quad k \neq 2,$$

$$g_{\varepsilon}(t,u,v) = \sqrt{\frac{2\varepsilon t u v}{1+2\varepsilon t}} \left\{ \left(\frac{u}{v}\right)^{\sqrt{1/4+1/8\varepsilon t}} - \left(\frac{v}{u}\right)^{\sqrt{1/4+1/8\varepsilon t}} \right\}, \quad k = 2.$$

Hence $\lim_{\varepsilon\to 0} H_{1,\varepsilon,\varepsilon} * E_{\varepsilon} = 0$ by (45) because $\lim_{\varepsilon\to 0} g_{\varepsilon}(t,u,u) = 0$.

Corollary 2. There exist fundamental solutions $E_{2,\varepsilon}$ of the equation $\partial/\partial t - \Delta_{i,-,k,\lambda,\varepsilon}$ on (t,u)-space which tend to a fundamental solution E of the equation $\partial/\partial t - u^{2k}\partial^2/\partial u^2 + \lambda^2$ in $(\mathscr{F}_k)^* \otimes (\mathscr{H}_k)^*$ and this E satisfies (45).

Proof. By lemma 10, a fundamental solution of $\partial/\partial t - \Delta_{i,-,k,\lambda,\epsilon}$ is obtained from $E_{1,\epsilon}$ by solving the equation

$$\begin{split} &\frac{dH_{2,i,\varepsilon}}{du} - \frac{1 - kt \left(\lambda u^{k-1} + \delta_{i,2}(k-1)u^{k-2}(u^k + \varepsilon)\right)}{t(2ku^{k-1}(u^k + \varepsilon))} H_{2,i,} \\ &= -\frac{1}{t} \frac{\partial E_{1,\varepsilon}}{\partial u} - \frac{\lambda u + \delta_{i,2}(k-1)(u^k + \varepsilon)}{2u(u^k + \varepsilon)} E_{1,\varepsilon}, \quad \delta_{1,2} = 0, \quad \delta_{2,2} = 1. \end{split}$$

A solution of this equation is

$$(46) H_{2,i,\epsilon,c}(t,u,v)$$

$$= -\int_{c}^{u} \left[\exp \int_{w}^{u} \frac{1 - kt \{ \lambda x^{k-1} + \delta_{i,2}(k-1)x^{k-2}(x^{k} + \varepsilon) \}}{t(2kx^{k-1}(x+k\varepsilon))} dx \right] \cdot \left[\frac{1}{t} \frac{\partial E_{1,\epsilon}}{\partial w} (t,w,v) - \frac{\lambda w + \partial_{i,2}(k-1)(w^{k} + \varepsilon)}{\lambda w(w^{k} + \varepsilon)} E_{1,\epsilon}(t,w,v) \right] dw.$$

Hence in $(\mathscr{F}_k)^* \otimes (\mathscr{H}_k)^*$, $\lim_{\epsilon \to 0} H_{2,i,\epsilon,\epsilon} * E_{1,2} = 0$ by (45) and we have the lemma.

Note. The fundamental solution of $\partial/\partial t - u^{-k}\partial^2/\partial u^2$ is given in [8] (cf. [8]', [9]). It takes similar form as our solution.

§ 9. Construction of the kernels of $e^{-t \Delta i, -k}$, i = 1, 2, on the cylinder, II.

By the corollary 2 of lemma 13, we obtain

Lemma 14. There exist fundamental solutions $F_{i,-,k,\epsilon,C}$ of the equation $\partial/\partial t - \Delta_{i,-,k,\epsilon}$ which tend to a fundamental solution $F_{i,-,k,C}$ of $\partial/\partial t - \Delta_{i,-,k}$ in $(\mathcal{F}_k)^* \otimes (\mathcal{H}_k)^* \otimes H^s_C(Y)$ for any C > 0, and these fundamental solutions satisfy

$$\begin{split} F_{i,-,\,k,\,\varepsilon,\,C'}|(\mathscr{F}_k)^*\otimes(\mathscr{H}_k)^*\otimes H^s_{\mathcal{C}}(Y) &= F_{i,-,\,k,\,\varepsilon,\,C}, \\ F_{i,-,\,k,\,C'}|(\mathscr{F}_k)^*\otimes(\mathscr{H}_k)^*\otimes H^s_{\mathcal{C}}(Y) &= F_{i,-,\,k,\,C}, \end{split}$$

if C' > C.

Proof. By (46), the convergence of $E_{1,\epsilon} = E_{1,\epsilon,\lambda}$ to $E_{\epsilon} = E_{\epsilon,\lambda}$ is uniform in λ if $|\lambda| \leq C$. Hence we have the lemma.

Corollary. There exist fundamental solutions $F_{i,-,k,\epsilon}$ of the equation $\ell/\partial t - \Delta_{i,-,k,\epsilon}$ densely defined in $(\mathscr{F}_k)^* \otimes (\mathscr{H}_k)^* \otimes H^s(Y)$ which tends to a fundamental solution $F_{i,-,k}$ of $\partial/\partial t - \Delta_{i,-,k}$ densely defined in $(\mathscr{F}_k)^* \otimes (\mathscr{H}_k)^* \otimes L^2(Y)$.

We denote the inclusion from $\mathscr{F}_k \otimes \mathscr{H}_k \otimes H^s(Y)$ into $H^s(\mathbb{R}^+ \times \mathbb{R}^+ \times Y)$ by $i_{k,s}$. The dual of $i_{k,s}$ is denoted by $i_{k,s}^*$, and set

(47)
$$\ker i_{k,s}^* = \mathscr{N}_{k,s}$$

If $s \ge n+1$ (dim. Y = n-1), then $\mathcal{N}_{k,s} \ne 0$. But, since we know

$$C_{c_1}((1-k)/2)^{\infty} \subset \mathcal{H}_k^*, \ k < 1, \ C_{c_1}((k-1)/2)^{\infty} \subset \mathcal{H}_k^*, \ k < 1,$$

we have

(48)
$$C_{C,[2k]}^{\prime}(\mathbf{R} \times \mathbf{R} \times Y) \cap \mathscr{N}_{k,s} = 0,$$

Here, $C_{c,\{2k\}^{\prime}}^{\infty}(\mathbb{R}\times\mathbb{R}\times Y)$ is considered to be a subspace of $H^{s}(\mathbb{R}^{+}\times\mathbb{R}^{+}\times Y)$.

In $(\mathscr{F}_k)^* \otimes (\mathscr{H}_k)^* \otimes H^s(Y)$, $\lim_{\varepsilon \to 0} trace \left[\exp\left(-t \varDelta_{1,-,k,\varepsilon}\right) - \exp\left(-t \varDelta_{2,-,k,\varepsilon}\right) \right]$ coincides to $\lim_{\varepsilon \to 0} \int_0^\infty \int_Y G_{1,-,\varepsilon}(t,y,n) - G_{2,-,\varepsilon}(t,y,u) dy du$, because $\lim_{\varepsilon \to 0} (E_\varepsilon - G_\varepsilon)(t,y,u) = \lim_{\varepsilon \to 0} H_{1,\varepsilon}(t,u,u) = \lim_{\varepsilon \to 0} H_{2,\varepsilon}(t,u,u) = 0$. Hence we get

(49)
$$\lim_{\varepsilon \to 0} \operatorname{trace}\left[e^{-t_{d_{1},-,k,\varepsilon}} - e^{-t_{d_{2},-,k,\varepsilon}}\right] = -\sum_{\lambda \in \operatorname{spec},A,\ \lambda \neq 0} \frac{\operatorname{sign}\lambda}{2} \operatorname{erfc.}\left(|\lambda|\sqrt{t}\right), \ k < 1,$$
$$= \sum_{\lambda \in \operatorname{spec},A,\ \lambda \neq 0} \frac{\operatorname{sign}\lambda}{2} \operatorname{erfc.}\left(|\lambda|\sqrt{t}\right), \ k \ge 1,$$

because $G_{i,-,\epsilon}(t,y,u) = \frac{1}{\varepsilon}G_i(t,y,u/\varepsilon)$, where $G_i(t,y,u)$, i=1,2, are the kernels of $\partial/\partial t - \Delta_i$, i=1,2, with the boundary conditions (36)_i, i=1,2 (cf. [4]). Therefore, to set

$$F_{-,k,\epsilon}(t) = \int_0^\infty \int_V \left\{ F_{1,-,k,\epsilon}(t,y,u) - F_{2,-,k,\epsilon}(t,y,u) \right\} dy du,$$

if $F_{-,k,\epsilon}(t)$ has asymptotic expansion at $t\to 0$,

(50)
$$F_{-,k,\varepsilon}(t) \sim \sum_{m \geq n} b_{-,m,k,\varepsilon} t^{m/2},$$

we have by (49)

(51)
$$\eta(0) = \lim_{\varepsilon \to 0} -(2b_{-,0,k,\varepsilon} + h), \quad k < 1,$$
$$= \lim_{\varepsilon \to 0} (2b_{-,0,k,\varepsilon} + h), \quad k \ge 1.$$

Summarising these, we obtain

Proposition 3. If $F_{-,k,\varepsilon}$ has asymptotic expansion (50) at $t \to 0$, then $\lim_{\varepsilon \to 0} b_{-,0,k,\varepsilon}$ exists and we have

(52)
$$\lim_{\varepsilon \to 0} b_{-,0,k,\varepsilon} = a_0, \quad k < 1,$$
$$= -a_0, \quad k \ge 1,$$

where $a_0 = a_{+,0}$ is determined by the asymptotic expansion of G(t) at $t \to 0$ given by

$$G(t) \sim \sum_{m \geq -n} a_m t^{m/2}$$
.

Here
$$G(t)$$
 means $\int_0^\infty \int_Y \{G_1(t,y,u) - G_2(t,y,u)\} dy du$.

§ 10. Indexes of degenerate operators, I.

Let X be a real analytic n-dimensional compact Riemannian manifold with boundary Y and $D=D_{+,\,k}$ or $D_{-,\,k}$ be first order differential operators defined on $C^\infty(X,E)$ and map it into $C^\infty(X,F)$ such that on a neighborhood $Y\times \mathbb{I}$ ($\mathbb{I}=[0,1]$) of the boundary of X

$$D_{+,k} = \sigma \left(\frac{\partial}{\partial u} + u^k A \right), \ k > 0,$$

$$D_{-,k} = \sigma \left(u^k \frac{\partial}{\partial u} + A \right), \ k > 0.$$

Here, $u \in \mathbf{I}$ is the (real analytic) normal coordinate, $\sigma = \sigma_D$ (du) is the bundle isomorphism $E \to F$, $A = A_u : C^{\infty}(Y, E_u) \to C^{\infty}(Y, E_u) \to C^{\infty}(Y, F_u)$ is a first order selfadjoint elliptic operator on Y which is independent of u.

We denote by \widehat{X} the double of X. Then $D_{+,k}$ and $D_{-,k}$ define differential operators $\widehat{D}_{+,k}$ and $\widehat{D}_{-,k}$ both defined on $C^{\infty}(\widehat{X},\widehat{E})$ and map it into $C^{0}(\widehat{X},\widehat{F})$. They are elliptic on $\widehat{X}-Y$ but degenerate on Y.

Definition. We define differential operators $D_{+,k,\varepsilon}$ and $D_{-,k,\varepsilon}$ on X by

$$D_{+,\,k,\,\varepsilon}=(\frac{\partial}{\partial u}+(u^k+\varepsilon e)A),\ \varepsilon>0,\ \text{on}\ Y\times\mathbb{I},\ D_{+,\,k,\,\varepsilon}=D_{+,\,k},\ \text{on}\ X-Y\times\mathbb{I},$$

$$D_{-,h,\varepsilon} = ((u^h + \varepsilon e)\frac{\partial}{\partial u} + A), \ \varepsilon > 0, \ on \ Y \times \mathbf{I}, \ D_{-,h,\varepsilon} = D_{-,h}, \ on \ X - Y \times \mathbf{I}.$$

Here e = e(y, u) is a C^{∞} -function given by $e(y, u) = e_1(u)$ where $e_1(u)$ is a C^{∞} -function on I such that

$$0 \le e_1(u) \le 1$$
, $e_1(u) = 1$, $0 \le u \le \frac{1}{3}$, $e_1(u) = 0$, $\frac{2}{3} \le u \le 1$.

Definition. For $0 < \varepsilon' < 1$, we set

 $u^{k}_{\varepsilon'} = u^{k}$, if k is an even integer,

$$u^{k_{\varepsilon'}} = u^{k}, \quad u \ge \varepsilon', \quad u^{k_{\varepsilon'}} = u^{k} \left(1 - e_1 \left(\frac{u}{\varepsilon'} \right) \right), \quad 0 \le u \le \varepsilon', \quad \text{if k is not an even}$$

$$\text{integer},$$

and define differential operators $D_{+,k,\epsilon,\epsilon'}$ and $D_{-,k,\epsilon,\epsilon'}$ by

$$D_{+,\,k,\,\varepsilon,\,\varepsilon'} = \sigma\left(\frac{\partial}{\partial u} + (u^k{}_{\varepsilon'} + \varepsilon e)A\right), \ \ on \ \ Y \times \mathbf{I}, \ \ D_{+,\,k,\,\varepsilon,\,\varepsilon'} = \mathrm{D}_{+,\,k}, \ \ on \ \ X - Y \times \mathbf{I},$$

$$D_{-,k,\varepsilon,\varepsilon'} = \sigma\left((u^k_{\varepsilon'} + \varepsilon e)\frac{\partial}{\partial u} + A\right), \ \ on \ \ Y \times \mathbf{I}, \ \ D_{-,k,\varepsilon,\varepsilon'} = D_{-,k}, \ \ on \ \ X - Y \times \mathbf{I}.$$

By definitions, the operators $\widehat{D}_{+,\,k,\,\epsilon,\,\epsilon'}$ and $\widehat{D}_{-,\,k,\,\epsilon,\,\epsilon'}$ defined from $D_{+,\,k,\,\epsilon,\,\epsilon'}$ and $D_{-,\,k,\,\epsilon,\,\epsilon'}$ on \widehat{X} are C^{∞} -cofficients elliptic operators on \widehat{X} . Hence under the boundary conditions Pf(0,y)=0, for $D_{+,\,k,\,\epsilon,\,\epsilon'}$ and $D_{-,\,k,\,\epsilon,\,\epsilon'}$, k<1, and (I-P)f(0,y)=0, for $D_{-,\,k,\,\epsilon'}$, $k\geq 1$, they have finite indexes and there exist differential forms $\alpha_{+,\,k,\,\epsilon,\,\epsilon'}(x)dx$ and $\alpha_{-,\,k,\,\epsilon,\,\epsilon'}(x)dx$ on X such that (cf. [3], [4], [13]),

(53)₊ index
$$D_{+,k,\varepsilon,\varepsilon'} = \int_X \alpha_{+,k,\varepsilon,\varepsilon'}(x) dx - \frac{h + \eta(0)}{2}$$
,

(53)_-,1 index
$$D_{-,k,\varepsilon,\varepsilon'} = \int_X \alpha_{-,k,\varepsilon,\varepsilon'}(x) dx - \frac{h + \eta(0)}{2}, \ k < 1,$$

(53)_-,2 index
$$_{-D_{-,h,\epsilon,\epsilon'}} = \int_X \alpha_{-,h,\epsilon,\epsilon'}(x) dx + \frac{\eta(0)-h}{2}, \ k \ge 1.$$

Here, index_D means the index of D with the boundary condition (I-P)f(0,y)=0.

Lemma 15. Under the boundary conditions Pf(0,y)=0, for $D_{+,k,\varepsilon}$ and $D_{-,k,\varepsilon}$, k < 1, and (I-P)f(0,y)=0, for $D_{-,k,\varepsilon}$, $k \ge 1$, $D_{+,k,\varepsilon}$ and $D_{-,k,\varepsilon}$ have finite indexes and we have

$$(54)'_{+} \qquad \text{index } D_{+,k,\varepsilon} = \text{index } D_{+,k,\varepsilon,\varepsilon'},$$

(54)'_-,1 index
$$D_{-,k,\varepsilon} = \text{index } D_{-,k,\varepsilon,\varepsilon'}, k < 1$$
,

$$(54)'_{-,2}$$
 index_ $D_{-,k,\varepsilon} = \text{index}_{-}D_{-,k,\varepsilon,\varepsilon'}, \ k \ge 1.$

Proof. Take a to satisfy $\varepsilon > a > \varepsilon'$ and

$$2(u^{k_{\varepsilon'}} + \varepsilon) \ge u^{k} + \varepsilon \ge u^{k_{\varepsilon'}} + \varepsilon, \ 0 \le u \le a, \ \text{for } D_{+,k,\varepsilon,\varepsilon'},$$

$$\frac{2}{u^{k} + \varepsilon} \ge \frac{2}{u^{k_{\varepsilon'}} + \varepsilon} \ge \frac{1}{u^{k} + \varepsilon}, \ 0 \le u \le a, \ \text{for } D_{-,k,\varepsilon,\varepsilon'}.$$

Then, since on $Y \times [0, a]$, the equations $D_{\pm, k, \epsilon} f = 0$ and $D_{\pm, k, \epsilon, \epsilon'} g = 0$ reduce (on each eigenspace of A)

$$\begin{split} &\frac{d}{du}f_{\lambda,k,\varepsilon}+\lambda(u^k+\varepsilon)f_{\lambda,k,\varepsilon}=0,\\ &\frac{d}{du}g_{\lambda,k,\varepsilon,\varepsilon'}+\lambda(u^k_{\varepsilon'}+\varepsilon)g_{\lambda,k,\varepsilon,\varepsilon'}=0,\ \ for\ D_{+,k,\varepsilon},\ \ and\ D_{+,k,\varepsilon,\varepsilon'},\\ &(u^k+\varepsilon)\,\frac{d}{du}f_{\lambda,-k,\varepsilon}+\lambda f_{\lambda,-k,\varepsilon}=0,\\ &(u^k_{\varepsilon'}+\varepsilon)\frac{d}{du}g_{\lambda,-k,\varepsilon,\varepsilon'}+\lambda g_{\lambda,-k,\varepsilon,\varepsilon'}=0,\ \ for\ D_{-,k,\varepsilon}\ \ and\ D_{-k,\varepsilon,\varepsilon'}, \end{split}$$

the equations $D_{\pm,k,\epsilon,\epsilon'}g=0$ with the boundary condition g(a,y)=f(a,y) have unique solution on $Y\times [0,a]$ if $D_{\pm,k,\epsilon}f=0$ by the choice of a. Moreover, since $f(u,y)=\sum_{\lambda\geq 0}f_{\lambda,\pm k,\epsilon}(u)\phi_{\lambda}(y)$ if Pf(0,y)=0 and $f(u,y)=\sum_{\lambda\leq 0}f_{\lambda,-k,\epsilon}(u)\phi_{\lambda}(y)$ if (I-P)f(0,y)=0 on $Y\times [0,a]$, this g satisfies Pg(0,y)=0 if Pf(0,y)=0 and (I-P)g(0,y)=0 if (I-P)f(0,y)=0. Therefore, since $D_{\pm,k,\epsilon,\epsilon'}=D_{\pm,k,\epsilon}$ on some neighborhood of $Y\times \{a\}$ in X, to define a function g on X by

$$\overline{g} = f$$
, on $X - Y \times [0, a]$, $\overline{g} = g$, on $Y \times [0, a]$.

 \bar{g} is a solution of $D_{+,k,\epsilon,\epsilon'}$ on X with the boundary condition $P\bar{g}(0,y)=0$ (or $(I-P)\bar{g}(0,y)=0$). This shows dim. ker. $D_{\pm,k,\epsilon,\epsilon'}\geq \dim$. ker. $D_{\pm,k,\epsilon}$. Similarly, we get dim. ker. $D_{\pm,k,\epsilon,\epsilon'}\leq \dim$. ker. $D_{\pm,k,\epsilon}$ and we have dim. ker. $D_{\pm,k,\epsilon,\epsilon'}=\dim$. ker. $D_{\pm,k,\epsilon}$. By the same reason, we have dim. ker. $D_{\pm,k,\epsilon,\epsilon'}^*=\dim$. ker. $D_{\pm,k,\epsilon}$. This shows the lemma.

§ 11. Indexes of degenerate operators, II.

Lemma 16. (i). Under the boundary condition Pf(0, y) = 0, $D_{+, h}$ has finite index and for sufficiently small ε , we have

$$(54)_{+} \qquad \text{index } D_{+,k} = \text{index } D_{+,k,\varepsilon}.$$

(ii). Under the boundary condition

$$(B_k)$$
 $Pf(0,y) = 0$, for $D_{-,k}f = 0$, $\lim_{u \to 0} (I - P)(u^k g(u,y)) = 0$, for $D_{-,k}^* g = 0$,

 $D_{-,k}$ has finite index for k < 1, and for sufficiently small ε , we have

$$(54)_{-,1} \qquad \text{index}_k D_{-,k} = \text{index} D_{-,k,\epsilon}.$$

Here index_kD means the index of D with the boundary condition (B_k) .

(iii). Under the boundary condition

$$(B_{-k})$$
 $(I-P)f(0,y)=0$, for $D_{-,k}f=0$, $\lim_{u\to 0}P(u^kg(u,y))=0$, for $D_{-,k}*g=0$,

 $D_{-,k}$ has finite index for $k \ge 1$, and for sufficiently small ε , we have

(54)_{-,2}
$$\operatorname{index}_{-k}D_{-,k} = \operatorname{index}_{-D_{-,k},\epsilon}.$$

Here index_{-k}D means the index of D with the boundary condition (B_{-k}) .

Proof. Let $\varepsilon < 1/5$ and take b to satisfy $1 - \varepsilon > b > 3\varepsilon$. On $Y \times [0, b]$, the equations $D_{\pm, k} = f = 0$ and $D_{\pm, k} * g = 0$ reduce

$$\frac{d}{du}f_{\lambda,k} + \lambda u^k f_{\lambda,k} = 0, \text{ for } D_{+,k}, u^k \frac{d}{du}f_{\lambda,-k} + \lambda f_{\lambda,-k} = 0, \text{ for } D_{-,k},$$

$$\frac{d}{du}g_{\lambda,k}-\lambda u^kg_{\lambda,k}=0, \text{ for } D_{-,k}^*,$$

$$u^k \frac{d}{du} g_{\lambda,-k} + (ku^{k-1} - \lambda) g_{\lambda,-k} = 0$$
, for $D_{-,k}^*$.

The solutions of these equations are

$$f_{\lambda, k} = c_{\lambda} e^{-(\lambda/k+1)u^{k+1}}, \quad f_{\lambda, -k} = c_{\lambda} e^{-(\lambda/1-)ku^{1-k}}, \quad k \neq 1, \quad f_{\lambda, -1} = c_{\lambda} u^{-\lambda},$$

$$g_{\lambda, k} = c_{\lambda} e^{(\lambda/k+1)u^{k+1}}, \quad g_{\lambda, -k} = c_{\lambda} u^{-k} e^{(\lambda/1-k)u^{1-k}}, \quad k \neq 1, \quad g_{\lambda, 1} = c_{\lambda} u^{\lambda-1}.$$

Then, since

$$0 < \mathrm{e}^{(\lambda/k+1)u^{k+1}} \leq \mathrm{e}^{(\lambda/k+1)(u^{k+1}+\varepsilon)} \leq \mathrm{e}^{(\lambda/k+1)(u+\varepsilon/k+1)^{\left(1/k+1\right)\left(k+1\right)}}, \ \lambda \geq 0,$$

we obtain (i).

To show (ii) and (iii), we use the inequalities

$$0 \leq \exp\left(\int_0^u \frac{dv}{v^k + \varepsilon}\right) \leq e^{(\lambda/1 - k)u^{1 - k}} \leq \exp\left(\int_0^{u + \alpha(b, k, \varepsilon)} \frac{dv}{v^k + \varepsilon}\right), \ k < 1, \ \lambda \geq 0,$$

$$\frac{u^{1-k}}{1-k} < \int_b^u \frac{dv}{v^k + \varepsilon}, \quad \log u < \int_b^u \frac{dv}{v + \varepsilon}, \quad u < b,$$

$$\frac{b^{1-k}}{1-k} > \int_b^{\beta(b, k, \varepsilon)} \frac{dv}{v^k + \varepsilon}, \quad \log b > \int_b^{\beta(b, 1, \varepsilon)} \frac{dv}{v + \varepsilon}, \quad 0 < \beta(b, k, \varepsilon) < b,$$

where $\alpha(b,k,\varepsilon)$ is the twice of infimum value of these α that satisfy $\int_0^{u+\alpha} (1/(v^k+\varepsilon)) dv > \int_0^u (\varepsilon/v^k(v^k+\varepsilon)) dv$, $0 \le n \le b$ and therefore $\lim_{\varepsilon \to 0} \alpha(b,k,\varepsilon) = 0$. Hence we get (ii). On the other hand, since $\lim_{\varepsilon \to 0} \beta(b,k,\varepsilon) = 2^{1/(1-k)} 3b,k > 1$, $\lim_{\varepsilon \to 0} \beta(b,1,\varepsilon) = \sqrt{b}$, to take b < 1/3 and set

$$e_k(u) = e(c(k)u), \ c(k) < 2^{\frac{1}{1-k}} 3b, \ k > 1, \ c(1) < \frac{3}{2} \sqrt{b},$$

$$D_{-,k}, \varepsilon_k = \sigma((u^k + \varepsilon e_k) \frac{\partial}{\partial u} + A),$$

we have for sufficiently small ε ,

$$index_{-}D_{-,k,\epsilon_k} = index_{-k}D_{-,k}, \ k \ge 1.$$

But since index_ $D_{-,k,\epsilon k} = \text{index}_{-D_{-,k,\epsilon}}$ by the same reason as lemma 16, we get (iii).

Lemma 17. To set

$$H_k = \{0\} \cup \{f \mid D_{-,k}f = 0, \ f(0,y) \neq 0, \ Af(0,y) = 0\},$$

 $H_k * = \{0\} \cup \{f \mid D_{-k} * f = 0, \ f(0,y) \neq 0, \ Af(0,y) = 0\},$
dim. $H_k = h_k$, dim. $H_k * = h_k *$,

we have

- (i). $h_k \leq h$, and $h_k * \leq h$.
- (ii). If $D_{-,k}$ is a real analytic coefficients operator, then h_k does not depend on $D_{-,k}$ and h_k* depends only on k.
- (iii). To set index₀D the index of D with the 0-boundary condition, that is $\lim_{u\to 0} f(u,y) = 0$, we have

(55)
$$index_0D_{-,k} = index_{-k}D_{-,k} - (h_k - h_k), k \ge 1,$$

Proof. If $f \in H_k$ (or H_k*), then $f(u,y) = \sum_i f_i(u)\phi_i(y)$, $A\phi_i(y) = 0$, on $Y \times [0,1]$. Then, since $D_{-,k}$ and $D_{-,k}$ are first order elliptic operators, unique continuity is hold for the solutions of $D_{-,k}$ and $D_{-,k}*$, we get (i).

If $D_{-,k}$ is areal analytic coefficients operator, then above $f_i(u)$ are constants for all i along any integral curve of real analytic normal vector field of Y starts

from a point of Y. By the same reason, H_k* is determined by k and we obtain (ii). Let $D_{-,k}=0$ and $D_{-,k}*$ g=0, then to set $f=\sum_{\lambda\leq 0}f_{\lambda}(u)\phi_{\lambda}(y)$, $g=\sum_{\lambda\leq 0}g_{\lambda}(u)\phi_{\lambda}(y)$ on $Y\times [0,1]$, we get

$$\lim_{u\to 0} f_{\lambda}(u) = 0, \ \lambda > 0, \ \lim_{u\to 0} g_{\lambda}(u) = 0, \ \lambda < 0.$$

This shows (55).

By(53), lemma 15, lemma 16 and lemma 17, we obtain

Proposition 4. (i). Under the boundary condition Pf(0, y) = 0, $D_{+,k}$ has finite index and we have

(56)₊ index
$$D_{+,k} = \int_X \alpha_{+,k,\varepsilon,\varepsilon'}(x) dx - \frac{h + \eta(0)}{2}$$
.

(ii). Under the boundary condition (B_k) , $D_{-,k}$, k < 1, has finite index and we have

(56)_-,1 index_k
$$D_{-,k} = \int_X \alpha_{-,k,\epsilon,\epsilon'}(x) dx - \frac{h + \eta(0)}{2}, k > 1.$$

(iii). Under the 0-bondary condition, $D_{-,k}$, $k \ge 1$, has finite index and we have

(56)_-,2 index₀
$$D_{-,k} = \int_{X} \alpha_{-,k,\epsilon,\epsilon'}(x) dx + \frac{\eta(0) - h}{2} - (h_k - h_{k*}), \ k \ge 1.$$

Here $h_k \leq h$, $h_k * \leq h$ and if $D_{-,k}$ is a real analytic coefficients operator, h_k does not depend on $D_{-,k}$ and $h_k *$ depends only on k.

§ 12. Fundamental solutions of
$$\frac{\partial}{\partial t} + \hat{A}$$
.

We denote the closed extensions of $\widehat{D}_{\pm,k}$ and $\widehat{D}_{\pm,k}^*$ by $\widehat{\mathscr{D}}_{\pm,k}$ and $\widehat{\mathscr{D}}_{\pm,k}^*$. Then set

$$\widehat{\Delta}_{1,\pm,k} = \widehat{\mathcal{D}}_{\pm,k}^* \widehat{\mathcal{D}}_{\pm,k}, \ \widehat{\Delta}_{2,\pm,k} = \widehat{\mathcal{D}}_{\pm,k} \widehat{\mathcal{D}}_{\pm,k}^*.$$

For simple, we denote $\widehat{\mathcal{A}}$ instead of $\widehat{\mathcal{A}}_{1,+,k}$, etc.. By definition, $\widehat{\mathcal{A}}$ is elliptic on $\widehat{X}-(Y\times \llbracket -1,1\rrbracket)$. On the other hand, $\widehat{\mathcal{A}}_{i,+,k}$ and $\widehat{\mathcal{A}}_{i,-,k}$, k<1, i=1,2, have smoothing operators in $L^2(Y\times \llbracket -1,1\rrbracket)$ by lemma 7, (i), and $\widehat{\mathcal{A}}_{i,-,k}$, $k\geq 1$, i=1,2, have smoothing operators in $H_{(\lceil 2k \rceil')}(^{\lceil 2k \rceil'+2n} \llbracket Y\times \llbracket -1,1\rrbracket]$, by lemma 7, (ii). Hence we have (cf. $\lceil 3 \rceil$)

Lemma 18. (i). $\widehat{A}_{i,+,k}$ and $\widehat{A}_{i,-,k}$, k < 1, i = 1,2, have parametrizes in L^2 (\widehat{X}) . (ii). $\widehat{A}_{i,-,k,}$, $k \ge 1$, i = 1,2, have parametrizes in $H_{(\{2k\}')}({}^{2k})^{i+2n}(\widehat{X})$. Here $H_{(\{2k\}')}({}^{2k})^{i+2n}(\widehat{X})$ is the Sobolev space of these functions on \widehat{X} that vanishes on Y at least order [2k]'.

Corollary. (i). $\partial/\partial t + \widehat{\Delta_{i,+,k}}$ and $\partial/\partial t + \widehat{\Delta_{i,-,k}}$, k < 1, i = 1, 2, have fundamental solutions with C^{∞} -kernels on $(\widehat{X} - Y) \times (\widehat{X} - Y) \times (\mathbb{R}^+ - \{0\})$ in $L^2(\widehat{X})$.

(ii). $\partial/\partial t + \widehat{A}_{i,-,k}$, $k \ge 1$, i = 1, 2, have fundamental solutions with C^{∞} -kernels on $(\widehat{X} - Y) \times (\widehat{X} - Y) \times (\mathbb{R}^+ - \{0\})$ in $H_{([2k]')}^{2k'+(2n)}(\widehat{X})$.

We denote the kernels of the fundamental solution of $\partial/\partial t + \widehat{\Delta}_{i,\pm,k}$ by $F_{i,\pm,k}(t,x)$, i=1,2.

By the definitions of $\widehat{A}_{i,\pm,k}$, on $Y \times [-a,a]$, we have

$$(57)_{+} \qquad \widehat{\Delta}_{2,+,k} = \sigma_{+}(\widehat{\Delta}_{1,+,k} + 2k|u|^{k-1}A),$$

(57).
$$\widehat{\Delta}_{2,-,k} = \sigma_{-}(\widehat{\Delta}_{1,-,k} - k(k-1)|u|^{2k-2}), \ k < 1,$$

$$= \sigma_{-}(\widehat{\Delta}_{1,-,k} + k(k-1)|u|^{2k-2}), \ k \ge 1.$$

Here σ_{\pm} are bundle isomorphisms. Hence by lemma 10, to define a C^{∞} -function e_2 on \hat{X} by

$$e_2(u, y) = e_2(u), \ 0 \le e_2 \le 1, \ e_2(u) = 0, \ |u| \le \frac{1}{2},$$

$$e_2(u) = 1, \ |u| \ge \frac{3}{4}, \ on \ Y \times [-1, 1],$$

$$e_2 = 1, \ on \ \hat{X} - Y \times [-1, 1].$$

we have

$$F_{\pm,k}(t,x)e_2(x) \sim F_{\pm,k}(t,x) + H_{\pm,k}(t,x), \lim_{t\to 0} H_{\pm,k}(t,x) = 0,$$

$$F_{\pm,k}(t,x) = F_{1,\pm,k}(t,x) - F_{2,\pm,k}(t,x).$$

Then, since $\mathscr{F}_k \otimes \mathscr{H}_k \otimes H^s(Y) \cup H_{((2k))^s}(X)$ if $s \geq \lfloor 2k \rfloor' + 2n$ and if f satisfies 0-boundary condary condition and $D_{-,k}f = 0$ or $D_{-,k}^*f = 0$, then $f \in \mathscr{F}_k \otimes \mathscr{H}_k \otimes H^s$ $(Y), k \geq 1$, we have by proposition 2, proposition 3, proposition 4 and lemma 18

Theorem (i). For $D_{+,k}$, there exists a differential form $\alpha_{+,k}(x)dx$ on X such that

(58)₊ index
$$D_{+,k} = \int_X \alpha_{+,k}(x) dx - \frac{h + \eta(0)}{2}$$
.

(ii). For $D_{-,k}$, k < 1, there exists a differential form $\alpha_{-,k}(x)dx$ on X such that

(58)_{-,1} index
$$_kD_{-,k} = \int_X \alpha_{-,k}(x) dx - \frac{h + \eta(0)}{2}$$
.

(iii). For $D_{-,k}$, $k \ge 1$, there exists a differential form $\alpha_{-,k}(x)dx$ on X such that

(58)_,2 index₀
$$D_{-,k} = \int_X \alpha_{-,k}(x) dx + \frac{h + \eta(0)}{2}$$
.

Proof. We only need to show (ii). But since index ${}_0D_{-,k}=0$ if k<1, we have index ${}_kD_{-,k}=\inf \exp_k D_{-,k}+\inf \exp_0 D_{-,k}$, and by lemma 2, we have index ${}_0D_{-,k}=\int_X \beta_k(x)dx-(h+\eta(0))/2$ for some differential form $\beta_k(x)dx$ on X and $\inf \exp_k \widehat{D}_{-,k}=\int_X \gamma_k(x)dx$ for some $\gamma_k(x)dx$, we obtain (ii).

Corollary. Let $\varepsilon > \varepsilon' > 0$ and ε is sufficiently small, then

$$(59)_{+} \qquad \int_{X} \alpha_{+,k}(x) dx = \int_{X} \alpha_{+,k,\varepsilon,\varepsilon'}(x) dx,$$

$$\int_X \alpha_{-,h}(x) dx = \int_X \alpha_{-,h,\epsilon,\epsilon'}(x) dx, \quad h < 1,$$

$$\int_X \alpha_{-,k}(x)dx = \int_X \alpha_{-,k,\varepsilon,\varepsilon'}(x)dx - (h_k - h_k *), \quad k \ge 1.$$

Note. If we consider

$$D_{(-k)} = \sigma \left(\frac{\partial}{\partial u} + u^{-k} A \right), \text{ on } Y \times [0, 1],$$

instead of $D_{-,k}$, index $D_{(-k)}$ exists if k < 1 and we have with suitable differential form $\alpha_{(-k)}(x)dx$,

index
$$D_{(-k)} = \int_X \alpha_{(-k)}(x) dx - \frac{h + \eta(0)}{2}, \ k < 1.$$

On the other hand, since we get $D_{(-k)}^* = \sigma^{-1}D_{(-k)}\sigma^*$ on $L^2[0,1] \otimes \ker$. A, to set

$$H_{(k)} = \{0\} \cup \{f \mid D_{(-k)}f = 0, \ f(0, y) \neq 0, \ Af(0, y) = 0\},$$

 $H_{(k^*)} = \{0\} \cup \{g \mid D_{(-k)}^*g = 0, \ g(0, y) \neq 0, \ Ag(0, y) = 0\},$

 $H_{(k)}$ is isomorphic to $H_{(k)}$. Therefore we have

(60)
$$index_{-}D_{(-k)} = index_{0}D_{(-k)}, \ k \ge 1.$$

Hence we get with suitable differential form $\alpha_{(-h)}(x)dx$ on X

index_
$$D_{(-k)} = \int_X \alpha_{(-k)}(x) dx + \frac{h - \eta(0)}{2}, \ k \ge 1,$$

and for this $\alpha_{(-k)}(x)dx$, we have

$$\int_X \alpha_{(-k)}(x)dx = \int_X \alpha_{(-k),\epsilon,\epsilon'}(x)dx, \ k \ge 1,$$

if ε and ε' are sufficiently small. Here $\alpha_{(-k),\varepsilon,\varepsilon'}(x)dx$ is the differential form constructed for Differential operator $D_{(-k),\varepsilon,\varepsilon'}$ given by

$$D_{(-k), \epsilon, \epsilon'} = \sigma \left(\frac{\partial}{\partial u} + \frac{A}{u^k_{\epsilon'} + \epsilon e} \right), \text{ on } Y \times \mathbf{I},$$

$$= D_{(-k)}, \text{ on } X - Y \times \mathbf{I}.$$