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Introduction.

Borel transformation is originally defined by

G [9(0)]()

exp. (2—4—-.--—#%)61(:1---51&”, -

1 1

o
o (2m\/_1)nJ|51|=51:"'y[Cn|=€n€0(C)C1"'C1z

where ¢ is holomorphic on {{||{;|<e;, i=1, -+, %}, and it has following pfoperties.
F Lap+bpl=a [o]+bF [¢], F[o-¢1=F [ppF [$],
B [pQd1=F [9]R.Z [¢],

o [0 = 27 [ 0le), if L) s holomorphic at {0}, the

origin of C",
where (f4)?) is given by 9"/0zi-0a, [ fla—t)gWdti-dts, and (@I, -,

Lres) is given by o(Cy, -, Co)p(Craty ooy Chas).

But, although ¢({) is meromorphic at {0}, <% [¢] is defined by using a path 7,
given by {{||{;| =&, i=1,---,n} such that ¢ is holomorphic on 7 (the existence of
such path is shown in [1], cf. Lemma 1 of this paper). Then this definition dees
not depend on the choice of 7, if y defines non vanishing element of H{O),c;a'z ‘v(U‘-—
Yu{z| 2z1:--2za=0}, R), the n-dimensional compact carrier local homology group
of U-YU{z| z;---z4=0} at {0} with the coefficients in R. Here, U is a neighbor-
hood of {0Y and ¢ has poles on ¥V ([17). In [1], we show this extended Borel
transformation also has same properties as above. Moreover, since we get
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d n

i #n.—
257 log (=

e-rt

xt, 7 is Euler’s constant,

to define
% [log CJ(z)=log z+7,

we can extend Borel transformation for the functions which involve logz;, to
have the above properties ([1]). Then, since we obtain

K74 [Ct](z)=—lr(11——_!_t)—zt, t=£negative integer,

L log (Jz)=(—1)""(n—1)/ 27", n=1,
we may conside any meromorphic function or algebroid function can be expressed
as a Borel transformation image ([2]). Hence, using this extended Borel trans
formation, we can solve Cauchy problem with the meromorphic data or the
problem of division for the category of meromorphic functions for the constant
coefficients linear partial differential operators ([2]).
In this paper, we use extended Borel transformation for the construction of
elementary solutions on polydisks of linear partial differential operators with
holomorphic coefficients and show the following theorem (cf. [9], [11], [13]).

Theorem. For d=(0y, -, 0n), 010, -+, 0. >0, =2, we set
I'@d)={2| |21+ kzs| <0y, |21—kzsl <82, |25]<ds, -+, |2a|<dn},
70)={z| |21+ k22| =01, |21—kzs| =05, |23| =03, -, |Zul=0u},

and assume P(z, 0/02) is given by

0 am ] a \ om-t 0 ]
P(os ) =5t Pol5 g g+ Pl 5 )
ad 'l o ) g2t tin v
P (z’ 227’ 02n ) —jz+---+jn§ia“h il 025770z,

@iyjay+in (R) 1S holomorphic on [(0).

Then there exists an analytic function E(z, () on [{8)x '(g) such that to set
Ef9)=|  Ee0/Q,
1 ()

Ef has the following properties.
(i) Ef(z) is holomorphic on I'(6) if f(2) is holomor phic on I'(6) and

continuous on [9),

(i) P(s %)Ef(z): £@), zeT00), if flz) is holomorphic on T),
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gm-1

W‘Ef(z)l-zl:O:O-

0
(iii) Ef@) si=0=5 —Ef@)| smo="+=
2y
Similar result for the domain ['(3,d') given by
I'e, 0")={z]0/<|z1+kas| <81, 02/ <|21—kaz|<dg,
0y <| 23] <83, -+, 8u! <| 2n| <On},
where 6,/ +d2 is sufficiently small, is also shown.
The outline of this paper is as follows: In §1, we give integral formulas for
inverse Borel transformations of meromorphic functions and Borel transforma-

tions of the functions which involve log z;. The starting point of these formulas
are the fact that

% [log (L+X)2)=7+1log (z)—Ei<~—§«>, Ei(—z)= J:oe—t t-1dt,

Hence, if f(z) has poles on Y and 7 is a (representation of) an element of #-
dimensional compact carrier local homology group Hig,en (U—YU{z]2:--22=0},
R) of U—YU{z|z---2,=07} at {0} with coefficients in R, of the form

7':7‘(6)2{2| [2(| =&, -+, |20} :Gn},
then to set Fu(X )=E}:Ok! Xk, we may define inverse Borel transformation of f

(with respect to 7) by
B Ll o 2, Co)

ﬁ (¢t exp(—z—j) log C;

i=1

= lim 1

T 2y, vy 2
Moo, -, Mp—rca (2ﬂ~/__1)n JT f( 1 n)

+ 27 Fo; (i—i—)]dzi---dzn.
On the other hand, if g() is given by

(&, La)=&all1, ) Ca)

+ Z 8iy oty ik (Cly ) Cﬂ) log Cil"'IOg Cikr
1= < <igsn
where each gy{) or gi,,,i; (£) has singularities only on Y, then we may define

its Borel transformation (with respect to y=7()) by

L@ r[g(cly ttty CM)](zly "ty z")

i 1
= lim ___J
e10, - en—0, ex < Ml en <) An] (271"\/"'1)” o) {gO(C)

+ D3 gy Q) log (i i) log Cipt i)}
10 < <ikEn
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1
C1Cn exp (C 4 +C )dCI an, Re. 2121>0, ,Re ann>o

Then, for same 7€ Hyy,eon (U—Y U{z|2;2,=0}, R), we have
F LA LT (R)I0A2)=f(2).

In §1, we also calculate

e R A S AN AN ARY

—k2z? R0

_ 1 kColog Cs
R o R RS ARSI
In § 2, we construct the elementary solution of a constant coefficients opéi‘ator
on I' (3) as follows: Since we know

1 £(©)

e T o ey e A S

'd:",

zel“(a); A& is holomorphic on T70),

we set

1 kC2 log Cs Iog C3' . IOg Cn} Z)
PEY T (BTN Ca v

P(Q):Clnz—*_Pl(CZ; R Cn) Cl’n_1+"'+P7}l (CZ, Pty Cn)y deg- Pkék'

Bile)= 7|

Here the representation of 7y is contained in

Dy={C] |GPG, +ooy G e+ 1G P (78 -, G <13,

Then B; (z) should be an elementary solution of P (8/8z) on &7 (['(5), the space
of all holomorphic functions on 7(0) with the normally convergence topology.
We treat detailed properties of B,(z) in §2 and show

0 o om-1

BT(Z)|ZI=0 :_“BT(Z)IZ1=0: A e T(Z)|21=0:0-
821 0zym-1

It is also shown that B,(2) is defined on (some covering of)
C"~{z]zlzikzz}u{zizgmzn:O} and holomorphic on D,. Therefore, to set
1 .
__ B.lz— ;
P e | Brle—00C,
where the branch of B,(2) is taken to coincide original B,(z) on D,nl'(d), P-if is
the elementary solution of P on .07 (') with the 0 -Cauchy data.
We note that for the usual Cauchy kernel 1/zy:-20, We get <& ~11/21--24)(()
=log {1++-1og {n/Ci-Ln (since H(o) &n ({U-— {z|z1 2x=0}, R) =R, we need not to
denote 7) and to set Bl(z)=[1/P(¢-Y). log &1--1og Ln/Cy+-CnT,. We have
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o Pl " pm-2
B sim0= B @ 0= o

Bl(z) I 21=0=0,

but am-1/9z:m-1B!(2)| z,=0 can not be equal to 0.
*In §3, we treat the holomorphic coefficients operators. For a holomorphic
coefficients operator P(z, 9/9z), we set P(d/0z) =P (0, 8/0z), and set ‘

0 0 0
Ple 72)=P(5) +al= 5)
Then, on .&7{T(¥), the operator @P-! is a compact operator and it is shown °

QP-1]-=0((01+3)115]1), -'||5I|=,\/_;‘ di®.
Therefore, if ||8'|| is small, -we may set"
Efe)=(P-1I+QP-1)1f) (2), on ("),

where ([4+QP-1)-t is defined by the Neuman series. Then, by virtue that we
consider only in the category of holomorphic functions and Fredholm theory, we
can show that (/+QP-1)-1 can be continued on I' (§). Therefore we have the
existence of E on I' (9). The existence of £ on [I" (3, d') is also shown by the
same method. ‘ »

We note that the existence of E on I (5) also gives following integral expre-
ssion of the holomorphic solution of P(z, 9/82)u=0 on " () (cf. [6], [3']).

Theorem. If u(z)e_o7{T'®) and Pz, 3/0zu=0, then u(z) is written

u(21, s Z")

M1 o m —1

=33 amivi (@, ) =] Ble OLPE s3] Gt (G GV
i=0 7(&) ot i=0

Uy, -, m € .7 T0) N{z]2,=03).

These may by related to some énalytic problems of analytic equatio‘ns (cf.
[57, [107). We also note that using other integral kernels for the expression of
holomorphic functions, we may calculate elementary solutions -of holomorphic
coefficients linear partial differential equations in the category of holomorphic
functions on other types of domains (cf. [3], [47, [8], [12], [147], [157.

§1 Borel transformations and inverse Borel transformations of
germs of meromorphic functions
1. Lemma 1. Let f (z) be a meromorphic funcltions on U, a neighborhood of
the origin of C", then theve exists a neighborhood V of the origin of C" which is
contained in U and. a real (2n—1) -dimensional (real -analytic) subvarviety I' of V
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such that V—I' has finite number of connected components and if D is a connected
component of V—T, then D={0} and f (z) is expressed as a Laurent series on D
for each D.

Proof. By Weierstrass’ preparation theorem, we need only to show the lemma
for the functions of the form

1

4 (&)= (2w g1 (21, vy Zno1)2nM- 14 4 gm (21, ey net)) ’

where each g; is a meromorphic function and to show the lemma, we use
induction about # and .m.

Since the lemma is true if #=1, we assume the lemma is true for (n—1)-
variables meromorphic functions. Then, if m=1, we get

FlR=znt Ut @ zaa) 12> 180 (@ 2n, o),

Zn

N 1
f(z)*gl(zl, sy Zn_l)(l+g1(21, ey Zn_1)>’

|z"<lg1 (zl’ I zn-1)f.

Hence to denote V' and I'! the neighborhood and subvarie.y determined by this
lemma for g (in C»-1) and take ¢ to satisfy V/xB.cU, where B.={za| |2x|<le},
we have the lemma for f(z) by setting

V=VIxB., I'=I'"x B:U{z| |zz|=181(21, -, 20-1)| .
If the lemma is true for m=<k—1, then to set
Zuk+gs (21, -+y Zn-1) ank-st A gr(2y, -y Znoy)

:an—i—gs(zh Tty z"—l) h (zh Tty z”)’ gs(zl: "ty Z"—l) #Or

the lemma is true for (gsk)-! by inductive assumption (we may assume the exis-
tence of gs because if gy=--=gr=0, then the lemma is true). Then, since

fR)=2n"k (1+20=Rg)sh)1, |2n|%>|(gsh) (21, -+, 24)[,
fR)=(gsh)-t (1+(gsh-12ak))-1, |2n]8<|(gsh) 21, +++y Z0)|,

if V! and I'" are the neighborhood and subvariety determined by the lemma
for gk and V'cU, then we have the lemma for f(z) by setting

V=V, I'=I"U{z| |2a|*k=|(gsh)(21, -+, 2u)| }.

Corollary 1. Let Y be an analytic subvariety of U, a neighborhood of {03,
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the origin, of C", and {0}cY, then there exists a neighborhood V of {0} in U and
a real (2n—1) -dimensional veal analytic subvariety ['=I"y which contains VNY and

g m .
1) V—I= qa, {O}EQTD,-, DinDj=¢, i+#j,

= =
where each D; is a relative complete Reinhaldt domain, such that there exists a
meromorphic function f on U with poles on Y whose Laurent expansion is distinct
on each D;. Moreover, to denote Hyy,c,n (U—Y Uz| 21--24=0%, Ry, the subgroup
of Hiy,e,n (U—=Y U{z] 2,---2,=03, R), the compact carrier local n-dimensional homology
group of U—Y U{z| 21--2,=0%} at {0} with coefficients in R, generated by the class
of those cycles y such that

(2 r={z| |z1] =ey, -, | 20| =en},
we have
3) m=dim. H,cn (U—YU{z| 2:--22=03}, R}«

<dim. Heyen(U—YU{z| 2-20=0}, R).

Proof. By the uniqueness of Laurent expansion on a relative complete Rein-
haldt domain and lemma 1, we have the first assertion. Hence we get m=<dim,
H,e,n (U—YU{z]| 21---220}, R)x. On the other hand, if the class of a cycle y with
the form of (2) does not vanish in Hygy,c,» (U—Y U{z|2;---2.=03}, R), then by using
Cauchy kernel and the chain 7(s, &) given by

e, &)= Z (—Ln-r{z| |zi|=eiy,
GGty IO T gy =11, 0 1y

o izikl =Eipy !zfx l :ejll! B [zjn-k[ :ejn-kl}y

where e;>eil, i=1,-, n and yl)={z| |zi|=s, i=1,.-,u} and r()={2| |2:|=&'}
are both belonges in the same class as 7, r defines a Laurent expansion of any
meromorphic function f with poles on Y. Hence r is contained in D; for some i
and if 7 and 7 both contained in same D;, then 7 and 7 must contained in the
same class in H,c,n (U—YU {2]| 2;---24=03}, R). Therefore we have m > dim.
He,n (U—YU{z| 21:20=0};, R)s.

Corollary 2. Using same notations as corollary 1, if f is holomorphic on U-Y
(may not be meromorphic on U), then f is expanssed as a Laurent series on each D;.

2. Lemma 2. If Re. Xl is positive, then we have

(4) lim ﬁ [log (z+A)] (&)=log {+7, 7 is Euler's constant,
e=0

and this convergence is wumiform om {{| |{|>e 0= arg. (A0'} for any >0,
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—nf2, O <=z|2 if arg. A=constant, _
. Proof. Since log (z-+2)=log A-+log (1+2/3), we get

n

F[log z+A](Q)=log A— Enln( >

n=1

On the other hand, since we know

Bil=5)=reoe(3) s s -3)

n=1

n

where Ei (—0)= j :C’e—t t-1di ([77), we have

7 [log (z+A1(Q=7+1og C—Ei(—%>.

Since Ei(—C/4) tends to 0 uniformly on {{| [£]|>e, 0 Zarg. (A<6'} for any &>0,°
—nf2, ¢ <x/2 if arg. i=constant and 4 tends to 0, we get the lemma.
Corollary, If Re. i is positive, then we have

. ~ ‘ _ (_1)n—1 -n

(5) {11173 [z-7 log (z+4)] (C)——WC L

and. this convergence is uniform on {{| 1Ll > O=arg. Q2<0'3 for any 0, 0>

—x/2, 0' <=2 if arg. A=constant.

Note. In [1] and [2], we show that to difine
i (_1)n—1 _n
# [log z]({)=log {+7, <& [z-" log ZJ(C):WC )

Borel transformation can be extended to have same properties as usual Borel

transformation for the functions which involve log 2. Hence (4) and (5) may be

written
(4y i% B [log (z+21(0)=<# [log z]((), if Re. i[>0,
®) | m @ [z-7 log (z+A)1({)=# [z~ log 2]((), if Re.>0.

For simple, in the rest, we assume Y always containes the subvarlety of C”
defined by z;---zp=0. Hence Hp,e,n (U—Y, R)y£{0}.

Definition. Let 71, -1m be a basis of Hig,en (U—Y, Ry such that each 7 18
(represented by the chains of) the form of (2), Fm (X) is @ polynomial of the form

n

Faﬁ (X)”—‘Zk/Xk,

then, for a germ of analytic functz'oni with singularities on Y at {0} (that is, a
germ at {0} of a holomorphic function on U—Y, cf. [3]), denoted by f(z), we
define its inverse Borel transformation < y,~\[ f(2)1(C) with respect to y, by
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(6) - - B fry e 2] (G, ey Ca)
= {mfm;,m Gt =T J Sz, ;‘zn)‘z_l;ll{m 1exp(A C;) log- ¢;

v Ci
i1 B (Z.)]dzl dzn.
By definition, we may set

7 BT Sz, th)] €y -5 &)

=o(C1,++:, Ca) 2 @ir,nig (G100, Cn) log Ciyorlog Gy,
: 1= < <ipsn
where ¢, ({) involves only positive (may be equal to 0) powers. of s, -+, {» and to
divide {1, -, 7} = {iy, -, ir} U {j1, -, Jn_r}, each goil,‘ Jin () involves only negative
powers of ¢, -+, & and only pos1t1ve (may be equal to 0) powers of Ly, vy Gins
as formal Laurent serles “ . '
" We note that in the usual deﬁmtlon of Borel transforma’aon, -1 f]
should be ¢y, and it does not depend on the choice of 7. , ‘
We also set

Gl

tzi 11‘,,,1(5 )]dzl dn

=gyruomn (O D) Pis, iy (L) log Cipeoe log Cige
1=t < <ipsn Pl i

Then, each g (€ or @iy, i ™urn (L) converges on C” or on

C"—{{1¢i,--Li=0} and we have o B

®) polQ)=_lim gy, (),

gy ey Wlg—ro0
‘/’Iix, R it (C): " lim gﬁil’ R ik My, e iy (C),
MMy ey Moo

as formal Laurent serieses. For simple, we set

G iV, ey LI ()] (0) ;
=gy (4 D) iy, 7 (L) log Giyrlog L
1= < <ipZn

. Definition. We denote the representative_ of 1; contained in the bowl
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{z] ||z]| <&} by 7:<{6>>. Then, if g() is a (germ of) function at {0} of the form

g0=a@+ D1  gi,i @ log Giy:-log Ciy

1= <~ <ip=n

where each g() or gi),..,i; () is analytic at {0} with singularities on Y, we
define its Borel transformation <% r; [ g({)](2) with resiaect to 7; by

) Z i [8(0)](2)
1

= li S S )
10 ka0, 3 min, Gl i) (2my/—1)" Li<5>go(C)
3 Giein(© log €t i) - 10g CintAinl—em
1= < <ip<n C1--Cu
exp (2+ +%) dty--dln, Re, 242,>0, ---, Re, Anzy >0,

By definition and lemma 2 (cf. [1], [2]), we have
Theorem 1. We denote by D; the (germ of) Reinhaldt domain which containes
7o f a (germ of) analytic function on U with singularities on Y, then

(10) lim G [ B iV, [ (@ JO]R)= S (2).

M09, o0, My—r00

Especially, if each ¢(8) or i\, . i () determines a (germ of) analytic function
at {0} (with singularities on Y), then '

(10y F i [ i [ A2)] Q)] (@)= 2).

Note. Originally, (10) or (10) is shown (by using Laurent expansion) only on
D;. But, since so set

.@ T A1, dp [g(c):l (Z)
_ 1 o) Y v
—mjri<5>{go(@+2gn,---,tk (€) log (Ci,+4i,) log (Ciwt2in)} )

2n

Cn

exp(z—i—}——l— )dC1"'dc"7 5<mih. (Illf, ey Hnl),

1
Cioeoln
B 1i, 00, an L& 18 holomorphic on C* (cf. [1]), and (by the calculus of residue)
we have
B riy by an [ 1(20TH)
_ 1 ( o1+ tin

1205 jamo J1! Tl

Gy Ao dn [g:];z=z°)hljl s Bn,

az1J102nfn

(10) or (10) is hold on any domain on which f is defined.
3. In this n°, we give some examples of inverse Borel transformations.
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Later, example 2 and note will be used.
Example 1. Let Y be given by {z] 2:2,=0}U{z] z;=2;} in C?, then we have
dim. Hape2 (U—Y, R}=2, |
and its generators 7; and 7, are given by the representatives
n={z| |zil=e;, |z2|=¢}, 1o={2] |21| =63 |22|=e1}, &1>en
The corresponding Reinhaldt domains D; and D, are
Dy={z] |21|>|22|}, De={z| |2:]<|2:|}.
If f(z2)=1/(z1—2;), we have
(&)= D z1~(n+Dzgn, om Dy, f(2)=— D 2nza-1+0, on Dy,
n2z0 nz0
Hence we get

1 log {1
C1+C

Lelog Ly

# A

}(Cl’ S)=~r ¢ gfz—l[ﬁz}(ch Lo)=—

Z,—2y

Example 2. If ¥V is given by {z| 212;=0}U{z| z1=zt2;} in C; then we also
have
dim. Hyy,c,2(U—Y, R)=2,

and its generators 7;, 72 and their corresponding Reinhaldt domains D, D, are

same as example 1.
If fl2)=1/(z,2—z:%), then we have

(2)= Z 2y~ (n+1) zo2n om Dy,
nz0

&)=~ Z z22nz9=2(n+D), on Dy,

nz0
Hence we get
_ 1 Lilogly
(11) ._@ T1 1[ Zl 1(C1y CZ) C2 C XN IR
_ 1 Gelogle
L@ T2 I[T](Cli C2) CZ Cl

Note. Similarly, if Y={z] 212,=0}U{z| 21 =z=kz} in C?, then dim. Hyy,c,2
(U-Y, R)x=2 and its generators and their corresponding Reinhaldt domains D;,
D, are given by

n={zllz,l=«, |2|=ea}, n={llul=c, |2nl=a}, a>|kle,
Dy={z||2:>|kl|22]}, Da={zl|2:] <|kl|2s}.



12 . AKIRA "ASADA -

Then we get

W @ r)——culogds

F22.2 B2 2!

1. kC logC1
B re™ {“‘“"WJ(CI; Go)= —kgg—gc‘l“
In general, if Y {z] 2z~

Zn—O}U{_Z] 21-+k22} 11’1 Cn
(U-Y, R

then dim. H{o},c,?z
=2 and its generators ?’1, Tz are glven by

11=12| |21| =« |22\——821 \Zal—es,

Tty ‘z"‘ *En}:
oy l2n] =en},

. en are arbitrary.

re={2| |21] =eq, |22|=¢1, |23]=g¢;,
e > | ke, &,

Then we get

o .
R A e el LR

_Gilog §i log &s--:log En -
(R =L Ly eln

—_— 1 : v
o e P (IR

_ ks log Eslog G- log Cn
(B2 —C13) L3 Ln

We note that, for example, if f(2) is holomorphic; on D, .where D=D (5, )
={z| |z1t+kzy| <81, |21—kzs| <0y 23] <ds, -

1
SO =y =17

- 1 2n| <0n}, then we have for zeD,

J|4'1+k¢'2|=31, 1e1—k¢2l=082,|¢al=283,, |¢n]=6dn

0
eGP — Bl =G fan—p) %

§2 Elementary solutions of constant coeficients operators
4. Since we know .

| P(3) & LI1E= 2 [P Y £Q) 0,

if P(9/9z) is a constant coefficients linear partial differential operator,

we have
(12)

p(g) e e f?ri[f( 11 = £(2).
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Here, to take Y to be the union of the polar - varieties. of . P(z-1) “and. f(z) and
{z| z;-+2,=0}, 7 is a generator of Hyy,cn (U Y, R), and we denote by D,
the Reinhaldt domain corresponds to 7. ‘ :

Lemma 8. Let Y be a subvariety of C* given by

Y={z| P(z-)=0}U{z| z;2.=0}U{z| 21=ntkz5},
and denote L the hypersurface of Cr given by 2,=0. Then, for any zeLnU,
there is a relative complete Reinhaldt domain D, in U ~I'y such ‘that 2D, and
D, N L contains some non-empty open set of L. Moreover, we can take the path 7y
corresponding to D, to satisfy if v is given by {]zil:GI}X{122l:82}}("')({’2'71]:

ent, then
(13) 7 homolo gous to ' in Hgy,con (U—Y, Ry, if

| ' ={|z1| =er'Ix{| 22| =es}x - x{ | 2u| =en}, where 61”<81v,
and for this v, we have

1
(14) @r‘l[m}@ug& Gs, y )

_ g log (3 log Ly --log Lu
(BLP—CA) Lyl

Proof. Since U—T'y=U and dim. Hyy,cn (U—Y)y<oco, we have the first
assertion. Then, since D, is open, we have the second assertion. If r satisfies
(13), then y should be the form of 7, in the notation of the note and example 2
of n°3, we have (14).

Example, If P(z) is given by zm+P; (2, -, zn)‘21’"-1—1—---+‘Pm‘(z2, -+, 2y), then
D, is the Reinhaldt domain containning of the domain D given by

Dﬁ:{zl |21P1(Zg;1,"', ‘1) |+ +|21’”Pm(22 sty R '1)|<1}

Hence D, contains L—{(0, &3, '+, Zn)|22-- 20 =0}, that is DnL is open dense in L.
For simple, we denote by G( ) G+({) or Gr k), the right hand side of (14).
Lemma 4. [f P(3/0z) is given by

Pl P )+ Pl )

then we have

(15) o @[

B G’(C,)}(.z,)."“f‘)fo’, o=t

where (60/621 ) f means f and 7 is determi'hé‘d by lemma 3,
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Proof. First we note that, since G,({) does not involve log {;, we have

ok ) 1
B_ZFL@ T{WGT(C)}(Z)|ZI=O ,
. 1 1
_ / - ot
2320, =1y An=0 Jgﬁin.(l/‘zlw";llnl) (2m/ —1)" jr<6> (PC-1)
kCs log(Cz—l-Xz)'“log(Cn-i-ln) 1 Zn
€. d 7y
e T et e Lo B LIS
Re. 2,050, -+, Re. 2,{x >0,
Hence, to set
B S TR R S 1 :
(PL-1) ‘ 1+G PGty -y Camt) oo+ L Pn(Cat, oo, EaY)
=gk (L4 R(G),
we get
J' 1 Ck kCo log (La+49):+- log (Cﬂ"l‘lzn) 1
r<é> (P(C‘l)) ! (k2C22‘—512) Caln Cioln
Zn
exp(c +- +C )dC1 dCu

k
Lo U Sk 0 Ry ]

s log (Gt Ag)-+- log (Cn‘i'/zn)
(Ca+++La)?

Zn

La

(C Fot - )dCz dCy,

where 74-1<{6>> is the path given by {|{|=%(X ---x}lCnl:sn} if y<(6> is given
by {|C]=6{x}|Cll=e{x x}|lu|=¢e+} But by (13), we obtain

J‘ 1 £k kCZ IOg (C2+22)"' IOg (Cn +/In) 1
rs (PEH) BLA—CH) G Cn G

zﬂ

exp(c +- +Cn

)awﬂn

— lim JM 1<§>U|m=61 Lm-CesD) (+ R(Cy)

€10

k
el

o log (Ca+-4)- log (Cn‘}‘ln)
(Lo --Ln)?

<Q + et n)dCz “dCy.

¢
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But, if £, =m —k and ({5, -+, {u)E70-1<{6>>, then we have

lim J gm-(k (14 R(Ey)
[¢1]=¢1

e1—0

k
wtg—gg 4a=0

because |[{s|=e>0 (and fixed) and on 7,-1<{6>>, we have |R({)|=0 (IC1I).V
Therefore we obtain

J 1 _pFCelog(le+2s)-log (CntAn) 1

r<o> (PEY) o (RPCP—LiB)Cs L Cioln
exp(f--+ 22) =0, 0k,

This proves the lemma.

B. In the rest, we denote <& . [(1/PC-Y) G.{)](2) by P-1G,(2), P-1Gy i),
By(2) or By,x(2).

Lemma 5. On D,, B.(2) is merombrphic and does not involve log z; for all i,
150 <.

Proof. Since we may assume

[GP(Cams, ooy Cum D) oo+ [ Em Py, (L7, o, Cum 1) <D,

to consider the Laurent expansion of 1/P((-1) on D, by the example of lemma 3,
the Laurent expansion of 1/P({-1) on D, should be the form

F(Cl‘—{)—: Z} Z} E ity sitg, oo, g §171 LgM2e - Ly,

myzk me=0  ma=0

On the other hand, the Laurent expansion of /(22 —C%) on D, is given by

Co
(R —L4?)
Therefore, the Laurent expansion of (1/P(-1) (Cof {(FC2—C2) (1/Cs+-Cu). (L/Cs--
L)} should be the form ’

Ge
P(C“) (k2C22 —ng)Ca' <Enli-Cau

:];12' Z gmy-ams1,
m=(

= 2 E E Danyy mgy oy tn §1718g7 2000 L,

mi=k me=—1 Mp<—1

Hence we have the lemma, because G,{{) does not involve log {; and <% [{-*log{]
=(—1)*-Y1/(k—1)z-* if k=1,

Lemma 6. We assume deg, P=m, that is deg. P; <i for all i. Then, for any
k, k%0, to set : :

A=Ap={z| z21;=kz,}U{z| 2z3--2.=0},
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By, 1(2) is defined on (some: covering of) Ct—Ar.

Proof. By assumption, B, k(z) is defined at least on D,. We assume B,y is
continued analytically on ﬁ (may be 'equaytyl to D )v and take z@eaﬁ such that
Z2yD A. Then, since D, NL is open dense in L, we can choose Vectros oL, .-, 0"
and &, -, £ such that ' ' : : S
@. 118]="=116"=1, Py (8Y) 540, -+, Py(0")5~0 and 0%, ---, 0" ave linear ’z'ndependent
over C, where P, is the (homogeneous) maximal degree part of P.

(i), &eD;NL, -, "D, NL. ’ : ’
(iil). Ty set 4;={(2071, 20%3+&%, -, 207,+E0)| 2€C,} 0=/, .., 072), &=(0,& -,
&1,), we have zy= N j=14;. T o

Then, on each 4;N D, (the analytic continuation of) By, i(2) is the solution of

the ordinary differential equation ' '
1

ndz T (22— F%252) Z0--Zn

(16) P(W i &’

147,
with the Cauchy data
(16) u(0)=——

But, -since ‘we have-

d “en d
dz’ ndz

P(ﬁfl ) Pye’y, -, 07 )Li”; “lower order term,

By, 1(2)|£; should be coincide to the unique solution of the equation (16) with the
data (16) by.lemma 4 and (i). Then, since (16) is a constant coefficients linear
ordinary differential equation, its solution (with the data (16)) is defined on
(some covering of) 4,—8,N A, B, (2)|¢; continued analytically to z, for any j.
Therefore, since El, én gives an, analytic coordinates at z,, B;,(z) is holomor-
phlc ‘at zc by Hartogs theorem Hence By,r (2) is continued analytically to z,.
Since z,. is arbitrary if z,? Az, we have the lemma. ‘

In the rest, we set

Yi={z| z1—|—1e22_0} Yz_{z| z21—kzy=0}, Yi={z| 2;=0}, i=3.
By definition, Y7, - Yn are crossmg normally at’ {O} and AkMU " Y

T 6. We set wy=2z+kzs, wy=2; — kzg, Wy=23, +*-, Wi=2x, and regard C" to be
(wy, -+, wy) -space. Then we set ‘ ‘ \
S=J{wil fm. wi=0, Re. wi=0}xCr-1,
i=1
Cn—li is (W1, ] wi—-lr‘ Wisty w?l) »-Sﬁace.
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Then, by definition, we have
SO Ak, dim. S=2n—1, dim. (SNL)=2n-3, x(C"-S)={0}
We choose the branch of B, x(z) on C*—S to satisfy

gm-1

0
By, 1(2)] z1=0§1~Br,k(z) |zimp="= W:Br,k(z) | 2:=0=0,

where zeL—-KNL. We note thisr B, #(z) coincide to <% .[(1/P({-Y) Gy, #L)z) on D,
by lemma 5.
For real positive vectors §=(d1, -+, 0x) and e=(ey, ---, &), We set

r=r@)={wi| |wi|=06:3x - x{wa| |wa|=0dx},

I'=I@)={wi| |wi| <8:1}x - x{wn| |wn|<du}

re=10)c={w1| |wi| =0, 0=arg wi<w—e, 0=arg. w;>—n+e}x
X{Wn| |Wn| =04, 0=Zarg wn <n—eu, 0=arg wn>—n+ten}.

The correspondence domains and paths in {-space are also denoted by the same
notations.
If f(€) is holomorphic on some neighborhood of 7 (in C"), then we define

| Brsta—0 10 by
(7) | Brrte=0 fQdec=tim. | Byue—0) f Q.

By lemma 6 and the definition of 7, there exists a constant M such that

sup. | By, w(z)| <M, for any 7.
zer

Hence J By, (2—8) fF(©)dL always exists and the convergence of the right hand
T

side of (17) is uniform on K, if K satisfies B, is bounded on U.er {z2—7}
which is satisfied on some (small} relative compact neighborhood of 7'(¢’) if &<9,
that is 6'1<(dy, -+, 8'u<0n, where 8'=(0'y, -+, 8'n). Therefore we have

Jirketin
02481+ . g2 pin

Qirketin

(18) y 02481.4.02yin

| Brirte—0 s dt=| By (20 £ dC,

if zeI'().
Theorem 2. If f (z) is holomorphic on ['(9), then to set

(P-15) )= gy, Brot (e=0) FQHE,

T 2h2r/—1)" )i

we have
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(19 P()P-11)@)=1 (@) zeT(0)
(P11} @) sim= AP @ 1m0 = = P-4} @) a0,

and this P-1f is holomorphic on F(B).b |
Proof. By (18), we have

P(2)] . Brsle—050dc=|

17
0zl Jres i (52)Br4 (=0 7 L, zer0)

Hence we have the first equality of (19). On the other hand, since B;,r is holo-
morphic along L—~LNAx by lemma 5 and "‘Ar=Y,U--UYn, where Yy, -, ¥y are
crossing normally at {0}, we have by lemma 4

C ' 0 ; L
75, s Yi, ey 54 5o B (=0 F QA NG| =0, 0Zim—1,

if zeL and f({) is holomorphic at {=z. Hence we have the second equality of
(19) by lemma 6 and the residue formula of composed residue ([37, [3], [8],
[12], [14]). _

~To get the last assertivon,k we first note that P-if is holomorphic ‘on I'(§)—S
by definition. But, since to set ‘

n
Se= U{w, | arg. wi=0;}xCn-1; 0=(0y, -+, 0x), 0=6;<2r,
iZ1 , -

and denoting P-10 f the corresponding function of P-if obtained by using S,
instead of S, we get same results for P-10 f as P-if, and we have

P-10f(2)=P-1f(2), z&l'(5)—(SUS,),

by the uniqueness of the solution of Cauchy problem.. Since P-i,f is holomorphic
on F(5):——Sa, -P-1f should be holomorphic on I'()) —Ar because we have SNSp=
Ap if 0i#=, i=1,-,n. But by (18), if ze€ArNI'(), then P-if is holomorphic at
z. Hence we have the theorem. s :

Corollary. Let 6=(0y, -, 0n) and &' =(0'y, -, 0's) be positive vectors such that

8;>0';, i=1,-,n. Then to set =~ = , _ : , ,
I'®, 8Y=fw;| &< wi] <83 X {wn|8'w< |wa| <bn},

10, 8')= (=1)n-k-

{in,ee 8 UL dnd =1, )
Lwi | wi, | =03 % - x{wig Jwig| =03

X{_wjll |wf1 | :5Ijx}>< X{wfn—k| len-kl =g’ in—k}’
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we define for a holomorphic function f on T'(6, 0') the function P-if by

(P41)(6)= gy gy, g B4 (2= 0 SO
wherej 0,4 Bro@=0 F QM is defined similarly as L@)B,,k(z—z;) fode.
Then we izave
(19y P(2)(P-1f) (=1 (e), 2T, ),
(P-1F) ()] 21m0= ot P-1f) ()| 21m0 ="+ =2 {P-11) (&) 51~0=0
! 921 2= T ozm-1 ! :

Proof. Since we know

Slzy, o+, 20)

I J | FGy ey )
2k 2/ — 17" )10, 05{(@s— G — o{za—CoP } (2a— Lo (an—C)

if zel'(6; ¢'), we have the corollary by the same reason as theorem 2.
We note that in this corollary, P-if is holomorphic and bounded on (s, &')

dCy-+dla,

—S, but may be many-valued on ['(g, d').

§3 Dlementary solutlons of analytlc coefficients operators .
7. We denote by P(z, 9/02) an analytic coefficients linear part1a1 dofferent1a1
operator of the form

' gy om w 9\ m-t 3 8
(20) P(o ) =5t Pila 5o 5o g o P )
7} 9 . izt -in '
Pl (Zy 622 L) azn>““ Aljay o ]n(z aZZjZ"‘aan" ’

ot insi
where each aij, .., j,(2) is holomorphic on some neighborhood of {0}.
- For this P(z, 0/9z), we set P(6/92)=P(0, 9/9z). Then we have

Pl ) =) +ole 32)

0 AN
§> =0, Q(z, 52) involves at most

om-1
9z, Qzgm-t’

Qo

We denote by .97(D) the normed vector space of holomorphic functions on
D, that is, the space of holomorphic functions on some neighborhood of D,
where D is assumed to be relative compact, with the norm

S l|=sup. |f(2)] (=max. |f(2)).
€D

zED
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Then, by theorem 2, P has the (continuous) inverse operator P-1 on .7 ([(0) as
an integral operator. Similarly, denoting {6, 0')|s) the normed vector space
of (bounded) holomorphic functions on (3, &) —S which can be continued analy-
tically on some neighborhood of I, §') —S (may be many-valued) with the
maximal norm, P also has the (continuous) inverse operator P-1 from .7 ('3, 6'))
to .76, &")|s) as an integral operator.

Lemma 7. If each coefficients of Pz, 0/dz) belongs in o7 {(5)
QP-1 by

then to define

)

—1

QP (0)=0z, ) (P le)= gz | @4 ) Brs =0/ @,

QP-1 is a bounded linear (integral) operator on 7 (I'(5) and we have

(21) [1QP-1]|=0 ((9:+02) ||51]), 15H~‘/25, .

Proof. For e=(e, -+, en), >0, ,e,>0, we set 6+e=(01+ey, -, 0nt+en). Then,
by definition, if fe _o7{I'®), f also belongs in /([ (6+e¢) for some e Denoting
P-t defined on 7 (I'(5)) by P-1s, efc., that is, to set P-1; f(2)=(—1/2k(2ry/—1)")
chs)Br,k(z—( ¢) fd¢, we have by the uniqueness of the solution of Cauchy prob-
lem and theorem 2

(22) P15 f(&)=P-1s4: f(2), f& ¥ (TE+e), 2&I'0).

Hence P-i;f is (continued analytically on ['(0+e) and) holomorphic on I'(5+e).
This shows P-'f = o7 (I'(0). Hence QP-if also belongs in .7 (I'(%) by assumption.
By definition, @P-* is an integral operator and since we have

Q(z ) Brrle—0 7 (0)ls), =T,

where o7(I'(0)]s) is defined similarly as .7 (I'(3, &’) |s) and there exists a constant
M such that

19 (2, ) Brutz—0ll T s=M, 2€10),

QP-1 is a bounded operator. Moreover, since @O, 8/0z)=0 and Q(z, 8/dz) involves
at most 0/0zy, ---, Om-tfozm-1, to set

we have
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a .
Qi(z, 52)31’,13 (&) z1=0=0, i=1, -, n,

by lemma 4. Therefore we get

(29 Q5 5 Brst)=0tzillall), 210, 20, Hzn—\/le,w

Hence, if fe. o7 (T(0) and <8, then by (22), we get
IP-150 fllrcsn =P~ f|rey=0(8:+3a') [|8']]),

because w;=(2;+25)/2. But, since to define »: &7 (I'(0)— 7 T'D), >, by #f)
=FIT'®"), v (&7 TH) is dense in &7 {[)"), we have the lemma.
Corollary. If in (20), each P; (z, 8/02) satisfies

(24) Aijy oy in (R)=2017040 g (2), b"jz,---,fn(Z)EM (I'to, o',
bij,, ., in (2) is holomorphic if z, 25—0,

then, to set

Pl z)=r(5) el 5)

where P(0/0z) is a constant coefficients operator and involves dmjdzym and €z, 08/9z)
., om-tfgzm-1  QP-1
is a bounded linear operator defined on o7 ([, 0) with the value in o7 (T®, 9)|s)
and we have

(21y [|QP-1]|=0(3;+3y).

is a variable coefficients operator and involves al most 0/0z,, -

Proof. First we note that, if fe. o7 (I'(0, '), then QP-if should be (many
valued) meromorphic on I3, §') with poles on LN T, o). But, since we have

(25 Q2 52) Bri@) sr-0=0,

by lemma 4 and the form of €z, 9/0z), QP-'f is (many valued) holomorphic on
I3, &) by the same reason as above. Hence @P-tf maps o773, 8)) into 7 T(, 0)|s).
Moreover, by (24), we have

!Q( )B,k< H=0(zl), z&l@, o).

Hence we obtain (21) by the same reason as above.

8. Lemma 8. if P(z, 0/0z) satisfies the assumptions of lemma 7 and either of
01+0; or ||8]] is suﬁicienﬂy small, then there exists an integral operator E=FEp, ¢
Srom o7 ([0) into Y% ('), the completion of o7 (I'(0), such that
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(26 Plo 2 )EN Q=10 fe.rTH), 2<l0)
] gm-
Ef @) ei-=g B 1m0 = =g E @) i=a=0.

Proof. By (20), if either 8,4, or ||d]| is sufficiently small, theh we have

HQP-1]|<1.

Therefore, the Neumann series ngo(——l)m (QP-1ym converges as an operator

from .o7{T0) into &7 () and to set
(I+QP-1)-1= ] (~1p (QP-1p»,
m=0

we have ({4+QP-1)([+QP-1)-1=], the identity map of _o7 (I'(3). Hence to set
E:P—1([+QP—1)—1,

we have

Plo, 2)EN @=P(2) +Q(z 5 ) ENG)

=(P+Q) (P-HI+QP-1)11) (2)=1(2),

for fe o7 TP), z=I'(®). Moreover, since ([+QP-1)-1f is holomorphic on I (3) and

continuous on ['(5), we have

0 gm-1

Ef(@)|si=0=—7—Ef(2)] z1=0 :"':W

0z, Ef(2)] 21=0=0,

by theorem 2.

We note that since we may consider P-t to be an operator on :Q/ (I'(0), this
E can also be regardedto be an operator on Jﬂ\/ (C()).

Corollary. If P(z, 0/0z) satisfies the assumptions of the corollary of lemma 7

and assume each bij, .., .97 ([0, ') where 6,'+0)' can be taken arbitraly small,
and if 8,0, is sufficiently small, then there exists an integral operator E=Ep, f""*"s

from &7 (6, o) into l,é:/(l“ﬁ, Nls), the completion of 7 (I'(6, 0')|s, such that

(26) Pz, D) EN@=fa), fe.or TB TN 2lb, 7)
’ on-
Bf@)| smom=o—ES @) sm= =5t B @) =00
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‘Proof. First we note that by the definition of P-1, ‘we can define P-! for
the elements of o7 (T, 0)]s), and this extended P-! is also a bounded opera-
tor. Hence, we can extend P-! to be a bounded linear (integral operator from
Lé\/(l’(a, MNs) into M( (6, 5’)]5) and for this extended P-i, the corollary of
lemma 7 is also hold. Therefore, by (21), if 6,48; is sufficiently small, then we
have

llQP-1] <1,

where P-! is considered to be an operator on §/ {I'(6, 0')|s). Hence, by the same
reason as above, we have the theorem.

Note. JA/ {I'(6)) is the space of holomorphlc functions on I'{(3) which are conti-
nuous on I'(6). On the other hand, M {I'{5, 0")|s) is the space of those holomorphic
functions f on I'(3, 5’)'~S such' that to define v(f) by v(f) (wy, -+, wa)=flw:?, ... wa?),
nj2<larg. w;<m/2, i=1,--,m, v(f) is extended to be a continuous function on.

{ (s, ooy wa)l < lwi| <05, —Farg. wis, i=1,..n},

9. Theorem 3. If each coefficients of P (2, 0/0z) belongs in o7 (['(3)), then there
exists an integral operator E from o7 ([0)) into 7 ) such that (26) is hold,
Proof. We set ||QP-15/||=As. Then, if [2]<(A4s)-%, the Neumann series

(— )"x" (QP-1;:)* convrges on 7 {70 and equal to (/+iQP-1;7)-1. Hence

nz0
to set

E;sr =P~ {[+2QP-1;/)-1, §' =5,
E,;s,, satisfies (26) as an operator from 7 (TN into 4 {T'(®") for the differential
operator Pi(z, 8/0z2)=P(/0z)+ 6z, 3/0z), Moreover, by the definition of FE, 3,

there exists an analytic function Es (2, £ 2) on I'(@")xI'(0")x {2 |2]<(As)-1}
such that Es/ (2, §, ) is bounded on 1(0") x 7(0") for any (fixed) 2 and

(2) Ev,ifl)=] | Evla & 25 QdC.

But, since QP-1, is a cofnpact oper‘ator on L,é\/ (I(@")), by the theory of Fredholm,
E;Az, {, 2) can be continued on whole 2-space as an meromorphic function ([16]).
On the other hand, by the uniqueness of the solution of Cauchy proplem (of the
operator P(0/0z)) and by theorem 2, we have

(28) Ey(z, & DIIOXTO{A 121<5

—Ew(z, & AITE"x 10" % {A] '“<Zl,,7}’ =0 =0,
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Therefore, if |2| is small, then E;- (z, {, 2) is continued analytically on I'()x ['(5)
and bounded on 7(8)x 7(3). On the other hand, since Es (z &, A is holomorphic
at A=1 if||¢'|| or &'1+8'; is sufficiently small, E;s (z, £, A) is holomorphic at i=1.
Hence, by the theory of Fredholm, to set

(29) Ef@)=]  Ede & 07QdS, 2sl0), fe.or TO),
we have

Pl %) Ef@)=1z), 2&I0)

On the other hand, since we have by lemma 8,

Eui f@)| nimo=p Bt F@)| vmo=r =g Bt S eam0=0,
if |A|<(As)-t, we obtain
Ef@) sim0=5 B S @) | svm= = e B S @ im0,

by the theorem of identity. Therefore, we obtain the theorem.

Corollary. If Pz, 0/0z) is the form of (20) where each ai;, .. ;, (z) satisfies (24)
and o' satisfies the condition that 4, +52 can be taken arbitrary small, then there
exists an integral operator E from & TE, 8)|s) into 7 ("6, 8")|s) such that if
fe o7 I', ), then (26) is hold.

Proof. Since to set

—1

ST T oo ooy B HE—0) O, 620,

P15, 5016 fl2)=

we may define ([+AQPts—e, st et =200 [~ 18 QP omesorsef* if 2] <I| QP
s—e,8'+¢']|, and we have

Ed-—e,ﬁ’+e’,/\f(z): E5—5,5'+£’ (Z, C; '2) f(C)dC,

Jr(b‘-—s, 8/4e’)

where Es—e,s'4er,2=P-1({[+2QP-1s_, 571¢/)-t and E;_., 4. (2, {, ) is analytic on
I'o—e, 8'+e)xI'(@0—e 8 +e)x{4] [2]|<||@P-1s—c,s'+[|} and bounded on 76—,
d'+¢'). Therefore, by the same reason as above, we have the corollary.

Note. Since we know that if #(z) is holomorphic and P(z, 9/0z) u(z)=0, then
to set oa)=u(z)— 3 i (@, -+, 20), Where @)=Y 'z (@, - 2) +0 (|2 ),
v (2)is the solution of the equation

m—1

P(z, a%)v(z ( )2 2171 (2g, o+, 2n),

with the data v(2)] z,=0=(0/02:)v (2)] zy=¢="-=(07-1/0z;m-1) | ;,=9=0. Hence if P(z, 8/3z)
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satisfies the assumptions of theorem 3 or the corollary of theorem 3, then we

have on ['(d), or on I'(5, &)
a m—1

m—1
(30) u(z)zi;z 2iitt; (23, -+, 2n)—E [P (C, @> {;é Catnti (Cop -, Cn)}](z),

if Plz, 9/0z) u(2)=0, we o7 ([0) and uy, -, uss Z(OG)NL) or uc 76, 9)),

Uy, oy Une (06, 6)NL).
We denote the formal adjoint of P(z, 6/0z) by P'(z, 8/0z). Then, since

J [ amz’1+'"+mik
r(8)

A AF G O FO}daA N

m;
‘1 ‘R
o, .o,
iy G,

amil+~-~+mik-—k
Flz, {)

res. ... <
J‘ayil""’ Yik‘r(s) Yipoo Yik m;, —1 mik-—l

i i TR
FQdCi/N- NdLy),

aYa‘p---, Yi, 70)={w| wh:'":wik:O’ lellzajl'"" len'k[

:5,1';1—13,{7:1; Tty ik}u{jly Ty j"l—k}:{_li Ty n}},
we can rewrite (30) as follows:

(31) Uzs, -+, Zn)

m—1 -1

:g z2iu; (2g, v, zn)—L(a)[P’ (C, ;—C)E(z, C)} (;} ¢ oiui (Co, o, Cn)) dc

]

+ res, Yipn Yik[Piv""ik<C; a_c>

1<i1 < <ikgazJaY“"“: Y7 ()

-1

(B, 02 Gini (G, L) dGA NG|, Ble, O=Eifa, L, 1)
i=0

where P;,, .., i,{{, 8/9¢) is a differential operator determined by P(z, 8/dz) and it

has following properties.
, ? ) ] .
(32) Pi,, ., ,k<C, ﬁ)_o, if P(z, a—z)does not tnvolve

a??lil-}--"-f-?}ll-k

m m

if mi, =1, -, mi=1,
1y ik
-02ip

62,'1
(SZ)I deg. x Piy, .., (S, X)=M—F,

R

P ", Zf Mz'1+"'+772ik>M.

if P<z, i)does not involve
az S .k
aZzl -~-asz
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