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Introduction
For a power series ®(2) = 3., ., inliss -, inZ1it+25in, its Borel transformation
G P] is given by  Dlii, inGiss ooy infitl - in 1 GiivLuin ([37, [6], [147], [157]). Borel

transformation is linear and has following properties.

@] = w01t @l4] 48 = 5o [ fla— 8Wr,

52‘-@50] = @(zi10):], Liw[P] = @lap + 2Z"§5~“3’

where ¢+ is the holomorphic part of ¢ ([1]). Therefore, since

1% og xyin=—""_st t is Euler constant
Z(log X)#n=—o gt s Euler constant,
- ket a+a. ' ¢

we may define

(@) G log 21{{) =1log L+ 7,

and by (@), we can define Borel transformation of many-valued analytic functions
(L17). This is used, for example, to give an explicit formula of the solution of
constant coefficients linear partial differential equations with finite exponential type,
meromorphic or many-valued analytic Cauchy data ([1], [17).

We note that since the inverse of Borel transformation of a function f is given

by JRn +e—ff(zt)dt (C21, [2]) and J:e—f log ztdt =log z — 7, which is the base of

Volterra’s theory of logarithm of the functions of composition ([187], [187). Hence,
(@) has been essentially used by Volterra.

The purpose of this paper is to extend Borel transformation for non-analytic
functions (or distributions). Since

@lerz](0) = Jolo/— 1 &/2a8), Jolz) is O-th Bessel function,
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if ¥ (R#), the space of rapidly decreasing C>-functions, and the Fourier trans-
form _# [¢] of ¢ satisfies | # [¢](x)| = Oe-"=112%8) ||x]| = oo, for some § >0,
then we may define <#[¥] by

GO = [ Jol/ =/ =T5Es) v+ o/~ /L) 5 [P €)

because ¢ = . F *[ % [¥]]. Then, since to denote 0-th Hankel transformation of f
by Ho(f), fis a function of 1-variable, we have

ey T HAE (=) ) = [ il e TR0,

4«/1

we may define Borel transformation of 7', an element of the dual space of a suit-
able function space F, by

o) F LTI =(m/ =11 F LTI H () 129 ),

4M1

Heol()E) = | Jolot) = Jolxatas - xn 8l)a,

f(%)/xz = f<4ﬂf;%, - 4nf;1%>/x12 . Enl,
EVE) = 8B B, (Holf (4 ) W e

To give exact meaning of (), we define and treat function space (R#, —1) and
related spaces in §1. Here &(R#, —1) is the space of rapidly decreasing holomor-
phic functions on R#. In §2, we study Hankel transformations of these spaces and
show that to set
A

@ 1R+ = {Ho(F2R?, —1)nFo(R#+),

yz(Rn’ _1) = {f(ZlZ, ) Zn2)|fe.5ﬂ(R", _1)}5

A

Go(R+) = f| f is a rapidly decreasing even function and flx; =0,

=1, n),

we have

SR, 1) = (Mol (5= ) W ) 8 € =T ros).

47r4/ 1

In §3, we define Borel transformation of T&( # (¥R*, —1))* as an element of
(&% /=1 Rrn+)*. Borel transformation of the element of other spaces (defined in §1)
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are also defined. The necessity of the use of other spaces is follows from the fact
that <[ T] is not always differentiable as the element of (<, —ir~+)*. In §4, first
we define the product f7T of a many-valued analytic function f and T( % (¥ R?,
—1))* and define its Borel transformation. Using these generalized Borel trans-
formation, we show the explicit formula of the solution of Cauchy problem given
in [1] is also applicable for non-analytic data in §5. (

We note that in our definition of Borel transformation, #[o¢®]= 0 for all
k=0, 6 =4, But if we use other type of function space, %’[6@5} may not he
equal to O in general. In fact, since we have by du Bois Raymond’s formula ([4],

[190)

qudu j P, 9) & (Un/ % T F0)dxdy = 2190, 0) j
0 Re2 0

if JRzlsﬁ(x, )| (w2 4 y2)-1le gxgy < oo, f(r,0) is the function of bounded variation on
(0, o0) for all g, fF(r, 8) = ¥(x, ¥), and its total variation tends to 0, # — 0, uniformly
in 4, and &(r)a/ 7 is bounded on [0, oo}, J: J: 8(8)sdst-1dt < co and especially have
by Neumann’s formula ([197)

J:udu JRZSD(x, N Jo(ua/ %2 4 ¥2)dxdy = 270, 0),

[ Cuan [ jz” ol , 9) Joluryrdrd 0 = 279(0, 0),
0 ] 0

#[6®7(r), for suitable f, should be

@ [®](f)

— (omy/ T+ H(—1)# | 0/?“” |” ernlv=amy=TEaer 0t

= (ke —Tph(zm)e | “utkesau | Ty N )ar c=" k6=,

o (_1)k+1(_1)k T oo oo
= ey Jo wdw |

1 —
yr k+1,\/s )s—-k/(k-»l)ds, ukl = g,

Frws)s

Nk+l = s,

because .F 50 = (—2ra/— 1 &)k, Here Fr(x) = Jo(*+14/ %) and assume f(k+1y/s)
is 1-valued as an analytic function on C. Then, to denote Kg(r, §) the Poisson
kernel on {s||s|<R}c C, we have
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@ [6*](r)
o (—1)k+1(—1)% oV £ R—c [2r kit )y kd
= lim e e | waw [ [ Kalr o Putwns (5 3)

y-klCk+Dgrd g,

where ¢ > 0 is arbitrary. Hence by du Bois Raymond’s formula, if f satisfies suit-
able condition, then, it must be

(©  @lo®](F)

_ (1)’?”(«/_—7)’3)

. N dt
k ~kJCR+1) A . @
ot 1) (2m)k lim # Df <M 1 ) Jo «[0 Fr(s)sds ;

7o 4

Especially, by Neumann’s formula, it must be

(d) B[6] = —6,=Tw, 8,TIe(f) =1im slo/—1x).

X —foo
But, since our testing function f used in this paper always satisfy

. d* — =
%THOW]‘(«/-—M) =0, k=01, 2, -,

@ [0Y](F) is equal to O although we use (c).
§0. Review of Borel transformation in analytic category.
0. -0. Usual Borel transformation. Let ?(z) =>4, ..., i, @iy, ., i 2151+ Zuin he a

germ of holomorphic function at the origin of C#, then its Borel transformation
' [¢] is defined by

(1) @[PYQ) = 33 Boruinpi gy

i1y inil! gl

Z“—l——j ?(z) .
(271-‘\/_1)11 |zil=¢1, 0 |2a]=cn &1 " 0

81 Ca
Xp(“;1 +oee ;;)dzl <+ dzn.

Here ¢ is holomorphic on {z| |z:|<lé&;, i =1, -+, n} ([5], [15]). For example, we
have (cf. [7])

a PR
8)  @lee=](l)=Jols/—14/2a0), ]"(Z):,go ((;!1)): <§)n is 0-th Bessel function,
(4) @ llog (2 + Q) =7+ log ¢ — Ei(—%),

v is Euler constant, Ei(—&) = re—ft-ldt.
¢
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By definition, Borel transformation has following properties ([17]).

O @lap+ b9l =az[P]+bz[$], @[P¢]= 2?1 z1¢], Z][PQF]

— #[0]® @4, aa:i #[0] = @[(z-19)+], J:%’[ﬁﬂjd& = @[z9],
(i[9 = & [zﬂ’ +- 22;‘72-2—}.

Here, f#&(x) = /021 - 92n jo Fx —EWdE, (f R &)z, -, znem) = Fla1, -, 2n) & (21,

-+, zn+m) and (9)+ is the holomorphic part of the Laurent expansion of ¢.

It is also known that to denote &% the ring of germs of holomorphic functions
at the origin of C» with the local ring topology, Exp(C») the ring of finite expo-
nential type functions on C* with the f#-multiplication and the induced topology
of the local ring topology of &#, < gives a topological ring isomorphism between
27 and Exp(C?) and we have the following commutative diagram.

“(—2my/=1)
(2R )* <———* anr
F :lﬁ
~ Exp(C»).
Here (&Rr»)* is the space of compact support distributione, ¢«e) is given by

1 1
«(T)(E) = (2ma/ 1) TC[ (1 — aulizr)-+(1 — @nluzn) } (@) = (en, -+, atu),

and . is the Fourier transformation.

0.~1. Extension of Borel transformation. We have the following formulas

(Ca).

(@4 1)0b+1)

b= = 2T agsp — —
(5) zalz TEy za+b, Re.a™> —1, Re.b™> —1,
G £ P et s Eul -
(6) nz=‘,0~—!(log x) nw?(T—l——t)x’ v is Euler constant, x, { are veal positive,

Hence we may dfine

1 , Lo
Fl 22| = ——{x, «ais nol a negative integer,
M @l = g & @ 2 2

(7 @lz=m]=0, m=1,

(8)  =@llogz](C) =logl+7.

By (8), we get
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i 2 log Q) =L, m =1

Since we know
~ TR A
Gal(kr[k") = Zo--@Z, Z = lim[Z/mZ],
R m
where k7 is the qutient field of ## and k7 is its algebraic closure ([12]), we may
define Borel transformation on % by (7), (7). Moreover, to denote the completion
of F[log 21, -+, log zn | by the topology

(¥) lim fn = f if and only if for any 51 >0, -,0n >0, there exist &, &', i =1, -, n,
such that §; 2 &; > &' =0, and {7*(fm)} converges uniformly in wider sence on

D(ela 81’> “'7671, 6”,) to ﬁ*(f)’ 'I/Uhef’e D(El, El,a vy €, 8"’) :{Zlgi >[Zl|> gi” l - 1’ R

n}, D is the universal covering space of D and = is its projection,
by t», Borel transformation is defined on # and has following properties.

) @le?+ 9] =aw?]+ b# ¥ @ [P9] =z 918 #¢], PR ¢]

1
=z [?1® z[4], Z%L@B”] = | 2i-9], Li@[¢]= g/?[zmo—}— 22;‘5;].
Note 1. As an operator, we have [ z-*] =500 (cf. [2]).
Note 2. To set
@ -122](C) = I"'(1 + a)t=, a is not a negative integer,
. (_1)m—1 1
- -m [ S— . == aes
-1 z-m](0) 1)1 {-mlogl, m=1,2, -,
&# -1 1s not continuous ine«. But, since we get
T : .
g—l[z—m-ka] — F(l —m S)C—7n+£ = [’(m — S) e ”(m — 6) (~m+e
b e
- I'm — ¢) sin w(m — &) et I'im — &) sinz(m — &) Cmlog €+ Of),

and (z/I"(m — &} sinn(m — &))(-mecker ez, < -1 is continuos as the map mod. ker <7,

§ 1. Preliminaries on function spaces.

1. -1 The space (R”, “o/—1) and related spaces. We set Rn* =(x € R#|
£12=0, -, %2 =0} and define, (R#+, 24/ 1)}CC» by

— T — p=1
(10) (Rn,+, 1),\/ 1 ) =Rn+Jed /_1Rn,+ U UGT/—IR”:‘”.
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Definition. We set P(Rm+, 2/ 1) the space of those holomorphic functions f
on (R™+, by/ 1) such that

2k =
Fle 2V )| Rure PR, 0SE=)—1,

where F(Rn+) is the space of vapidly decreasing functions on Rn.+, with the follow-

ing topology

(x) lim fn = £ if and only if each fu is holomorphic on U(Rm*, 24/ 1)) (not depend
on m) and {fm) converges umiformly to f on U(Rm*, 24/ 1)).

Lemma 1. PR+, 24/ 1) is complete.

Proof. If {fm)} is a Cauchy series of Z(R#*, 4/ 1), then for any (i1, -+, ix),
Qiver+in finfpziit - dznin converges uniformly to @ir++imf/gziir ... gzui», where f is
holomorphic on U(R%+*, ¢4/ 1)). Hence
HM a1 —oo(@i14 - +in flpzii1 ++v fzpin) (e-CR/Dx-1y) = 0 for any (i1, ..., i») and therefore
fe PRt v/ 1).

If p =24, then we set (R™*+, 24/ 1) = (R", ¢4/ ~—1). Especially, if ¢=1 or 2,
then we denote (R%, —1) and (R”, +/—1) instead of (B", 4/ —1) and (R%, 2/ —1).
We set also

LR+, pvf) ={flf =z - z4fng, £ = ._gﬁ(Rnﬁ,pN/T)}’ (B)=(k1, =+, kn).

Lemma 2. 7R+, b4/ 1) is dence in LR+, wd-Dqw) by the inclusion map
LR+, b/ 1)Df— fIRW+, where LR+, wip-Odw) means

(1 LA 30 0a)<0mD s - g < o0},

Proof. Since P(zle-2?c &?(Rn+, b4/ 1), if P(z) is a polynomial, and Laguere
functions form the O. N, -basis of L2(0, o) ([7], [20]), we have the lemma.

Similarly, since Hermite functions form the 0. N. -basis of L3(— oo, oo} ([77],[207),
we have

Lemma 2'. 7R, 14/ —1) is dence in LAR», |w|(4-1)dw) =
{f]JR"[f(w)|2]wl---wn|(a—1)dwl-~- dwn < o).

Lemma 3. We set

E_i - fei 41 - .
Akn s by = {Zlepzm/ 1<a7'g2i<e B i 1; 1217 %}1

0Zhi=p—1,

Obyy ey b= {n—dimensional chain in Ap,, .., r, which joins

ky — fen — ki1 — Fat1 —
(€2 % loo, o, €22 " loo) and (¢ 2 2 "loo, -, e 7 2 ~loo)).
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Then for any T € (P (Rn+, P2/ 1))¥, there exists (not unique) a system of functions
{Thiy ey kn}»> SUCh thal each cr,, ..., k, is defined and holomorphic on Ak, .., k, a0d

(11) T(f)=

2 }’ Thyy ooy kn (Z)f(Z)dZ,
Ry ooy Bend Srgy oy kn

each 3k, ..., ky 1S takenin the domain on which f is holomor phic.

Proof. By lemma 2, L:Rn+, wo-1dw) is dense in (Z(Rm+, p3/ 1)* and if T &
((Rn+, b4/ 1)* can be regarded to be an element of L2(R#+, wb-1gw), then the
lemma is true for such 7.

Since we may rite for arbitrary T (P Rn*, P4/ 1)*

T(f) = im Tw(f), TmeL2Rn*, wi-idw), f& LR, b4/ 1),

"o

and (R"*, 24/ 1), is dense in C(K), the space of continuous functions on K with
the uniform convergence topology, where K is an arbitrary compact subset of
{((er=101g1, +v, @ ~100x,)|x1 >0, =+, Xy >0}, by the map f— F|K by lemma 2,

there exists a system of type (#, O)-currents {ok,, ..., k,d21 - dzn} such that each
Oky, - by 1S defined and measurable on A4, -, &, and
T = 8 | ok mln DSz, 2 =3k VT
1y *'sftn ¥ 8k1y s En

by Riesz’ theorem. But since J Ohyy ooy k%, M) f(2)dz =0 if 7 is an #n-dimensional
T

chain in 4#,, .., k, such that 97 = 0 and 7 is holomorphic, ¢z, ..., r, is a weak solu-
tion of the equation 86k, .-, kn/0Z1 = =+ = 801, .., k,/02, = 0. Hence we have the
lemma (cf. [137], [207).

— ——
1.-2. The space Fo)(R*»+, 2/ 1). We set C*=C —{0}, C*»=C*X---X C*n
and also set

R¥n = Rnﬂc*n, R*n+ = Rn,+ nc*n7

Cn — C¥n = Wn, R» — R*»n = Xn, R#+ — R*n+ = Xn+,

(R*"’+; pN/T) - (Rn’+: P,\/T)OC*", " (Rn’+, 17,\/-1—) - (R*n’+’ 1),\/T)
= (X”’+’ ?,\/T)_

Definition. Let f be a function such that
(1). f is holomorphic on U — (Xn+, 24/ 1), where U is a neighborhood of (R*,
by/1) in Cn
(i1). fle-Ck/pa-1z)|R*»+ € P (R*n*), 0SB Dp — 1, where FR*n+) is the space
of rapidly decreasing functions for x;i — oo and x; —0, i =1, -, %
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Then the set of all these functions with the topology

(%) lim fm=F if and only if there exists a neighborhood U of (Rn*, pa/1) in Cn
and a neighborhood V of (R*m+, 2/ 1) tn C*n such that both are independent
with m and UDV, and {fw) converges uniformly to f on any compact subset of
U — (Xn+, b4/ 1) and converges uniformly to f on V,

is denoted by Foy(R*m*, 15/ 1),
As in L-1, if p=2¢, then we denote F(w)R*?, 44/—1), efc., instead of
Py REm*, 14/ 1), elc. .

Lemma 1'. PR+, 24/1) is complete.
‘ —_ . } T
Lemma 2". P)R¥n*, o/ 1) is dense in L2((c, o)X x{c, o), (wib-1—c2D
Wi-P-1) <o (Wab-1—C2bwy-2-1)dws - dwy,) for any ¢ > Q.

Proof. This follows from the fact that for any polynomial P, P(z)e-2?-cz-?¢&
P BE*, 24/ 1), if ¢>0.

' By lemma 27, lemma 3 is also true for Py (R*#*+, 24/ 1).

1. -3. Relations between (R®, 7o/ 1) and #(R®,»4/1). By definition, if
p1= par, then we can define the maps

iy, 1 PR, Pia/ 1) — FPREY, 224/ 1), ib1p,(f) = f,
gt PR, b1/ 1) — PR, b/ 1), (j02,(8)(2) = &z7), 27 = (217, -, Zn?).

By definition, we have

i p( TR+, bia/1))CF R+, P/ 1),
D13(F ) R¥*, 1/ 1))CF ) (R¥ 7+, P2a/T),
P2p(FRm*, P24/ 1)CF rry R+, 218/ 1),
725 (P dR*1*, 714/ 1))CF )R+, P1a/ 1).

In the rest, we set

(12) FPr(RM*, D2a/ 1) = jhap (P (R, 124/ 1)),
FraRE*, b/ 1) = PR, 2/ 1)N LB, b/ 1),

By the definitions i»1p, and j?:p,, we may define the limit spaces lim[.&(R#n+,
b/ 1) ;i?¢] and Hm[ PR+, 24/ 1) 5 7457, But these limits are both equal to {0}.
Note. We define 7 : C# — C”# by #r(z) = (2)7 = (217, -, z»"). Then #,* = jbzp, as
the map on Z(R%*, P2/ 1). Similarly, we define the map 7w,s:C#®— C*2 by
oo, ({21, .-, Zn)) = (€171, -++  @anzz) and set %w = %ew,1. Then we have the following



10 AKIRA ASADA

7too,?‘
Cn C*n
nw’,/’
Too Ty| Ts
) / Trs ™Sa
C*a C*.

commutative diagram

By definition, we have me-1(R*#+) = Unecz:(R" + om/—1IN) and Ww‘l(R*h) =
Unez(R? + 7/ —1N), N=(N1, -+, Nu). We set

U (R"+ 2ma/—1N) = (R», 22/ —1Z%), U (R + 7/ —1N)=(R", 7/ —1Z").
NEZn NEZ» .
Definition. Let f be an entire function on Cr such that f(z— 2ny/—1N)|R*&
R for any Ne&Znr, Then we denote the set of all those functions with the

topology

(%) lim fim = Fif and only if {fm} converges uniformly to f on any compact subset

m— oo

of Cn and there exists a neighborhood U of (R», 2ma/—127) such that { fm)
converges uniformly to f on U,

by PR, 2ma/ —1Z7).
We also set H(R#, 2ny/ —17Z7) = e (P (R*2*, 1) N.P(R?, 204/ —177). Then,
since we have ' ' T ' ‘ '

FUR, 288/ —1Z1) = T, p*(FPR* 7+, 1) NP (R, 27/ —1Z7),

we may consider Z4(R#, 2./ —1%Z7) to be a kind of limit space of the inverse
system [.S(R%*, #4/1); 745 Similarly, S#(R*, 2ma/ —1%*) can be considered to be
a kind of limit space of the directed system [(Rm*, 24/'1) ; itq].

§2. Preliminaries on Hankel transformations

2.-0. Hankel transformations. Let J.(2) :2;0(»«1)"(2'/2)”2'"/%! I(v+m+1) be
v~th Bessel function and assume » to be a real number and v = —1/2. Then (v)-th
Hankel transformation Ho)(®)(§) is defined by

(13) - Hoo(®(, -, xh))(E{{ e En) -

) o Tonlna)Ernnss o Q—w@»wl
P(x1, -+, Xn)dx1 e o, () : (v1, -+, vn).

By Hankel’s formula ([10], [197]), for suitable ¢, we have

14 HeHee)E)w) = o).
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Especially, we know ([8], [9], [17])

(15) Hoo P @) = PR™Y),
(15)’ Ho)(LEAR74)) = LR, 1= p < oo, {[Hwll=1,

~ .
where &(R®+*) is the space of rapidly decreasing even functions,
Since we know ([19], 3.2)

Lo @) = 2 unla), L Tl = 2 unla),

N\ .
we ge, for example, if ¢ and ¢/x; both belongs in & (R*+), elc.,

(16) | %H(u)(w)(é) = "—EizH(“)'ﬂi(%) (&),
Hoo(-22)€) = —Hoo(2)(8) — Hoo-tx)(e)

0%;

Here (v) 4 1; means (1, -+, vi-1, ¥+ 1, Vi+l, =**, Yu)
By the asymptotic formula of Bessel functions ({197, 7. 21, 22)

fu(z)w(%)llz[cos<z —‘%T - %) (1 + 0(;1_2> —

B 4v28— 1sin{z — v;f/2~7r/4) (1 i O(%))

]v(z)weo”/z)wﬁ(_) Q{COS(ZJF _+_} <1+O(%§>) B
_4D28_1Sin(z_y:/2_ﬂ/4)(l+'O(—;>> , 0<.qrgz<2;r, |2] —o0,

I.(%) is holomorphic on the domain{{| [Re.{|<c} if ¢(x)=0(e-c%), x— co and if

O(x) = O(x-v-3/2-ce-cx),. ¢ > (), x—>o0, then Hu(®) is continuous on {{| |Re. &|=c}.

Especially, if ¢(x) = O{e-*'*%), 6 >0, ¥ — oo, then H.(¥) is an entire function.
Since Hu(PH0) = 1/2vT"(v + 1) J:xww(x)dx, to set 20 = Qvisidva,

() +1) =11+ 1) - I'un -+ 1), We have '

1

(17)  Hm(®)(0) = 20 () 1 1)

J xINP(x)gx,
R+

1

(17 Hoo(P) | gi=0 = m

[ st I0(F ()i ontpla)ds.
Ru+ g
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In the rest, we set

(Hewy9)(x:) = L{n—m Jgi(fuj(xjfj)fj“”;xj‘””)@(x)dxl o dXi-1d%ivt o d%n.

We note that by the second formula of (16) and (17), to set SP(R™+)={f| fis
written as g|Rmw+, where £&.7(R")}, we also have

(15)” H(u)(.Sﬂ(R",*f)) = y(Rnﬁ).

2.-1. Hankel transformations of the spaces .7(R, ¢,/ —1) efc.. Since we may

consider &(R*, %/ —1)C.%(R»*), we have by (15)" and (17)’

Lemma 4. If fe.9Rr, 14/=1) and J:xi”i+1(H(v)if)(xi)dxi =0, i=1, 1,
then Honl F(x)|(re-Ckladm/ ~1(x1)) [xD e P (R +), where (x#) = (x1, M1, -, Xaln), x( =
KBy e Xptn and v is a real number.

Lemma 4'. If fEFR*", a4/ —1) and wauiﬂ(H(v)if)(xi)dxi:O, i=1,-,n,

0
then Hon[ f(x)(re-Cklodn/~1(xr)) [xd & 7 (R* 7+,
Proof. By assumption, for any (ki, -, kn), @(x)/x1k1 X421 E P (0)(R¥n, 20/ —1).

Hence by (16), a*t-+ka/gaiks - dxuknHen[ F(%)](0) = 0, if ki =1 for some i. On the
other hand, H)[ 7 (x)7(0) = 0 by assumption. Hence we have the lemma.

Lemma 5. If €. (R», —1) satisfies
v/ =Teo _
(18) L) (Hoy;P)xi)dx; =0, i=1, -, n,

then to set &(x) =H o) (P(€2))(x), we have

8(x%/4m/—1) )
S

(19) Heo| Woes R, —1),

/\/?:(«/gl—, Tt J\/En).

Sx2/ama/ —1)  &(x:2/Ama/ =1, -+, %u/dma/ —1)
X2 - K18 e- X2 ’

Proof. Since we have

f(a'xk) 1 -[”
v — —ql-(v+2) /R v/k
Jox +1 % dx = ﬁa'l +2)/ Oy f(y)dy,

we ge Ho)(P(€2)]e;=0 =0, i =1, ---, n. On the other hand, since we may consider
R— N\
JPep(F R+, P4/ 1)) F(Rn+), we have

Hen(joeo SR+, 24/ 1)) C (R,
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we have the lemma by (15).

Definition, We set

(200 @ /Tires ={Ho(/4(@)|PeS R, —1), jo (Ho#)(®i)dxi = 0, i =1, -, .
By definition, we have

N\
F =1rn+ = Ho(F2R?, —1)) N Fo(R+),
AN

S”O(Rn,+):{f|fe§>(Rn,+), flai=0=0, i=1, -, n.
Lemma 6, We have

(g(x2/47f«/ —1)

(21) {H<o> s

)(«/?)Ige %’/—*mm} = Z(R", —1).

Proof, Since we get Ho(Hwm{ZR”, —1))) = .%R*, —1), and by definition,
we have

{(Frl/ &) f € &R, —1)} = FR", —1),

we obtain the lemma.
Similarly, to set

# =1k + <) = {Hoo( j3(P)) | PES ()(RF#, —1)
V' =leo .
JO (Ho2)(%:)d%: = 0, i=1, =, n},
we have by (16), (17)

8(x%/4mw o/~ 1)

(19)' H(o)( pr )(M?)€9<w>(R*", —1), §€F TR+,

and since 2221(F () (R*7, —1)} C j2(F () B*», —1)), we also obtain
Lemma 6'. We have

(21) {H(o) (g—(x—z—%/;l)) (W E)|8E # y—TRm+ (°°>} =) (R¥7, —1).

By (16), (17), lemma 6' and (19)’, to set
F)R7) = {F|FePRY), f vanishes with order o« on X7},

we get
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(22) B /IR + VT P )R,
Note. Since e-(##+1/2#)>>( on R*, to set ¢o)y = H(u)(Hi”:le-(xi“’ﬂ/xi”))(o), Cew) IS
positive and not equal to 0. Hence if FEHw(Fo)(R¥#*, 4/ 1)), then we may

set

76) = 28) + 20411 ecosteiit) ), g rtirne, T

n . :
Here, Hey (IT 1e—<xi1’+1/x#’>)(§) is an entire function, because ‘|e-(s?+1/2?)| = O(e-+*),
)

lx]]— oo,
2.~2. Fourier transformation on % («)(R)~. Since we know
B ={F L1 fEFLR"), mewof(x)dx =0,
(m) = (mly Tty mﬂ)9 7’”1Z 07 sy, Mp Z O}a
we get
TP R = {812 € S®n, | 200 rxax =0,

(m) - (m17 Ty 7”")7 m1~>._—- O: tty m"—>_—0}'

Therefore, if P(x) is a polynomial, then P(x) is equal to 0 as an element of
(F (F=)R?)*. Hence to define indefinite integral operator I¢y, ., i,) by

E J‘xn (xl — l‘l)ii‘l"' (x” — tn)in-l
—0a

G (=11 Mo,

Tais - 1)) = |

—00

we get

iy - i) F (L) RM) = F (Feor(B).

Hence I¢y, - i) is defined also on ( % (F()(R"))*. Therefore we hav’e

Qitt o +in

ax1i1 axni"

(23) (P eRY) = F (P en(RY)),

Qirt - +in

axlil axni”

HF (I RN = ((F(FdB))*.

On the other hand, although @i+ +in/gxiii -+ xnin is 1 to 1 as the maps
R — LR and F()(R%) — F)(R"), but they are both not onto, and we
have B
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itk +in

() TE(PRA)" implies &b Enbn Te (5 (S

kn = in,

R))%, i,

TE(F (PR implies ghs vyt 7 (5 (L 0 o)), s

il, ety knéin.

Note. By definition, if TE(P ) RM)*, then &i-Fki - &y=kn TE(F () R7))* for
any k1=0, -, kn = 0 and we obtain ' '

F LI, o i) = (—27a/ —1)irtrtin E1-i1 o £ymin,

2.-8. The spaces &#,~ir~+@®. Lemma 7. We set

. v/ =Teo '
(24) @ =irm B = {Ho)(24(9)) | € F )R”, —1), JO (Heo)#)(%:)dxi = 0,
;= 1, -, n}
Then we have

Qi e Hinf

7 gy (R — TIRmt,
(25) ﬁ/—lR L5 {f|fe‘@l/ LR+, axlil"'axni"

Proof. If £ YwR, —1), .then

& IR+, W=k, o S kal.

&'(x?/4my/—1)

2ma/—1 Ho ( -

JwE)

= [ W i T

0

S Ve tCL L R M A Vv 1 R

= [T T s

/e —

:_dig(jo " ol — e/ —128) 800
e (AT
S A et (V)

because we know

8(xt/dm — 1)) =

o eeymim( S - [T i Ty T s,
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since 2my/ =T Ho(@(xarey —D)/a)y/ §) = 2rn/=1 | Jola/ €) (8latfamy/ =127} d.
Hence we have the lemma,

Corollary. If TE( F (F /=irm+(O)*, then &1-iv. En-inT €(_F (7 /=ikn, R+D))¥,
il é jl, tTty in é jn'

Lemma 7'. If FE B /iR +(, then girt-+in f/axlil axni"E.@/:fRnﬂ(m) fO?’
any i1=20, o, in=0 and if TE( F (F,/TIRm+)E, then &i-it ... Ey-inT E
(F (B TR+ N, (120, «-, tn = (.

Lemma. 8. We have

(27) {Hw

(AT (F) e, min ) = Fan(Rr, 1.

Proof. This follows from (16) and Hankel’s formula.
Note. By definition, we have

() P{z) vanishes as an element of F (FewmRr, —1))*, if P(2) is a polynomial
such that P(2) = Di <2k, in < 2k Ciyy vy in2lite2uin,

§ 3. Borel transformation in non-analytic category

3.-1. Borel transformation of the elements of (_ % (&(R#, —1)))*. Definition.
Let T be an element of (.7 (< (R#, —1)))*, then we define its Borel transforma-
tion sz T by

AN ) /8, e,

(28) @[TV = (emy/ D5 [T Hoo (Lo

where _F [T is the Fourier transform of T.

By definition, &[T is an element of (&#,—ir~+)}*, and since < is linear, we
have a homomorphism & : (% (YR*, —1))* — (&, ~ig~+)*. For this map, we
have

Theorem 1. <# is an isomorphism. That is, we have
(29) F i (F(F R, —1))* = (FIrn )k
Proof. By lemma 6, to set

f(x2/4m ji))( =

(30)  Ho, e A(E)=(emy/ =1 Ho(F o) (W), 2@, =i,

we have
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Ho, 172 + & “irn+ == P (R?, —1).

On the other hand, we know that . % : (R», —1) == % (%(R», —1)). There-
fore we have the theorem by the definition of 7. '

Note. By (26), we may set
30y Hod, u2{F)(€)

= [ s IO AT ZTGE - Jol e/ T T (O,

3.-2. Borel transformations of those T which satisfy | % [T ](x)|=0(e-1x11/2*¢)
£§>0, ||x|| — co. Lemma 9. Let = 7(R#) be holomorphic on (R, /—1) and
satisfies

(31) | 5 [P1(x)] =0le-1%117+%), e >0, [|x]] — oo,

then we get as an element of (<&, —irn+)*,
(32) ‘@[T?’] = T.@’(gaj,

where T and Ty are defined by
(33) Tl = ews@ar, re. 7 (o® —1),

THEl =] L desnds, £e @, T,

Proof. Since we have by (8)
(3) B e/ =1t (L) = Jo(v/ —Ama/ —1Ci&1) -+ Jo(&/ —Ama/ —1Lukn),

and since |Jo(a/2)] = O(e!2l'/**%), for any € >0, |z| — o0, we get by (26) and (32)
m/ =T [ 010 (M) (e
= | e T T2 Tt =/ = CE)aE) (01l

FLPNE) @ L2 —1¢1(L)dE) F (L)l

i

/ 1Rn+J R=

i

I

J
j/ @l FHF IO QL
-

)dE.
V=1
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This shows the lemma.

Lemma 10. (i). If F [T] is a function such that 5 (T) is holomorphic on
(R7, &/ —1) and satisfies (31), then @[T is an entire function,
(). If F [T]is a funcltion and satisfies

(34) | FLTIE)| = Ole=@vTED), [[g]] — o0, <c, W/ [E]D> = Zjiﬁi«/lél_,

then <[ T is holomorphic on the domain D given by
D = (6| Re. ci)z<% Foallm Gil, i =1, -, n).

Here, a function is regarded to be an element of (<7, Zirn+)* by (33).

Proof. Since we know for x — oo, x is real,

| Jolx)| = %(Icos(x ~s‘gn(x)%)[ + 0(%)),

| Tolw/ —T3)| = ﬁ(«/m + 0(%))

we have the lemma by lemma 9.

Note. For these class of T, we may define its Borel transformation by
(28) FTIO = | STVl —dm/—TCE.

3.-3. Borel transformation of the elements of (7 (FenRe —1))* and
(F (L )R*, —1)))*. Definition. Let T be an element of (_ F (Fam(R?, —1)*
or ((F (FLa)(R*®, —1)))*, then we define its Borel transformation [T by

(28) @[T = (om/ DT H (D) ),

feF rn+® if Te( F (FenBRr, —1))*,
FEF Tipm™) if TE(F (F(BR*", —1))*

Theorem 1'. We have

(29 G ( F(FenBr, —1))* 22 (F/<re O,

B F (PLeor)R¥%, —1))* 2= (F /=R +(),

Proof. Since we get by lemma 6' and lemma 8
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Heo,u/2 2 &F /=irm+(0 == Fep(Re, —1),

H,/e ¢ & /=irm+() = Feo)(B*%, —1),

we have the theorem because F : Zen®", —1) = F (FenRr, —1)), F :
Gy (R, —1) = F (PR, —1)).

Since Fen(R*, —1)C.FepRe, —1)C.F R —1), (§)<(k), to denote (¥,
tWepy*, @[O0 and @[ty ]* the maps induced from the inclusions, we have

the following commutative diagram

(F (@, —D) 0 (F(FenRe —UF SR (F (el —1)
= @ T = 1ﬁwi(ﬁ/’ = l.%‘

Mk . 1€)] * &
(7 =mms)t PP (G mpaye _FLOWT (g e i),

but by definition, we have, for example

(35) ker. cz[z(RY]*

7

- {Z Z} 51]1 ® T(éu oy Eim1y Eivry En)y iy Jis Tiy jiE (ﬁ(y(R’% _.‘.)))*}.

i=1 ji=k

On the other hand, we can not define z(=> and <#[z(<)]* because we get

G TiRm+ N B IR+ () = {0}, F(R?, —1)NF ) (R*", —1) = {0].

Lemma 9'. Under the same assumptions as lemma 9, (32) is true regarding <z
to be the map ( F (PR, —1)F — (ZSire+O) o ( F (P o) R¥", —1))* —
(/=R ()%,

We denote by 9* the space of real analytic functions on R” and let F be an
element of %A~ Then we define the maps i, iz and icw) by

i) = | rinewar, ses®n —1),

i(NE) = | Fwends, veson®e, —1),

i 0) = | Fep@ds, $eF R, —1).

We denote the domains of 7, i) and i) by UArw), Uty and Une). By definition,
Ancy AR HT U 1 <k,
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Theorem 2. The following diagrams ave commutative

4 24
(F(FR, —O))—(Fymire)* (F (FenRr, —1)——(F /IR )

i e i I ‘i(k)I 7 t(k}’
Aoy — F[ A"y, DIIEH — @[ A,
K=
(F (PR, —1) —— (F/Zirm+(=)*
1(e0) & ()
Aoy —————— [ W) ],

Here, <z in the under lines ave the usual Borel transformation and i', i)' and
i) ave given by

Q) = | . e@eladr, $e
@) = | S, $e mmn®,
@) = . ez, $€ @, s

Proof. If f belongs either of A7), W%k or Ao, then to set
fe=(F *e-ctan'r 2 Prf € >0,
fe satisfies the assumptions of lemma 9 or lemma 9'. Therefore we get

li(f)]=i'a [, fEUrw), @Lm(f)]=im' @FLrfed, Fe € U,
- @B i) fe)] = i) B S, fC WU,

by lemma 9 and lemma 9. Hence we obtain the theorem because lime—ofc = f.

Note. 7 is a monomorphism. But ker. (icr)) and ker. (ice)) are both not equal
to 0.

3.-4. Properties of Borel transformation. We have
(36) #laS +boT)=exz[S]+b2[T], Z[SQRT]=Z[S1® «x[T],

where a, b are constants, for the Borel transformations of (. # (¥ R», —1)*,
(F (Few®Br ~1)F or ((F (FeR*, —1))*, because Hew)(& @ k) = Hwlg) @
Ho(h).

Theorem 3. Let T be an element of (_F (<& (R=, —1)))*, then
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divy o +infoxiit - Px,in @[ T] is defined to be an element of (&, =irw+O)*, i1 X kb,
v in < kn and we have

§ite - +in

(37) axlil ves axnin

1] =a| L],

Kyt e xnin
where it - vinfaxiiv oo Jxpin [T:l is defined by

( girt or +in

gire e kinf )
0% 9 yin :

gm) (f) = (=1)ire = +ingg [Tj(m

Proof. For n =1 and f € «#,-r+D, we get

x2

LTI = (my =) LTIk JwE)

Flx2fama/—1)

x2

= [T oL 2) 4;*/3—)) (WE),

oy TI[T (di&_(Ho( a)

Hence we obtain the theorem by lemma 7.

Corollary. As the element of (< /Zign+WY, F[xiit o xyin | =0 if 01 < b1, -,
in < ka, and for some j, ij = kj.

Proof. This follows from the note of 2.-2 and the definition of <&, =R+,

Theorem 3'. If T is an element of ( F (F>(B¥#, —1)*, then [T is
infinitely differentiable as an element of (#, =Irn+=)* and (37) is hold.

Proof. This follows from the proof of theorem 3 and lemma 7',
Corollary. As the element of (F,/=irn+C)*, [P(x)] =0, P & Clx1, -, Xn).

Theorem 4. Let ¢ be a (holomorphic). function and T an element either of
(F (PR —1))*, (F (PR, —1)* or( F (PR, —1)* such that ¢T is
defined to be an elemeni either of ((F (FR", —1)*, ((F (FLen®B2, —1)F or
( F (P> RHn, —1)*. Then we have

(38) @ [0T) = # [Pt Z [T

Here ST means 3n/axy - 0xu(S*T), where S*T is taken as an element either of
(/=R )*, (B /=IRue)* 0F () ZiRm +()%,

Proof. By definition, we have
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ST = (o =Ty 5 T v (L4 Ty

e ST e v N et V)

where «\/5 +7 = (/\/El + M, - r\/gn + 7711)
On the other hand, since we know Z[f8]= 2[f]§ #[&] for usual Borel
transformation, we obtain

Jol/ —1/2(a + b)) = F e D7) = @z [e]L) § & [et](C)
= Jolv/ —14/2a8) § Jo(a/—1 /260),

that is

(39) Jo(a/cC(Er F E2)) = Jola/cCEN B Jola/clEo).

Hence, if & belongs either of &, /=iR~+, &,/ ~iRm+F) or Z,“iRm+(>), we get

oma/—1 Ho (W) (W& + &)

il

[ 0/_1“’]0(«/ iy 106 T &) gt

I

[l TG 8 ol 1T EQ)

— j/jm | I IR =IC = 8 Jol — i =1 ac i g
0 0 dac

Then, since

0

f - J :_1°°so(a)¢<ez> L)Hw J ; Jol/ —dm/ =1 (€ = )60) Jolv/ —4ma/ —17Ea)de

dg(f)
T dldéide

_ j“/"l‘x’ Jz (J‘O/_ Jolo/ —4ms/ —1 (£ — T)E1)¢(§1)d§1)(J Jol/ —4z/ —163)

0

dg(f)

if ¢ and ¢ both rapidly decreasing on »/—1R+*, we obtain the theorem.
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Note. By lemma 3 and lemma 3', if T belongs either of of (&, =IrRw+)*,
(& /=Irm+UOV* or (B ,/~Ir~+(®), then to set
dery oy ey = (2]Im. 2 >0, sgnRe.zi = &, & = + 1)},
Jery ooy epic © the n—chain in f.,, ..., ¢, which joins (&ici, ..., ExCx)

and (100, +, Eyo0), € = (C1, -, Cn) € R¥1,

there exists a system of functions {ze,, -**,¢,} such that each ¢, -:*,¢, is holomor-

phic on 4:,, <+, ¢, and

() =lim 3 J Tery ooy (2)F(2)d2.

€0 &gy Bey, e, Enic

In this case, to define Pl ey, .y ense DY

P rery o eniole) = - O j Pz — O)rery o eal0)dC,

021+ 02n [GIT-TRITAF )

zZ e Aél, ety € we haVe

@ET)() =1lim 3 j 8 Tery o e(2)Fl2)d2,

€0 €1, Eu e
Hence we may define ¢# T by

@# T = Iim{@ﬁfs,, very en;c} if T is déﬁﬂed by {TEU ety 511}-
[l

§4. Product by the elements of o,

4.-1. Borel transformation of the elements of 4+ (% (FR” —1)*. Let
D (F (FRn, —1)* be the direct sum of t# and (% (PR, —1)*, then we
set in D (F (L R», —1)H*

40 N(F (R )= {fD(-Tolf ¥, Tre(F (PR, —1),

where Ty is given by Tr[?] :JR f(x)P(x)dx and assume Ty is defined as an
element of ((F (Z(Rn, —1)H*.
Definition. We set

(41)' A+ (F (R ) =D (F(FR, —1)*/(EN(F (LR —1)).

Similarly, in «#[t*]+(<#,—ir~+)*, we set

0y @lirIn(@,~ien)* = (9D (—Tv)|PE@ 1], TeE(F /IR +)*,
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where To(8) = J,/Tm +€0(x)g (x)dx, and set

1) @]+ (@Z, ~re)* = (@[] O (2 /=i )*) (@ [0 (2 =1R0+) ).

By definition, we may consider 12N ( F (5”’(R", —1)* to be a submodule either
of ¥# or ((F (& Rn», —1))* and by theorem 2 and corollaries of theorem 3 and
AN
theorem 3', to define <&@ : ¥* D (. F (L (R*, —1)* — @[] D (&, —irn+)* by

(42)’ Fro®T] = @[v]1® @[T,

where «z[¥] and [ T] are the Borel transformations in ¥# and (% (& (R», —1)¥,
we have

S0 (7 (PR, —1)] = @[]0 (F, =irm )",

Hence to denote the class of F@®T in 7+ ((F (R", —1)* by F+ T and the
class of #@ S in &[]+ (&, <irm+)* by ¢ 4+ S, we may define

Definition. We define Bovel lransformation <z :tn + ((F (F(R", —1))* —
A [tr]+(F /~irm+)* by

(42) @ f+Tl=2 1+ @[T

Similarly, we define ¥ + ((F (Fen®?, —1)*, 4+ (F (FR¥?, —1))*,
@[]+ (# =irw+®)* and @ [t7] + (&, =irn+(>* and the maps & : 7 + ((F~
(Fen®Rr, —1)— @[] + (Z,/=irn+®)F and @ 1 7 + (F (FRBR¥?, —1)*F —
@[]+ (e /Zirn+ ()% By definition, the maps «(A% and «(Dgy* are extended to
be the maps #* : f2 + ((F (L (R, —1))* =t + (F (Fen®?, —1)* and 20" :
n+ (F(FepRe, —1)F =17+ (F (Fen®Be, —10)*, i<k and we have the
following commutative diagram.

—tn + (F (LR~ @]+ (2 2irme)* —

2* Ak
#* | b (F (PepRe, —I)) 2 @[] + (& =irm+D)* @ [# ]
1%(]‘)(}3)* ,@[i‘(i)(}e)*]

—t+ (F (Fep®y, —0) = @]+ (@ /mire®). <

.By theorem 2, theorem 3 and theorem 4, these generalized Borel transformations
also satisfy

(I @lac + b8 =aw o] + bz [B], @, b are constants,
Fa@ pl= Z[a]Q D[], @[ef]= 148, if ef is defined,
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ai1+ v tip

1= o]
axli!“'axni" - x1il“'x7;i” ?

aefn+ ((F (F)R¥n, —1))* or a €2+ ((F (FR?, —1))*,

24 . R
%’{————} E(&Z /~Irm+)*, (1 b1, o, (0 S k.
K1i1 e Kpin

4. -2. Replenishment of the vanishing part of f*. By definitions, there are
maps {87~ b+ (F(FRY —D)F, {w o0+ (F(PanB —1)F e
Bt L (F (PR, 1), {1 @[] — @[] + (@, Zre)¥, T+ @[] -
B[] + (/"R +®)* and iy @ @ [7] — @ [t7] + (&, =Ir»+=>* and the dia-
grams

ﬁ,/ 1Rm+)*—-*ﬂ[f"]+ (F /iR +)*

(F (&R, —1)))I — I+ (F(F R, —1))*
I @[ Nnwy] 7]
T

N

Q{ﬂ(o) n

(B /=irm +(O)* —— [0 4 (F /=IRrm +RO)*

ﬁ/ Ii(k)' gg/ ]t(k)
(F(FenRe, —1)* — 7+ ((F (FenBRr, —1)*|
’ ; @ [ ey] @[]

i(ky . S / 95’/

k) i

(B y=iRm () —— g [n] + (B iR +()*
“ / (o0’ “ oo’

(F (P (R*n, =) o (F (TR 1))

B[ A (e)] , @[]
i(o0) / o) V

Q{"(oo) t»

are commutative, But, although i and i are monomorphisms, i), k', 1w and

i(e)’ are not monomorphisms. In these cases, to set (direct sums are taken as C-
vector spaces)

f7 = tncpy -+ ker, fcle), fr = f”(«:) + ker, f(m»
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we have (although f7¢(x) or () are not determined uniquely by ker. i or ker. f@Q)),
(43) @[] = @[ray] Dker. iy, @[] = @ [Froy] Dker. iy,

Hence to define the maps &7 : ker, T @ (B + (F (P enRer, —1)F) — ker. iy
@ (@[] + (@, =R+ ®)*) or @ : ker. {=)y @ (17 -+ (F (P eo)RE, —1))*)—er. e’
@ (2 [t7] + (@2, +()*) by

FFERE+T) =@ F1D @[&+ T, f < ker.iu (or ker. i),
g+ T e+ (F (FenBr, —1))* (or n + ((F (F)R¥%, —1)),

the following diagrams are commutative

; . F , i
tcn) - - @t ]
tk) R iy » ‘
e (T anRe, 1) B [¥7] + (B /=IRm () i
i : C e : 7
l @ l

ker. i @ (7 + (_F (FenR?, —»1”)))*)_»—1-» ker. {cey @ (2 [0] + (@ =irn v (O)),

K74
£%¢0) ‘ — — G [1(e0) ]
i(o0) o e
i - (Lgd(y(oo)(R*": —1)))*) E ""”——_’-@[f”] -+ (;@/“—TR"H-(‘X’))* i’
i ) R i
! o !

ker. iy ® (7 + (_F (L ()(R*7, —1)¥)— ker. iy D (@ [17] + (& /IRm+ %),

Here, i and {’ are defined as natural inclusions and } and {' are the maps to the
second factors. On the other hand, we also obtain following commutative diagrams
with exact lines

0 — 02 ker. {0y @ (1 (F(Pam®r, —1))
g ‘ B
0— @ [tn] = ker. iy © (2 [17] + (& ,/=irm+(O)¥),

0—— 172 ker. ey @ (7 -+ (_F (P erR¥7, —1))%)
| = | =
0— [fn]]ﬁf’i ker. iy @ (#[17] 4 (& /iR +()¥),

Here the maps jcr), Jjcry', Je) and jie)' are defined by
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Jaolf + &) = F +iwml(&), 7 ker. ia, &,
Jeo)f + &) = F + i), fEker. i) &E e,
J'(PD¢) = 90695(@'@), ¢ < ker.iany, ¢ € @[],

G (@D P) = D i) (@), P E ker.icey, PEF[Ee].

4. -3. Borel transformation of the elements of (t»+( & (F(R", —1))*).
We set

(44) et + (F (R, —1)Y)

=" (N ( F (FR7, fl)))*)(f" + (F (LR, —1)).
Since we may set

T =lm 51 | T a7 (A2, £ E F(F R, —1)),

=0 £y, .
c=0 &y, €n ey, Enig

for any T € ((F ((R», —1)*, where ts,,...e,(2) is defined and holomorphic on
Aoy omren = {2]5gn(Im. 2:) = i, i = 1), Ber,omrenic = BE-Fa/ —1(61C1, oo, Enla), € E R*A7,
and 7(z) is given by f(Re.z), we may define ¢T by

(45) QDT = {gofsh“‘,snlgi - il},

where 7T corresponds to {e;,..enlé = +1}, although €7 & (7 (FR*, —1))*
Then, since T corresponds to {z¢ie,, . en}, Where tg;e,,..,c, are given by

TP, 1 == Sbidi,"':l’ Thier, - en — 07 (61, "ty E”) 7é (17 Tty 1)’
we heve
(46) ‘ Ty = Ty,

if Tyg is defined. Therefore, we may identify @ T and gaT;
Similarly, we set

(44)' @[] 8 (] + (& /=Irm+)*)

=@ M@ (0 (@7, =mrma)y) (F LT (BZ,/?RM)*\)-

Then, using the correspondence S — {0c,, - en, SE(F/ZIR)¥, sy, e, is defined
and holomorphic on {z|Im. z; <0, sgn(Re. zi) = &, & = X1}, we define f§S by

(45)’ . fﬂs = {fﬂaeh'“,hzlgi — il}:
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and we have, by the note of 3.4,
(46)' 4 Te=Tr#e

if Trug is defined. Therefore, we may identify F® S and F4§ in this case.
We define 7 : t(t* + ( F (R, —1)") — @[] § (@[] + (Z,=IrR=+)*) by

# 9T = @[] [ T].

Then, to define i: ¥+ (F (PR, —L) — 1" + (F (PR —1)F) and i
F[ ]+ (F /“irm+)* — @[]} (2 [17] + (2 ,/=rm+)¥) by i(f + T) = 1(f + T) and
i@+ S)=18(2+S), where 1 is considered to be an element of # or «Z[I*], we
get the following commutative diagram

f"(f’f +H(F (R —D)¥) — @F[ ] (@[] + (=R )*)

i
tr+ (F (R —1))*

:!
7 1

———— @[] + (FIRm)E.

Similarly, we may defin€ §#(f2 + (_ F (P B, —1W), 2 4+ ((F (L R*H,
=1, @18 (@ "]+, <irm+®)*) and @[] 4 (@ [tn] + (F /IR +)*) and
the Borel transformations <& :f(f# 4+ ((F (FenRr, —1))*) — @[]t (@[] +
(Z /Zijm+®¥) and & :1(tn + (F (PR, —1)*) — @[] 8 (@[] +
(F /=iRm +()¥),

By definition, we have

Theorem 5. The spaces t#{tn+(_F (L R#, —1))*), t(tn + ((F (FenBr, —1))*%)
and t(fn + ((F (F R, —1)*) are tn-vector spaces and s [¥ ]} (= [t*] +
(#/=irm+)¥), @18 (@[] + (@ ,/mirm+B)¥) and 114 (2] +
(Z /=IRm+()*) are @[t -modules and therefore C(zi, -, za)-vector spaces, and
the Borel transformations between these spaces are satisfy (II) of 4.-1.

4.-4. The space (&7,/—ir~+(~)*, and related Borel transformation. Since ker.
ik is not a ¥#-vector space for any (k), we can not extend Borel transformations
of ker. iy @ (7 + (F (Fem®R?, —1)*) to the Borel transformation of some f#—

vector space. But, for the space ker: i) @ (i + (_F (For(R*1, —1))*), we can
T T~
construct a C(z1, *--, 2Zn)-vector space which can be considered as a kind of extension

of ker. i) @D (I + ((F (F(e)(R*#, —1))*) by the following manner.
Since . F (F()(R*7, —1))C.F(R"), we get Clzi, -, 22N F (L) B, —1))
= {0}, Hence we have

CLz1, -, 2]+ F(FPeoB¥1, —1)) =CL21, =, 2a] D F (FerRF2, —1)).



Borel Transformation in Non-Analytic Category 29

Definition. We set

(47) (# /=irm + ¥ = F[(CLas, -, 2a] D F (FdRF2, —1)N*

We define £ + (CLz1, -+, 2] @ F (F(eod(B*#, —1))* and & [1n]+-(7 ,/=irm +%p
similarly as in 4.-1. The inclusions from ¥ and <#[f*] into
¥ 4 (CLzt, o, 20 ] @ F (Feod(B2, —1)* and @[] + (&, Z1r+(=))*; are denoted

’

by icw), s and i), . Then by definition, we obtain

Lemma 11. i¢(f*) is @ Cl21, -+, 2n]-modul. That is, if ¢ and Toc<
(CLz1, -, 2a]@® F(FLdR*n, —1))* is defined, then for any polynomial Plzi, ---,
zn) (or more general, for any algebraic function a(zi, .-+, zx) which has no-poles and
branching points on R?), PTe = Tpe(aTe = Tap) is defined to be an element of
(Clat, ++, 2] @ F(FeoxB*n, —1)* |

. . T —
Corollary. ker.icw), s is a C(z1, -+, za)-vector space.

By this lemma, we decompose # as follows

(48) £ = Fre, o 4 B i), b

R e
te0y, b ad ker, i), s are both C(zi, -, zx)-veclor spaces.

Then, as in 4.-2, we define Borel transformation 7 : ker. icwy, s @ (¢ + (C[21, -+, 2n]
@ F (PR, —1))*) = ker. i, s’ + (@[] @ (F /=irm+)*) and by (48), this
T~ N
Borel transformation is extended as the map <7 :C(z1, -, zu) (ker. i), s’ @ (Clz,
T ~— N

o Zu] D F (Lo BR¥, —1)*) > @ [Clz1, -, 2n)]§ (ker. i), ' D (2 [I7] D

(7 ,/=irm+(=)*;).  Then, since the inclusion maps Jfcey, st 17 — ker. iceo), s @ (t# -+
(Clz1, =+ 2] @ F (LB, —1)) and jeeoy, 5+ @[tn] — ker. iy, s’ @ (@ [17] +
(7 ,/=Irm+(=))*p) are both monomorphisms, we have the following commutative
diagram with exact lines

Feeodp = n .
0 —tn—>"Clz1, -, 2n)(ker. iceo), s D ({7 + (Cl21, -+, 2u 1 D (F ) Fer(BF2, —1)))¥)
z e

o Jcoodb o e, - ¥
0— @] — @B[Clz1, -, 2a) ] (ker. i)’ D (F,/ TIRm +() %),

T~ R
Theorem 5'. <7 : C(z1, -, z2a)J(ker. (o), s D (7 -+ (CLz1, =+, 201D F (P () R*7,
_ T T~ ~ . .
—1))*) — @ [Clz1, -, 2a)]1 8 (ker. (o), o' D (F /—Irm+()y) satisfies (1I) of 4.-1 and
T T~ A
irt e +inT [9zeir - J2pin always exists as an element of Clzi, -+, za)(ker. i), 5D (2 +

T
(Clzt, -+, 2] D F(F ) R¥n, —1)¥) for any 120, =, in =0 if T €Cla1, -+, Zn)
(ker. icoods s @ (7 + (CL21, oy 22] D F (FeodBFn, —1L)*).
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§ 6. Borel transformation and inverse Borel transformation
of non-analytic functions.

5.-1. Non-analytic functions as the elements of (_# ((R”, —1))* and
(&# /~irn+)*. Definition. Let f be a function on Rw, then we define the elements
a(f) and B(f) of (F (FRr, —1)* and (2, ~1rw+)* by

@) ag] = | rnear ge (SR, —1),

1 F(%)
TR +¢(Z){ (2ma/ —1)n JRn (%1 — 21) = (%0 — 24)

(49) BNLY] = J dx}dz, PE G —IRm+,

if the integrals in the right hand sides always exist,
By definition, we obtain

Lemma 12. If f is measurable and for some k>0, (1 + Hx|)-%7(x)] is bounded
on R, then a(f) is defined. B(f) is defined if fe< LAR"), or for any & >0, -,
€n >0, f(x)/(%1ten/—1)  (xn + ena/—1) € LI(R7).

Note. We may also consider a(f) or B(f) to be an element of (F (ZenRy,
=15 (F(Fe®*, 1), (Clz1,, 2a] D F (L) R*, — 1), (B, =Irm+G)*,
(Z/=iRw+()* and (7, =Irm+)*,. If there are nescessity to specify these, we
denote ac)(f), @eo)(f), Aeodb(f)s Bid(f)s Beod(f) and Peeo, (1)

Since we know for finite exponential type f, <#-1[f] is given by

@) = [ etrtaar
(f21, 191, 11, aVnd since‘

Tert [T L) e L (Temsra [T L) " -
JoetJ_ws——ztdEdt_z Joe / J-oo s dds —ySasa<y,

S T AR R (5 T 3
———;JO e S/ZJ...OO E_l_sdéds, —2—<a7g.z<~2—,

for f € Li(—oc0, ), we define «&-1[8(f)] by

(50) ‘@—l[ﬂ(f):l(xl’ Tt x")

_ 1 J - s/l J f8)
T x| JRmer R+ (61 — (S0, %1)S1)+++ (En — SEN. X0)Sh)

déds.

Then, since &7 :[1/(€ + 2)](£) = 1/&e=tL/é, and for compact support f,
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[Fet [ 10 %efc/édfdt = [

0

) J:Eem:/e—odtds

oo

N GErAG) : 4
= J;m%—:fdf’ if Re. (—{__— - 1) <0,
o e a1 S , £
[Tet " rte)gettreacar = [~ Lae, if Re (g 4+1) >0,
we have
(51) [z~ p(r)]1 = B(/),

or, in other word, the following diagram is commutative

(T (PR 1) (=it s)*
-1 \ I ‘3
L1(R#).

On the other hand, by the definition of @, to set M(R") = {f|f is measurable on
R, | (L4 ||%]))-%f(x)| is bounded on R» for some k >0}, we have the following
commutative diagram

(F (PR, — )T (i) — @ [MEBA N ]

| - e

MR") +———— MR#®)Neo"

i’

Here, < : M(R*)Ne&* — @[ MR#)N & %] is the usual Borel transformation.

Note 1. Since #[M(R")N&*|CExp(C#), B can not defined if 0= f € @[ MR")
Nen,

Note 2. We have same commutative diagrams for the maps ac), B, €lc..

5.-2. An application. It is shown in [1], that if P(9/9z) is a constant coeffi:
cients linear partial differential operator of the form

0 am 0 0 om-1 b7 0
B P(R) =gt Pl e o Pela )
s T~
then to set P(z) = H,=1(21 — oi(z2, *++, 2a))7i, 0i € Clz1, -+, 2a), define vector

(1 — z16(z21, -+, zx=0))-1) and matrix T(le’ oo ;i) by
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((1 - ZlO'(Zz"l, Tty Z”—l))—l)
- ((1 — 21 01(22—1, e, Zn‘l))‘l, R (1 — 21 01(22—1, e zn—l))—rl,

(1 — zioa(ze~t, -+, 2u~1))71, oo, (L — z105(2071, o=r, 2a1))=7s),

2 b b 3 >
1, rerrreaseees , C1, 7,01, G2, rereerens , C1, 705
12’ ............ , C2, ’,10-12, g22’ ......... , €2, 405
T ¥1i, oo, ¥s —
GLy 00y Og] ] revrrevsrertiiiiiiiernnisitrcaciiaritiireacneens
M- e , Cm, rldlm‘l, ggm=1_ . .... s CimypOsM—1

B+o)k+oi—1)(k+1)

Chypi = (,,__1)10,-—-1

(ei — 1)1 ’
then the solution of Cauchy problem
"
(53) P(%)u =0, u(O, 22, -+, Zn) = gl(ZZ, -, Zn), ___521 (0, z3, Zn)
om-1lu
= 82(22, tt Z"): ttty W:(Or &2, 0y Z") = gm(zz? Tty Z”)’

is given by

6wl = ST~ oallamr, -+, Lo, @70 1 )0 > @),

o1,

where & = (&, -+, 8&n) if {&;} satisfies suitable condition. Hence by the commuta-
tivity of the diagrams in 4.-3 and 4. -4, we get

Theorem 6. If £, -, &n satisfy either of the conditions

G (e Zj)ﬁ(g) & (@[] 4 (@[en-1] + (@ /=ire-00) ),
P, v T oo S -
(55)¢e) T(m’ 08)/3(«:), 5(8) € (#[Clzz, -+, 2n) 14 (ker. (o), b’ D (& /—TRr-14C) ¥,

where .B(g) = (B(&1), 5 Bl&m))s Broody 5(&) = {Bcoor,p(£1), +++, Breody 5(&m)) and (R)™ means
m~direct sum of R, thén the Solution #(x) of the equation (52) with Cauchy data
(53) is given by (54) as the element of [t 1§ (= [t7] + (&, =ir~+)*) or

T~ .
F[Clz1, -+, zn) ]l (Rer. i), o' D (F /=IRm +C)¥p).
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Note. If P is a system of constant coefficients linear partial differential differ-
ential operators, then by the normalization theorem ([167]), by the change of vari-
ables, P is equivalent to the system of operators

/ (D) _ _om . 9__ .. _9 \ amt
(52) P (az> T paimi + P, 1( dzpe1 32m> 2 2i"i-1
b7} 0
+ Pigns( o), 1S i,

and the solution of (52)" with Cauchy data

gt kpy

Gar < gaghs O T O A 20)

(63)'
= Zpytt, o, kprt(Bhet, o, 2n), O hiZmi—1, 1=i=h,

is given by

(B4) u(z) = @[<A — CGollpr-t, o, L)), (1 — Ceoa(lhart, vy Cumt))-1,

oy (1= Cnon(Crat-t, wry Cu=1))1), %"IET(“”’ rl,sl) ®

G1,1, **°y Ol, 5,

- ® T(Vh, 1, s Thy sh)(gl, ey 8>,

Ohyls ***s Ohysp

St
Pi(z) = H (zi — 04, j(zh+1’ Tty Zﬂ))ri’js 1 é 1 é hs
j=1

(1 — zioi(zp+17t, -, 2p71))71)
= ((1 — zigi, 1{zp+1=t, -, Zo=))-1, o, (1 — zios, 1{Zne1mt, o, Zaml)) 700,
(1 — 2igi, 2(2pe1=t, o, 2o~ )7L, oo, (L — 2io4, si(2Ra17t, oo, 207Y))-7hs),

&g = (8,1, &y omy), 1205 h,

if {&i,} satisfies suitable condition. Hence we get
Theorem 6'. The solution of (52)' with data (53)' is given by (54)' as the element

T~ N
of @[1n]} ] + (@, =irw+)*) or @[C(z1, -+, 2n) § (ker. i), ' D (B ,/TiRm +()*b)
if {&, ;) satisfies either of the conditions

Gy (e @@ (Ihh I T (pay, -, flen)

T1y1, ***5 Olys; Ohyly 5 Ohysh

& (@[t 118 (@ [En-h] + (@, =irm ) ) =™,
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(55) o0’ T(h, 1, o ¥, Sx> R ® T(rh’ 1, v ¥h, Sh) (Boonsb(81), > Broornt(&n))

F1,1, ', Ol 5 Ohyl, *""y Ohy sk

Ry
¢ .

T N— N 5
e(F[Clzh+1, -, 2n) |8 (k7. (o), b’ D (B /iR -1 4(P)H )} Tim

Here, in (54)', & means B(&) or B s ().
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