Non-compact Simple Lie Group $\boldsymbol{F}_{1,2}$ of Type \mathbb{F}_{1}

By Ichiro Yokota
Department of Mathematics, Faculty of Sciences, Shinshu University
(Received March 15, 1977)

It is known that there exist three simple Lie groups of type F_{4} up to local isomorphism, one of them is compact and the others are non-compact. The compact simple Lie group $F_{4}=F_{4(-52)}$ of type F_{4} is obtained as the automorphism group Aut (\mathfrak{F}) of the exceptional Jordan algebra $\mathfrak{J}=\mathfrak{\Im}(3$, (5) over the Cayley algebra $(5$ and it is a connected, simply connected, simple (in the sense of the center $z\left(F_{4}\right)$ $=1$) Lie group. One of the non-compact Lie groups of type F_{4} (which is named $\left.F_{4,1}=F_{4(-20)}\right)$ is obtained as the non-Euclidean projective transformation group of the Cayley projective plane $\mathbb{C}_{2}\left(F_{4,1}=\left\{\alpha \in E_{6(-26)} \mid\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\}\right)$ and it is a connected, simply connected, simple (in the sense of the center $z(F 4,1)=1$) Lie group [5]. In this paper, we investigate the other non-compact simple Lie group $F_{4,2}$ of type, F_{4}. The results are as follows. The connected component group $F_{4,2}=A u t^{0}\left(\Im^{\prime}\right)$ of the automorphism group Aut($\left.\Im^{\prime}\right)$ of the exceptional Jordan algebra $\Im^{\prime}=\mathfrak{F}\left(3, \mathfrak{E}^{\prime}\right)$ over the split Cayley algebra \mathbb{S}^{\prime} is homeomorphic to $\left(S^{3} \times S p(3)\right) / Z_{2} \times$ \boldsymbol{R}^{28} and a simple (in the sense of the center $z\left(F_{4,2}\right)=1$) Lie group, and hence the center $z\left(\widetilde{F}_{4}, 2\right)$ of the non-compact simply connected simple Lie group $\widetilde{F}_{4,2}=F_{4(4)}$ of type F_{4} is Z_{2}.

1. Split Cayley algebra \mathbb{C}^{\prime}

Let \mathbb{c}^{\prime} be the split Cayley algebra over the real numbers R [6]. This algebra \mathbb{S}^{\prime} is defined as follows. If in $\mathbb{E}^{\prime}=\boldsymbol{H} \oplus \boldsymbol{H} e$, where \boldsymbol{H} is the field of quaternions, we define a multiplication by

$$
(a+b e)(c+d e)=(a c+\bar{d} b)+(\overrightarrow{b c}+d a) e
$$

then \mathbb{C}^{\prime} becomes an 8 -dim. (non-commutative non-associative) algebra over R with the conjugation $\overline{a+b e}=\vec{a}-b e$. And the inner product $(x, y)^{\prime}$ in \mathbb{S}^{\prime} is defined by

$$
(a+b e, c+d e)^{\prime}=(a, c)-(b, d)
$$

2. Jordan algebra \Im^{\prime} and group $\boldsymbol{F}_{4,2}$

Let $\Im^{\prime}=\mathfrak{J}\left(3\right.$, $\left.\mathbb{E}^{\prime}\right)$ be the Jordan algebra consisting of all 3×3 Hermitian matrices X with components in \mathfrak{E}^{t}

$$
X=X(\xi, x)=\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right), \quad \xi_{i} \in R, \quad x_{i} \in ๒^{\prime}
$$

with respect to the composition

$$
X \circ Y=\frac{1}{2}(X Y+Y X)
$$

In \mathfrak{c}^{\prime} we adopt the following notations.

$$
\begin{aligned}
E_{1} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad E_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \\
F_{1}(x) & =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & x \\
0 & \bar{x} & 0
\end{array}\right), \quad F_{2}(x)=\left(\begin{array}{ccc}
0 & 0 & \bar{x} \\
0 & 0 & 0 \\
x & 0 & 0
\end{array}\right), \quad F_{3}(x)=\left(\begin{array}{lll}
0 & x & 0 \\
\bar{x} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Then these elements generate \Im^{\prime} additively and the multiplications among them are given as follows.

$$
\begin{cases}E_{i} \circ E_{i}=E_{i}, & E_{j} \circ E_{i}=0, j \neq i \\ E_{i} \circ F_{i}(x)=0, & 2 E_{j} \circ F_{i}(x)=F_{i}(x), j \neq i \\ F_{i}(x) \circ F_{i}(y)=(x, y)^{\prime}\left(E_{i+1}+E_{i+2}\right), & 2 F_{i}(x) \circ F_{i+1}(y)=F_{i+2}(\overline{x y})\end{cases}
$$

where the indexes are considered as mod 3 .
In \Im^{\prime} we define the inner product $(X, Y)^{\prime}$ and the trilinear inner product $\operatorname{tr}(X, Y, Z)^{\prime}$ respectively by

$$
\begin{aligned}
& (X, Y)^{\prime}=\operatorname{tr}(X \circ Y)=\sum_{i=1}^{3}\left(\xi_{i} \eta_{i}+2\left(x_{i}, y_{i}\right)^{\prime}\right) \\
& \operatorname{tr}(X, Y, Z)^{\prime}=(X \circ Y, Z)^{\prime}=(X, Y \circ Z)^{\prime}
\end{aligned}
$$

where $X=X(\xi, \boldsymbol{x}), Y=Y(\eta, \boldsymbol{y})$.
The group $F_{4,2}$ is defined by

$$
\begin{aligned}
F_{4,2} & =\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{R}}\left(\Im^{\prime}, \Im^{\prime}\right) \mid \alpha(X \circ Y)=\alpha X \circ \alpha Y, \operatorname{tr}(\alpha X)=\operatorname{tr}(X)\right\} \\
& =\left\{\alpha \in \mathrm{Iso}_{\boldsymbol{R}}\left(\Im^{\prime}, \Im^{\prime}\right) \mid \alpha(X \circ Y)=\alpha X \circ \alpha Y,(\alpha X, \alpha Y)^{\prime}=(X, Y)^{\prime}\right\} \\
& =\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{R}}\left(\Im^{\prime}, \Im^{\prime}\right) \mid(\alpha x, \alpha Y)^{\prime}=(X, Y)^{\prime}, \operatorname{tr}(\alpha X, \alpha Y, \alpha Z)^{\prime}=\operatorname{tr}(X, Y, Z)^{\prime}\right\}
\end{aligned}
$$

Remark. The auther does not know if the condition $\alpha(X \circ Y)=\alpha X \circ \alpha Y$ implies the condition $\operatorname{tr}(\alpha X)=\operatorname{tr}(X)$ and if Aut $\left(\Im^{\prime}\right)=\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{R}}\left(\Im^{\prime}, \Im^{\prime}\right) \mid \alpha(X \circ Y)=\alpha X \circ \alpha Y\right\}$
is connected. However it is true that the connected component group Aut ${ }^{0}\left(\widetilde{S}^{\prime}\right)$ of $\operatorname{Aut}\left(\Im^{\prime}\right)$ is $F_{4}, 2$. In the case of the compact group $F_{4}=$ Aut (\Im), the condition $\alpha(X \circ Y)=\alpha X \circ \alpha Y$ implies the condition $\operatorname{tr}(\alpha X)=\operatorname{tr}(X)$ [4].

Since the field H of quaternions is a subfield of \Im^{\prime} regarding $a \in H$ as $a+0 e$ $\in \mathbb{E}^{\prime}, \Im \boldsymbol{H}=\Im(3, \boldsymbol{H})$ (consisting of all 3×3 Hermitian matrices $X_{\boldsymbol{H}}$ with components in M) is a subalgebra of \Im^{\prime}, and any element $X \in \Im^{\prime}$ can be described as

$$
X=\left(\begin{array}{lll}
\xi_{1} & a_{3} & \bar{a}_{2} \\
\bar{a}_{3} & \xi_{2} & a_{1} \\
a_{2} & \bar{a}_{1} & \xi_{3}
\end{array}\right)+\left(\begin{array}{rrr}
0 & b_{3} & -b_{2} \\
-b_{3} & 0 & b_{1} \\
b_{2} & -b_{1} & 0
\end{array}\right) e, \quad \xi_{i} \in R, a_{i}, b_{i} \in H
$$

We denote this element X by

$$
X=X_{H}+F(b e)
$$

where $X_{H} \in \Im_{\boldsymbol{H}}, \boldsymbol{b}=\left(b_{1}, b_{2}, b_{3}\right) \in \mathscr{H}^{3}$.

3. Automorphism group $\operatorname{Aut}(\Im \boldsymbol{(})$

Before we consider the group $F_{4}, 2$, we shall investigate the relation between the automorphism group Aut $(\mathfrak{\Im} K)$ of \Im_{H} :

$$
\begin{aligned}
\operatorname{Aut}(\Im \boldsymbol{H}) & =\left\{\alpha \in \mathrm{Iso}_{\boldsymbol{R}}(\Im \boldsymbol{H}, \Im \boldsymbol{H}) \mid \alpha(X \circ Y)=\alpha X \circ \alpha Y\right\} \\
& =\left\{\alpha \in \mathrm{Iso}_{\boldsymbol{R}}(\Im \boldsymbol{\xi}, \Im \boldsymbol{\Im}) \mid \alpha(X \circ Y)=\alpha X \circ \alpha Y, \operatorname{tr}(\alpha X)=\operatorname{tr}(X)\right\}
\end{aligned}
$$

(cf. Remark of $\S 2$) and the symplectic group

$$
S p(3)=\left\{A \in M(3, \boldsymbol{H}) \mid A A^{*}=E\right\}
$$

Proposition 1. The group Aut $\left(\Im_{H}\right)$ is isomorphic to the group $S p(3) / \mathbb{Z}_{2}$, where $Z_{2}=\{E,-E\}$.

Proof We define a mapping $f: S p(3) \rightarrow \operatorname{Aut}(\Im \boldsymbol{H})$ by

$$
f(A) X=A X A^{*}, \quad X \in \Im H
$$

Obviously f is well-defined and homomorphic. We shall show f is onto. For a given $\alpha \in \operatorname{Aut}(\Im \mu)$, consider $\alpha_{E_{i}}, i=1,2,3$. Since α_{E} satisfies the conditions $\left(\alpha E_{i}\right)^{*}=\alpha E_{i},\left(\alpha E_{i}\right)^{2}=\alpha E_{i}, \operatorname{tr}\left(\alpha E_{i}\right)=1$, we can choose a vector $b_{i}=$
$\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right) \in \boldsymbol{H}^{3},\left\|\boldsymbol{b}_{i}\right\|=1$ such that $\alpha E_{i}=\left(\begin{array}{lll}b_{1} \bar{b}_{1} & b_{1} \bar{b}_{2} & b_{1} \bar{b}_{3} \\ b_{2} \bar{b}_{1} & b_{2} \bar{b}_{2} & b_{2} \bar{b}_{3} \\ b_{3} \bar{b}_{1} & b_{3} \bar{b}_{2} & b_{3} \bar{b}_{3}\end{array}\right)$ (Remember tha αE_{i} is an element of the quaternionic projective plane $\boldsymbol{H} P_{2}$). If we construct a matrix $B=\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, b_{3}\right)$, then $B \in S p(3)$ because $\alpha E_{i} \circ \alpha E_{j}=0, i \neq j$, and B satisfies

$$
B E_{i} B^{*}=\alpha E_{i}, \quad i=1,2,3
$$

Therefore $\beta=f(B)^{-1} \alpha$ satisties

$$
\beta E_{i}=E_{i}, \quad i=1,2,3
$$

If we operate β on $E_{i} \circ F_{i}(a)=0,2 E_{j} \circ F_{i}(a)=F_{i}(a)(j \neq i)$, then we see that β induces linear transformations β_{i} of $\boldsymbol{I} /$ such that

$$
\beta F_{i}(a)=F_{i}\left(\beta_{i}(a)\right), \quad i=1,2,3
$$

and β_{i} is orthogonal :

$$
\left(\beta_{i}(a), \beta_{i}(b)\right)=(a, b), \quad a, b \in H
$$

from $F_{i}(a) \circ F_{i}(b)=(a, b)\left(E_{i+1}+E_{i+2}\right)$. Furthermore $\beta_{1}, \beta_{2}, \beta_{3}$ are combined with the relation

$$
\beta_{1}(a) \beta_{2}(b)=\overline{\beta_{3}(\overline{a b})}, \quad a, b \in H
$$

from $2 F_{1}(a) \circ F_{2}(b)=F_{3}(\overline{a b})$. Put $p=\beta_{1}(1), q=\beta_{2}(1)$, then $|p|=1,|q|=1$ and $\beta_{2}(a)=$ $\bar{p} \beta_{1}(a) q, \beta_{3}(a)=\overline{\beta_{1}(\bar{a}) q}$. Furthermore put $\beta_{1}(a)=p \sigma(a)$, then σ satisfies $\sigma(a b)=\sigma(a) \sigma(b)$, i. e. σ is an automorphism of H. Therefore there exists $r \in H,|r|=1$ such that $\sigma(a)=r a \vec{r}$. Hence

$$
\beta_{1}(a)=\operatorname{pra} \bar{r}, \quad \beta_{2}(a)=\operatorname{ra} \bar{r} q, \quad \beta_{3}(a)=\bar{q} r a \bar{r} \bar{p}, a \in \boldsymbol{H}
$$

Now, construct a matrix $C=\left(\begin{array}{ccc}\bar{q} r & 0 & 0 \\ 0 & p r & 0 \\ 0 & 0 & r\end{array}\right)$, then $C \in S p(3)$ and

$$
C X C^{*}=\beta X, \quad X \in \Im H
$$

Therefore $\alpha X=B\left(C X C^{*}\right) B^{*}=f(B C) X$, hence f is onto. Finally $\operatorname{Ker} f=\{E,-E\}$ is easily obtained. Thus the proof is completed.
4. Compact subgroup $\left(F_{4}, 2\right)_{K}$ of $F_{4,2}$

We shall consider the following subgroup $\left(F_{4,2}\right)_{K}$ of $F_{4,2}$

$$
\left(F_{4,2}\right)_{K}=\left\{\alpha \in F_{4,2} \mid \alpha(\Im \boldsymbol{H})=\Im_{\boldsymbol{H}}\right\}
$$

 product $(X, Y)^{\prime}, \quad \alpha \in\left(F_{4,2}\right)_{K}$ also satisfies $\alpha\left(\Im^{\prime} \boldsymbol{H} e\right)=\Im^{\prime} \boldsymbol{H e}$.

Proposition 2. The group $\left(F_{4}, 2\right)_{K}$ is isomorphic to the group $\left(S^{3} \times S p(3)\right) / \mathbb{Z}_{2}$, where $\mathbb{Z}_{2}=\{(1, E),(-1,-E)\}$.

Proof Let $S^{3}=\{p \in \boldsymbol{H} \| p \mid=1\}$ and define a mapping $\varphi: S^{3} \times S p(3) \rightarrow\left(F_{4,2}\right)_{K}$ by

$$
\varphi(p, A)\left(X_{\boldsymbol{H}}+F(\boldsymbol{a} e)\right)=A X_{\boldsymbol{H}} A^{*}+F\left(\left(p \boldsymbol{a} A^{*}\right) e\right)
$$

In order to show $\alpha=\varphi(p, A) \in\left(F_{4,2}\right)_{K}$, since the conditions $\alpha(\Im(\Im H)=\Im \tilde{\Im} H, \operatorname{tr}(\alpha X)$ $=\operatorname{tr}(X)$ are obviously satisfied, we must prove

$$
\alpha(X \circ Y)=\alpha X \circ \alpha Y, \quad X, Y \in \Im^{\prime}
$$

To do this, it is sufficient to show that
(1) $\quad \alpha E_{i} \circ \alpha F_{i}(a e)=0$
(2) $2 \alpha E j \circ \alpha F_{i}(a e)=\alpha F_{i}(a e), \quad i \neq j$
(3) $\quad \alpha F_{i}(a e) \circ \alpha F_{i}(b e)=(a e, b e)^{\prime}\left(\alpha E_{i+1}+\alpha E_{i+2}\right)$
(3) $\quad \alpha F_{i}(a e) \circ \alpha F_{i}(b)=0$
(4) $2 \alpha F_{i}(a e) \circ \alpha F_{i+1}(b e)=\alpha F_{i+2}(\overline{(a e)}(b e))$
(4) ${ }^{\prime} \quad 2 \alpha F_{i}(a e) \circ \alpha F_{i+1}(b)=\alpha F_{i+2}((a e) b)$
where $a, b \in H$. Put $A=\left(a_{i j}\right)_{i, j=1,2,3}$.

$$
\begin{aligned}
& \text { Proof of (1) } \quad 2^{\alpha} E_{1} \circ \alpha F_{1}(a e) \\
& =2\left(\left|a_{11}\right|^{2} E_{1}+\left|a_{21}\right|^{2} E_{2}+\left|a_{31}\right|^{2} E_{3}+F_{1}\left(a_{21} \overline{a_{31}}\right)+F_{2}\left(a_{31} \overline{a_{11}}\right)+F_{3}\left(a_{11} \overline{a_{21}}\right)\right) \\
& 0\left(F_{1}\left(\left(p a \overline{a_{11}}\right) e\right)+F_{2}\left(\left(p a \overline{a_{21}}\right) e\right)+F_{3}\left(\left(p a \overline{a_{31}}\right) e\right)\right. \\
& =F_{1}\left(\left(\left|a_{21}\right|^{2}+\left|a_{31}\right| 2\right)\left(p a \overline{a_{11}}\right) e+\overline{\left(\left(p a \overline{a_{21}}\right) e\right)\left(a_{11} \overline{a_{21}}\right)}+\overline{\left(a_{31} \overline{a_{11}}\right)\left(\left(p a \overline{\left.\left.\left.a_{31}\right) e\right)\right)}\right.\right.}\right. \\
& +F_{2}(*)+F_{3}(*) \\
& =F_{1}\left(\mid\left(\left|a_{21}\right|^{2}+\mid a_{31}{ }^{2}\right)\left(p a \overline{a_{11}}\right) e-\left(p a \overline{a_{21}} a_{21} \overline{a_{11}}\right) e-\left(p a \overline{a_{31}} a_{31} \overline{a_{11}}\right) e\right) \\
& +F_{2}(*)+F_{3}(*) \\
& =F_{1}\left(\mid\left(\left|a_{21}\right|^{2}+\left|a_{31}\right|^{2}-\left|a_{21}\right|^{2}-\left|a_{31}\right|^{2}\right)\left(p a \overline{a_{11}}\right) e\right)+F_{2}(*)+F_{8}(*) \\
& =F_{1}(0)+F_{2}(0)+F_{3}(0)=0
\end{aligned}
$$

Proof of (4) $\quad 2 \alpha F_{1}(a e) \circ \alpha F_{2}(b e)$

$$
\begin{aligned}
= & 2\left(F_{1}\left(\left(p a \overline{a_{11}} e\right)+F_{2}\left(\left(p a \overline{a_{21}}\right) e\right)+F_{3}\left(\left(p a \overline{a_{31}}\right) e\right)\right)\right. \\
& \circ\left(F_{1}\left(\left(p b \overline{a_{12}}\right) e\right)+F_{2}\left(\left(p \overline{\left.b a_{22}\right)} e\right)+F_{3}\left(\left(p b \overline{a_{32}}\right) e\right)\right) .\right.
\end{aligned}
$$

$$
\begin{aligned}
= & 2\left(\left(p a \overline{a_{11}}\right) e,\left(p b \overline{a_{12}}\right)\right)^{\prime}\left(E_{2}+E_{3}\right)+2\left(\left(p a \overline{a_{21}}\right) e,\left(p b \overline{a_{22}}\right)\right)^{\prime}\left(E_{3}+E_{1}\right) \\
& +2\left(\left(p \overline{a_{31}}\right) e,\left(p \overline{a_{32}}\right) e\right)^{\prime}\left(E_{1}+E_{2}\right) \\
& +F_{1}\left(\overline{\left(\left(p a \overline{a_{21}}\right) e\right)\left(\left(p b \overline{a_{32}}\right) e\right)}+\left(\overline{\left.\left(p b \overline{a_{22}}\right) e\right)\left(\left(p a a_{31}\right) e\right)}\right)+F_{2}(*)+F_{3}(*)\right. \\
= & \left(-2\left(a \overline{a_{21}}, b \overline{a_{22}}\right)-2\left(a \overline{a_{31}}, b \overline{a_{32}}\right)\right) E_{1}+* E_{2}+* E_{3} \\
& +F_{1}\left((a _ { 2 1 } \overline { a } \overline { p }) \left(p b \overline{a_{32}}+\left(a_{22} \bar{b} \bar{p}\right)\left(p a \overline{\left.a_{31}\right)}\right)+F_{2}(*)+F_{3}(*)\right.\right. \\
= & \left(-2\left(\bar{b} a, \overline{a_{22}} a_{21}+\overline{a_{32}} a_{31}\right)\right) E_{1}+* E_{2}+* E_{3} \\
& +F_{1}\left(a_{21} \bar{a} b \overline{a_{32}}+a_{22} \overline{b a} \overline{a_{31}}\right)+F_{2}(*)+F_{3}(*) \\
= & 2\left(\overline{b a}, \overline{a_{12}} a_{11}\right) E_{1}+* E_{2}+* E_{3} \\
& +F_{1}\left(a_{21} \bar{a} b \overline{a_{32}}+a_{22} \bar{b} a \overline{a_{31}}\right)+F_{2}(*)+F_{3}(*) \\
= & 2\left(\left(\overline{\left.(a e)(b e), \overline{a_{11}} a_{12}\right) E_{1}+* E_{2}+* E_{3}}\right.\right. \\
& +F_{1}\left(a_{21} \overline{(a e)(b e)} \overline{a_{32}}+a_{22}(a e)(b e) \overline{a_{31}}\right)+F_{2}(*)+F_{3}(*) \\
= & \alpha F_{3}(\overline{(a e)(b e)})
\end{aligned}
$$

The other formulae are also proved by calculations similar to the above. Obviously φ is a homorphism. Next we shall prove φ is onto.

For a given $\alpha \in\left(F_{4},\right)_{K}$, consider the restiction $\alpha \mid \Im_{H}$ of α to $\mathfrak{\Im} \boldsymbol{H}$. Since $\alpha \mid \Im_{H}$ is an automorphism of $\mathfrak{J} H$, there exists an element $A \in S p(3)$ such that

$$
\alpha X_{\boldsymbol{H}}=A X_{\boldsymbol{H}} A^{*}, \quad X_{\boldsymbol{H}} \in \Im_{\boldsymbol{H}}
$$

by Proposition 1. Put $\beta=\varphi(1, A)^{-1} \alpha$, then $\beta \mid \Im_{H} H=1$. In particular β satisfies βE_{i} $=E_{i}, \quad i=1,2,3$, hence β induces linear transformations β_{i} of \mathfrak{J}^{\prime} such that

$$
\beta F_{i}(x)=F_{i}\left(\beta_{i}(x)\right), \quad i=1,2,3
$$

(the proof is the same as Proposition 1). Furthermore β_{i} satisfies

$$
\left(\beta_{i}(u), a\right)^{\prime}=0, \quad\left(\beta_{i}(u), \beta_{i}(v)\right)^{\prime}=(u, v)^{\prime}, \quad a \in H, u, v \in H e
$$

from $F_{i}(u) \circ F_{i}(a)=0, F_{i}(u) \circ F_{i}(v)=(u, v)^{\prime}\left(E_{i+1}+E_{i+2}\right)$ respectively. Hence β_{i} induces an orthogonal transformation of $H e$. And from $2 F_{3}(a) \circ F_{1}(u)=-F_{2}(a u)$ we get

$$
a \beta_{1}(u)=\beta_{2}(a u), \quad a \in \mathbb{H}, \quad u \in \mathbb{H} e
$$

Put $a=1$, then we have $\beta_{1}=\beta_{2}$, similarly $\beta_{1}=\beta_{3}\left(=\beta^{\prime}\right)$. Therefore β^{\prime} satisfies

$$
\beta^{\prime}(a u)=a \beta^{\prime}(u), \quad a \in H, \quad u \in H e
$$

Set $\beta^{\prime}(e)=p e, p \in H$, then $|p|=1$ and

$$
\beta^{\prime}(a e)=a \beta^{\prime}(e)=a(p e)=(p a) e, \quad a \in \boldsymbol{H}
$$

Therefore

$$
\beta X=\beta\left(X_{\boldsymbol{H}}+F(\boldsymbol{a} e)\right)=X_{\boldsymbol{H}}+F((p \boldsymbol{a}) e)=\varphi(p, E) X, \quad X \in \Im^{\prime}
$$

Hence $\alpha=\varphi(1, A) \varphi(p, E)=\varphi(p, A)$, i. e. φ is onto. Finally $\operatorname{Ker} \varphi=\{(1, E),(-1$, $-E)\}$ is easily obtained. Thus the proof of Proposition 2 is completed.

Remark. The compact Lie group $F_{4}=$ Aut (\Im) also contains a subgroup $\left(F_{4}\right)_{K}$ which is isomorphic to $\left(S^{3} \times S p(3)\right) / Z_{2}$ by a mapping $\varphi: S^{3} \times S p(3) \rightarrow F_{4}$,

$$
\varphi(p, A)\left(X_{\boldsymbol{H}}+F(\boldsymbol{a} e)\right)=A X \boldsymbol{H} A^{*}+F\left(\left(p \boldsymbol{a} A^{*}\right) \boldsymbol{e}\right)
$$

5. Lie algebra ${ }_{4}^{4,2}$ of $F_{4,2}$

We consider the Lie algebra $f_{4,2}$ of $F_{4,2}$:

$$
\begin{aligned}
\mathrm{f}_{4,2} & =\left\{s \in \operatorname{Hom}_{\boldsymbol{R}}\left(\Im^{\prime}, \Im^{\prime}\right) \mid \mathrm{s}(X \circ Y)=\mathrm{s} X \circ Y+X \circ \varsigma Y, \operatorname{tr}(s X)=0\right\} \\
& =\left\{s \in \operatorname{Hom}_{R}\left(\Im^{\prime}, \Im^{\prime}\right) \left\lvert\, \begin{array}{l}
(\mathrm{s} X, Y)^{\prime}+(X, \mathrm{~s} Y)^{\prime}=0 \\
\operatorname{tr}(s X, Y, Z)^{\prime}+\operatorname{tr}(X, s Y, Z)^{\prime}+\operatorname{tr}(X, Y, s Z)^{\prime}=0
\end{array}\right.\right\} \\
& =\left\{s \in \operatorname{Hom}_{R}\left(\Im^{\prime}, \Im^{\prime}\right) \mid \mathrm{s}(X \circ Y)=s X \circ Y+X \circ \varsigma Y\right\}
\end{aligned}
$$

(the last equality is proved in Remark of Proposition 6). The structure of the Lie algebra $\left\{_{4,2}\right.$ is analogous to the Lie algebra f_{4} of the compact Lie group $F_{4}=\operatorname{Aut}(\Im)$ [1]. [4]. However we give an outline of the proof of Proposition 6.

Let M^{\prime} - be the vector space over \boldsymbol{R} consisting of all 3×3 skew-Hermitian matrices $A ; A^{*}=-A$ with components in \Im_{1}. Any element $A \in M^{\prime}$ - induces a linear transformation \tilde{A} of \Im^{\prime} by

$$
\widetilde{A} X=A X-X A, \quad X \in \Im^{\prime}
$$

Lemma 3 ([1]). If $A \in M^{\prime}-, \operatorname{tr}(A)=0$, then $\widetilde{A} \in f_{4}, 2$, i.e. \widetilde{A} satisfies
(1) $(\tilde{A} X, Y)^{\prime}+(X, \tilde{A} Y)=0$
(2) $\operatorname{tr}(\tilde{A} X, Y, Z)^{\prime}+\operatorname{tr}(X, \tilde{A} Y, Z)^{\prime}+\operatorname{tr}(X, Y, \tilde{A} Z)^{\prime}=0$

We adopt the following notations in M^{\prime}-.

$$
A_{1}(r)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & r \\
0 & -\bar{r} & 0
\end{array}\right), \quad A_{2}(r)=\left(\begin{array}{ccc}
0 & 0 & -\bar{r} \\
0 & 0 & 0 \\
r & 0 & 0
\end{array}\right), \quad A_{3}(r)=\left(\begin{array}{ccc}
0 & r & 0 \\
-\bar{r} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then $\widetilde{A}_{i}(r) \in \mathrm{f}_{4,2}$ and the following formulae are hold.

$$
\begin{cases}\widetilde{A}_{i}(r) E_{i}=0, & \widetilde{A}_{i}(r) F_{i}(x)=2(r, x)^{\prime}\left(E_{i+1}-E_{i+2}\right), \\ \widetilde{A}_{i}(r) E_{i+1}=-F_{i}(r), & \widetilde{A}_{i}(r) F_{i+1}(x)=F_{i+2}(\overline{r x}) \\ \widetilde{A}_{i}(r) E_{i+2}=F_{i}(r), & \widetilde{A}_{i}(r) F_{i+2}(x)=-F_{i+1}(\widetilde{x r})\end{cases}
$$

where the indexes are considered mod 3 .
Let $\mathrm{b}^{\prime}\left(\mathbb{E}^{\prime}\right)$ be the Lie algebra

$$
\mathfrak{v}(4,4)=\mathfrak{v}^{\prime}\left(\mathbb{S}^{\prime}\right)=\left\{D \in \operatorname { H o m } _ { \boldsymbol { R } } \left(\left(\mathbb{S}^{\prime},\left(\mathbb{S}^{\prime}\right) \mid(D x, y)^{\prime}+(x, D y)^{\prime}=0\right\}\right.\right.
$$

of the Lorentz group $O(4,4)=O^{\prime}\left(\mathbb{E}^{\prime}\right)=\left\{\sigma \in \operatorname{Iso}_{\boldsymbol{R}}\left(\mathfrak{C}^{\prime},\left(\mathbb{C}^{\prime}\right) \mid(\sigma x, \sigma y)^{\prime}=(x, y)^{\prime}\right\}\right.$.
Lemma 4 (Principle of the infinitesimal triality in $0^{\prime}\left(\mathrm{E}^{\prime}\right)$ [1], [3]). For any element $D_{1} \in 0^{\prime}\left(\mathbb{E}^{\prime}\right)$, there exist $D_{2}, D_{3} \in 0^{\prime}\left(\mathbb{E}^{\prime}\right)$ uniquely such that

$$
D_{1}(x) y+x D_{2}(y)=\overline{D_{3}(\overline{x y})}, \quad x, y \in \mathbb{C}^{\prime} .
$$

Lemma 5 ([1]). The Lie algebra $\mathrm{D}^{\prime} \mathbb{S}^{\prime}=\left\{\delta \in \mathfrak{f}_{4,2} \mid \delta E_{i}=0, i=1,2,3\right\}$ is isomorphic to the Lie algebra $\mathrm{o}^{\prime}\left(\mathrm{E}^{\prime}\right)$ by the correspondence

$$
\begin{gathered}
D_{1} \in 0^{\prime}\left(\mathbb{C}^{\prime}\right) \rightarrow \delta=\delta\left(D_{1}, D_{2}^{\prime}, D_{3}\right) \in{D^{\prime}}_{\mathfrak{c}^{\prime}} \\
\delta_{\delta}\left(\begin{array}{lll}
\xi_{1} & x_{3} & \overline{x_{2}} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \overline{x_{1}} & \xi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & D_{3} x_{3} & \overline{D_{2} x_{2}} \\
\overline{D_{3} x_{3}} & 0 & D_{1} x_{1} \\
D_{2} x_{2} & \overline{D_{1} x_{1}} & 0
\end{array}\right)
\end{gathered}
$$

where D_{2}, D_{3} are elements of $0^{\prime}\left(\mathrm{c}^{\prime}\right)$ determined by Principle of the infinitesimal triality in $\mathrm{D}^{\prime}\left(\mathrm{E}^{\prime}\right)$.

Proposition 6. Any element s of the Lie algebra $\mathrm{f}_{4,2}=\left\{\mathrm{s} \in \operatorname{Hom}_{\boldsymbol{R}}\left(\mathrm{s}^{\prime}, \mathrm{E}^{\prime}\right) \mid \mathrm{s}(X \circ Y)\right.$ $=s X \circ Y+X \circ \varsigma Y\}$ is uniquely reqresented by the form

$$
\mathrm{s}=\delta+\widetilde{A}, \quad \delta \in \mathfrak{0}^{\prime} \mathbb{C}^{\prime}, \quad A \in M^{\prime}, \quad \operatorname{diag} A=0
$$

where $\operatorname{diag} A=0$ means that all diagonal elements of A are 0.
Proof From $E_{i}{ }^{\circ} E_{i}=E_{i}, \quad E_{i}{ }^{\circ} E_{j}=0, j \neq i$, we have $2 E_{i}{ }^{\circ} S_{i}=\varsigma E_{i}, \quad \varsigma E_{i}{ }^{\circ} E_{j}$ $+\circ E_{i} \circ \varsigma E_{j}=0$. Hence $\varsigma E_{i}, i=1,2,3$ have the following form

$$
\varsigma E_{1}=\left(\begin{array}{cc:c}
0 & -r_{3} & \bar{r}_{2} \\
-\bar{r}_{3} & 0 & 0 \\
r_{2} & 0 & 0
\end{array}\right), \varsigma E_{2}=\left(\begin{array}{ccc}
0 & r_{3} & 0 \\
r_{3} & 0 & -r_{1} \\
0 & -\bar{r}_{1} & 0
\end{array}\right), \varsigma E_{3}=\left(\begin{array}{ccc}
0 & 0 & -\overline{r_{2}} \\
0 & 0 & r_{1} \\
-r_{2} & \overline{r_{1}} & 0
\end{array}\right)
$$

Construct a matrix $A=\left(\begin{array}{ccc}0 & r_{3} & -\bar{r}_{2} \\ -\bar{r}_{3} & 0 & r_{1} \\ r_{2} & -\bar{r}_{1} & 0\end{array}\right)$, then $A \in M^{\prime}-$, $\operatorname{diag} A=0$ and \tilde{A} satisfies

$$
\tilde{A} E_{i}=s E_{i}, \quad i=1,2,3
$$

so that $\delta=s-\widetilde{A} \in \mathfrak{v}^{\prime} \mathbb{C}^{\prime}$. Hence $\varsigma=\delta+\widetilde{A}, \delta \in \mathfrak{v}^{\prime} \mathfrak{c}^{\prime}, A \in M^{\prime}$-, $\operatorname{diag} A=0$. To prove the uniqueness, it sufficient to show

$$
\delta+\widetilde{A}=0, \quad \delta \in 0^{\prime} \mathbb{E}^{\prime}, \quad A \in M^{\prime}-, \quad \operatorname{diag} A=0 \Rightarrow \delta=0, \quad A=0
$$

However it is easily obtained if we operate $\delta+\widetilde{A}$ on $E_{i}, i=1,2,3$.
Remark. Any element s of the Lie algebra $f_{4,2}=\left\{s \in \operatorname{Hom}_{R}\left(\Im^{\prime}, \Im^{\prime}\right) \mid s(X \circ Y)=\right.$ $s X \circ Y+X \circ s Y\}$ satisfies the condition $\operatorname{tr}(s X)=0$. In fact, for $s=\delta+\tilde{A} \in f 4,2$, $\operatorname{tr}(\delta X)=0$ is satisfied trivially and $\operatorname{tr}(\tilde{A X})=\operatorname{Re}(\operatorname{tr}(\tilde{A X}))=\operatorname{Re}(\operatorname{tr}(A X-X A))=\operatorname{Re}\left(\sum_{i, j}\right.$ $\left.a_{i j} x_{j i}-\sum_{i, j} x_{i j} a_{j i}\right)=\sum_{i, j} \operatorname{Re}\left(a_{i j} x_{j i}-x_{j i} a_{i j}\right)=0$ for $A=\left(a_{i j}\right)_{i}, j=1,2,3, \quad X=\left(x_{i j}\right), j=1,2,3$.
6. Polar decomposition of $F_{4,2}$

To give a polar decomposition of $F 4,2$ we use the following
Lemma 7 ([2] p. 345). Let G be a real algebraic subgroup of the general linear group $G L(n, R)$ such that the condition $A \in G$ implies $t_{A} \in G$. Then G is homeomorphic to the topological product of $G \cap O(n)$ (which is a maximal compact subgroup of G) and a Euclidean space \boldsymbol{R}^{d} :

$$
G \simeq(G \cap O(n)) \times \boldsymbol{R}^{d}, \quad d=\operatorname{dim}(\Omega \cap()(n))
$$

where $O(n)$ is the orthogonal subgroup of $G L(n, R), 0$ the Lie algebra of G and $\mathfrak{l}(n)$ the vector space of all real symmetric matrices of degree n.

To use the above lemma, we define the positive definite inner products (x, y) in \mathbb{S}^{\prime} and (X, Y) in \mathfrak{J} respectively by

$$
\begin{gathered}
(x, y)=(a, c)+(b, d) \\
(X, Y)=\sum_{i=1}^{3}\left(\xi_{i} \eta_{i}+2\left(x_{i}, y_{i}\right)\right)
\end{gathered}
$$

for $x=a+b e, \quad y=c+d e$ and $X=X(\xi, x), \quad Y=Y(\eta, y)$. Two inner products $(X, Y),(X, Y)^{\prime}$ in \Im^{\prime} are combined with the following relations

$$
(X, Y)=(X, \gamma Y)^{\prime}, \quad(X, Y)^{\prime}=(X, \gamma Y)
$$

where $\gamma=\varphi(-1, E)$. We denote by t_{α} the transpose of $\alpha \in \mathrm{Iso}_{R}\left(\Im^{\prime}, \Im^{\prime}\right)$ with respect
to $(X, Y):(\alpha X, Y)=\left(X,{ }^{t} \alpha Y\right)$.
Lemma 8. $F_{4,2}$ is a real algebraic subgroup of the general linear group $G L$ $(27, \boldsymbol{R})=\mathrm{Iso}_{\boldsymbol{R}}\left(\Im^{\prime}, \Im^{\prime}\right)$ and satisfies the condition $\alpha \in F_{4}, 2$ implies $t_{\alpha} \in F_{4}$, 2 .

Proof Since $(X, \gamma Y)=(X, Y)^{\prime}=(\alpha X, \alpha Y)^{\prime}=(\alpha X, \gamma \alpha Y)=\left(X,{ }^{t} \alpha \gamma \alpha Y\right)$ for $\alpha \in$ $F_{4}, 2$, we have $\gamma=t_{\alpha} \gamma \alpha$. Hence $t_{\alpha}=\gamma \alpha-1 \gamma \in F_{4}, 2$. It is trivial that $F_{4,2}$ is real algebraic, because $F_{4,2}$ is defined by the algebraic relations $\alpha(X \circ Y)=\alpha X \circ \alpha Y$, $\operatorname{tr}\left(\alpha_{X}\right)=\operatorname{tr}(X)$.

Let $O\left(\Im^{\prime}\right)$ be the orthogonal subgroup of $\operatorname{Iso}_{\boldsymbol{R}}\left(\Im^{\prime}, \Im^{\prime}\right)$:

$$
O(27)=O\left(\mathfrak{S}^{\prime}\right)=\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{R}}\left(\Im^{\prime}, \Im^{\prime}\right) \mid(\alpha X, \alpha Y)=(X, Y)\right\}
$$

Then $\alpha \in F_{4,2} \cap O\left(\Im^{\prime}\right)$ induces a linear transformation of $\Im H$. In fact, $\left(\alpha X_{H}, Y\right)=$ $-\left(\alpha_{H}, Y\right)^{\prime}=-\left(X_{H}, \alpha^{-1} Y\right)^{\prime}=-\left(X_{\boldsymbol{H}}, \alpha^{-1} Y\right)=-\left(\alpha X_{I I}, Y\right)$ for $X_{\boldsymbol{H}} \in \Im \tilde{\Im} \boldsymbol{H}, Y \in \Im_{\prime}^{\prime} \boldsymbol{H}_{e}$, therefore $\left(\alpha X_{\boldsymbol{H}}, Y\right)=0$ and $\alpha_{X \boldsymbol{H}} \in \Im \boldsymbol{\xi}$. Hence we have

$$
F_{4, \mathrm{a}} \cap O\left(\Im^{\prime}\right)=\left(F_{4}, \mathrm{e}\right)_{K} \cong\left(S^{3} \times S p(3)\right) / Z_{2}
$$

by Proposition 2. Next we shall determine the Euclidean part $f_{4,2} \cap \mathfrak{G}\left(\mathfrak{S}^{\prime}\right)$ of $F_{4,2}$, where

$$
\mathfrak{h}(27)=\mathfrak{h}\left(\Im^{\prime}\right)=\left\{s \in \operatorname{Hom}_{R}\left(\Im^{\prime}, \Im^{\prime}\right) \mid(s X, Y)=(X, s Y)\right\}
$$

Let $s \in f_{4,2} \cap \mathfrak{b}\left(\Im^{\prime}\right)$. Represent s in the form

$$
\varsigma=\delta+\widetilde{A_{1}}\left(r_{1}\right)+\widetilde{A_{2}}\left(r_{2}\right)+\widetilde{A_{3}}\left(r_{3}\right)
$$

where $\delta=\delta\left(D_{1}, D_{2}, D_{3}\right) \in \mathfrak{0}^{\prime} \mathbb{C}^{\prime}, r_{i} \in \mathbb{®}^{\prime}$. Since ς satisfies $\left(\varsigma E_{i+1}, F_{i}(x)\right)=\left(E_{i+1}, \varsigma F_{i}(x)\right)$, we have

$$
\begin{aligned}
& \left(\left(\delta+\sum_{j=1}^{3} \widetilde{A}_{j}\left(r_{j}\right)\right) E_{i+1}, F_{i}(x)\right)=\left(E_{i+1},\left(\delta+\sum_{j=1}^{3} \widetilde{A}_{j}\left(r_{j}\right)\right) F_{i}(x)\right) \\
& \left(-F_{i}\left(r_{i}\right)+F_{i+2}\left(r_{i+2}\right), F_{i}(x)\right) \\
& =\left(E_{i+1}, F_{i}\left(D_{i} x\right)+2\left(r_{i}, x\right)^{\prime}\left(E_{i+1}-E_{i+2}\right)-F_{i+2}\left(\overline{x r_{i+1}}\right)+F_{i+1}\left(\overline{r_{i+2} x}\right)\right)
\end{aligned}
$$

Hence we have

$$
-\left(r_{i}, x\right)=\left(r_{i}, x\right)^{\prime}, \quad x \in \mathbb{C}^{\prime}
$$

From this we get $r_{i} \in H e, i=1,2,3$. Next, from the condition $\left(\zeta F_{1}(x), F_{1}(y)\right)$ $=\left(F_{1}(x), s F_{1}(y)\right)$, we have

$$
\begin{aligned}
\left(F_{1}\left(D_{1} x\right)\right. & \left.+2\left(r_{1}, x\right)^{\prime}\left(E_{2}-E_{3}\right)-F_{3}\left(\overline{x r_{2}}\right)+F_{2}\left(\overline{r_{3} x}\right), F_{1}(y)\right) \\
& =\left(F_{1}(x), F_{1}\left(D_{1} y\right)+2\left(r_{1}, y\right)^{\prime}\left(E_{2}-E_{3}\right)-F_{3}\left(\overline{y r_{2}}\right)+F_{2}\left(\overline{r_{3} y} y\right)\right)
\end{aligned}
$$

Hence we have

$$
\left(D_{1} x, y\right)=\left(x, D_{1} y\right), \quad x, y \in \mathbb{S}^{\prime}
$$

Since D_{1} also satisfies $\left(D_{1} x, y\right)^{\prime}+\left(x, D_{1} y\right)^{\prime}=0, D_{1}$ induces a linear transformation $D_{1} \mid \boldsymbol{H}: \boldsymbol{H} \rightarrow \boldsymbol{H} e$. Conversely

$$
\delta\left(D_{1}, D_{2}, D_{3}\right)+\sum_{i=1}^{3} \widetilde{A}_{i}\left(r_{i}\right), \quad D_{1} \mid \boldsymbol{H} \in \operatorname{Hom}_{\boldsymbol{R}}(\boldsymbol{H}, \boldsymbol{H} e), \quad r_{i} \in \boldsymbol{H e}
$$

is an element of $f_{4,2} \cap \mathfrak{y}\left(\mathcal{J}^{\prime}\right)$. Hence

$$
\operatorname{dim}\left(f_{4,2} \cap \mathfrak{b}\left(\tilde{s}^{\prime}\right)\right)=4 \times 4+4 \times 3=28
$$

Thus we have the following
Theorem 9. The group $F_{4,2}$ is homeomorphic to the topological product of the group $\left(S^{3} \times S p(3)\right) / \mathbb{Z}_{2}$ and a 28 dim. Euclidean space \boldsymbol{R}^{28} :

$$
F_{1,2} \simeq\left(S^{3} \times S p(3)\right) / \mathbb{Z}_{2} \times \boldsymbol{R}^{28}
$$

In particular, $F_{4,2}$ is a connected (but not simply connected) Lie group.
7. Simplicity of $F_{4,2}$

Lemma 10. The Lie algebra $\left\{_{4,2}\right.$ of $F_{4,2}$ is simple.
Proof The complexification $f_{4,2} C$ of the Lie algebra $f_{4,2}$ is isomorphic to the complexification $f_{4} C$ of the Lie algebra $f_{4}=\left\{s \in \operatorname{Hom}_{R}(\Im \mathfrak{\Im}, \mathfrak{\Im}) \mid s(X \circ Y)=s X \circ Y+X \circ \varsigma Y\right\}$ of the compact Lie group $F_{4}=\operatorname{Aut}(\mathfrak{J})$, because the complexification $\mathbb{C}^{\prime} C$ of \mathbb{E}^{\prime} is isomorphic to the one $\mathbb{C}^{C} C$ of the Cayley algebra ©. As is well known $f_{4} C$ is simple, so that $f_{4,2} C^{C}$ is so, hence $f_{1,2}$ is also simple.

Since $F_{4,2}$ is a connected group from Theorem 9 and a simple group as Lie group from Lemma 10, any normal subgroup of $F_{4,2}$ is contained in the center $z\left(F_{4}, 2\right)$ of $F_{4,2}$. We shall show $z\left(F_{4,2}\right)=1$.

Let $\alpha \in z\left(F_{1}, 2\right)$. First we show that α induces a linear transformation of $\mathfrak{\Im}_{\boldsymbol{H}}$: $\alpha \in\left(F_{4}, 2\right)_{K}$. In fact, put $\alpha_{H}=Y_{H}+F(\boldsymbol{a} e)$ for $X_{H} \in \Im_{H}$, then the commutativity condition $\varphi(-1, E) \alpha=\alpha \varphi(-1, E)$, we have

$$
\begin{gathered}
Y_{\boldsymbol{H}}+F(-\boldsymbol{\alpha} \boldsymbol{e})=\varphi(-1, E)\left(Y_{\boldsymbol{H}}+F(\boldsymbol{a} e)\right)=\varphi(-1, E) \alpha X_{\boldsymbol{H}} \\
=\alpha \varphi(-1, E) X_{\boldsymbol{H}}=\alpha X_{\boldsymbol{H}}=Y_{\boldsymbol{H}}+F(\boldsymbol{\alpha} e)
\end{gathered}
$$

Therefore $F(\boldsymbol{a} \boldsymbol{e})=0$ and $\alpha_{X \boldsymbol{H}}=Y_{\boldsymbol{H}} \in \mathfrak{\Im} \boldsymbol{H}$. Hence there exists an element (p, A) $\in S^{3} \times S p(3)$ such that $\alpha=\varphi(p, A)$ by Proposition 2. Furthermore from the commutativity condition $\alpha \varphi(q, E)=\varphi(q, E) \alpha, \alpha \varphi(1, B)=\varphi(1, B) \alpha$, we have

$$
\begin{array}{ll}
p q=q p & \text { for all } q \in S^{3} \\
A B=B A & \text { for all } B \in S p(3)
\end{array}
$$

so that $p= \pm 1, A= \pm E$. Hence $\alpha=\varphi(1, E)$ or $\alpha=\varphi(-1, E)$. We shall show that $\varphi(-1, E)$ is not an element of the center $z\left(F_{4}, 2\right)$ using the following

Lemma 11. The following mapping $\beta: \mathfrak{S}^{\prime} \rightarrow \mathfrak{S}^{\prime}, \beta X=Y, \quad X=X(\xi, x), \quad Y=$ $Y(\eta, y):$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\eta_{1}=\xi_{1} \\
\eta_{2}=\left(e, x_{1}\right)^{\prime} \sinh 2+\frac{\xi_{2}-\xi_{3}}{2} \cosh 2+\frac{\xi_{2}+\xi_{3}}{2} \\
\eta_{3}=-\left(e, x_{1}\right)^{\prime} \sinh 2-\frac{\xi_{2}-\xi_{3}}{2} \cosh 2+\frac{\xi_{2}+\xi_{3}}{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
y_{1}=x_{1}-2 e\left(e, x_{1}\right)^{\prime} \sinh { }^{2} 1-\frac{e\left(\xi_{2}-\xi_{3}\right)}{2} \sinh 2 \\
y_{2}=x_{2} \cosh 1-\overline{x_{3} e} \sinh 1 \\
y_{3}=x_{3} \cosh 1+\overline{e x_{2}} \sinh 1
\end{array}\right.
\end{aligned}
$$

is an element of $F_{4}, 2$.
Proof This mapping β is $\exp \widetilde{A_{1}}(e), \widetilde{A_{1}}(e) \in f_{4}, 2$, hence $\beta \in F_{4}, 2$.
$\varphi(-1, E)$ does not commute with β, because $\varphi(-1, E) \beta F_{2}(e)=\varphi(-1, E)\left(F_{3}(\sinh 1)\right.$ $\left.-F_{2}(e \cosh 1)\right)=F_{3}(\sinh 1)-F_{2}(e \cosh 1)$ and $\beta \varphi(-1, E\rangle F_{2}(e)=\beta\left(F_{2}(e)\right)=-F_{3}(\sinh 1)$ $-F_{2}(e \cosh 1)$. Thus we have the following

Theorem 12. The group $F_{4,2}$ is a simple (in the algebraic sense) Lie group.
Since the fundamental group of $F_{4,2}$ is Z_{2} from Theorem 9 and $F_{4,2}$ is a simple group, we have the following

Theorem 13. The center $z\left(\widetilde{F}_{4}, 2\right)$ of the non-compact simply connected Lie group $\widetilde{F}_{4,2}=F_{4(4)}$ of type F_{4} is \mathbb{Z}_{2}.

References

[1] H. Freudenthal ; Oktaven, Ausnahmengruppen und Oktavengeometrie, Math., Inst. Rijks. te Utrecht, 1951 (mimeographed).
[2] S. Helgason ; Differential Geometry and Symmetric Spaces, Pure and Applied Math., 1962.
[3] N. Jacobson ; Exceptional Lie algebra, Lecture notes in Pure and Applied Math., 1971.
[4] I. Yokota; Exceptional Lie Group F_{4} and its Representation Rings, Jour. Fac. Sic. Shinshu Univ., Vol. 2 (1968), 3560.
[5] \qquad ; On a non compact simple Lie group $F_{4,1}$ of type F_{4}, ibid. Vol. $10(1975), 71-80$.
$[6]$; Non-compact Simple Lie Group $G_{2}{ }^{\prime}$ of Type G_{2}, ibid. (to appear).

