Some Extensions of Borel Transformation

By Akira Asada

Department of Mathematics, Faculty of Science,
Shinshu University
(Received Oct. 5, 1974)

Introduction.

In this note, we give some extensions of Borel transformation.
Borel transformation is defined by

$$
\mathscr{S}[\varphi(z)](\zeta)=\sum_{i_{1}, \cdots, i_{n}} \frac{a_{n}, \cdots, \cdots i_{n}!}{i_{1}} \zeta_{1} \ldots \zeta_{n} i_{n},
$$

where $\varphi(z)=\sum a_{i_{1}}, \cdots, i_{n} z_{1} i_{1} \cdots z_{n} i_{n}$ is a germ of holomorphic functions at the origin. To denote the ring of germs of holomorphic functions at the origin by \mathscr{O}_{n}, \mathscr{S}_{3} gives a ring isomorphism of \mathscr{O}^{n} and $\operatorname{Exp}\left(\mathbf{C}^{n}\right)$, where $\operatorname{Exp}\left(\mathbf{C}^{n}\right)$ is the ring of finite exponential type functions on \mathbb{C}^{n} with the multiplication f, where

$$
(f \sharp g)(\zeta)=\frac{d}{d \zeta} \int_{0}^{\zeta} f(\zeta-\tau) g(\tau) d \tau .
$$

Since the algebraic closure $\mathscr{\mathscr { O }}_{n}$ of the qtotient field of \boldsymbol{O}_{n} is the field of (convergence) Puiseux series, \mathscr{S}^{3} is extended to a map of $\mathscr{\mathscr { H }}_{n}$ if we define $\mathscr{R}\left[z_{1}{ }^{1 / p}\right]$. This is done to define $\mathscr{B}\left[z_{1}^{1 / p}\right]=(1 / \Gamma(1+1 / p))_{1}^{1 / p}$, because we get

$$
\zeta^{a} \# \zeta^{b}=\frac{\Gamma(a+1) \Gamma^{(}(b+1)}{\Gamma(a+b+1)} \zeta^{a+b} .
$$

But, since some elements of the quotient field of $\operatorname{Exp}\left(\mathrm{C}^{n}\right)$ is not a function, we define \mathscr{O} on $\tilde{\mathscr{M}}_{n}$ to satisfy $\mathscr{\mathscr { }}[\varphi]$ to be a function. Then, the solution of Cauchy problem $P(\partial / \partial \zeta) f=0, \partial^{k} f /\left.\partial^{k k}\right|_{1} s_{1}=0=g_{k+1} \in \operatorname{Exp}\left(\mathbf{C}^{n-1}\right), k=0,1, \cdots, m-1$, $P(z)=z_{1}^{n n}+P_{1}\left(z_{2}, \cdots, z_{n}\right) z_{1}^{m-1}+\cdots+P_{m}\left(z_{2}, \cdots, z_{n}\right)$ is given by

$$
f(\xi)=\mathscr{F}\left[\sum_{i} \sum_{1 \leq p_{i}=r_{i}}\left(1-z_{1} \sigma_{i}\left(z_{2}-1, \cdots, z_{n}^{-1}\right)\right)-\sigma_{i} \varphi_{i, \rho_{i}}\left(z_{2}, \cdots, z_{n}\right)\right](\xi),
$$

$$
P(z)=\Pi_{i}\left(z_{1}-\sigma_{i}\left(z_{2}, \cdots, z_{n}\right)\right)^{r_{1}}, \sum_{i} \sum_{\rho_{i}} c_{k, \rho_{1}\left(\sigma_{i}{ }^{k} \varphi_{i}, \rho_{i}\right)=\mathscr{S}^{-1}\left[g_{k}\right], ~}^{\text {, }}
$$

where $c_{k},_{\rho_{i}}$ is given by $(1-x)^{-\rho_{i}}=\sum_{k} c_{k},{ }_{\rho_{i}} x k(\S 1)$.
Moreover, since we get

$$
\sum_{n} \frac{t^{n}}{n!}(\log x)^{\# n}=\frac{\mathrm{e}^{-r t}}{\Gamma(1+t)} x^{t} \quad, \quad \gamma \text { is Euler's constant, }
$$

to define

$$
[\log z](\zeta)=\log \zeta+\gamma,
$$

we can extend Borel transformation for the functions which involve $\log z$ (Appendix).

In §2, we consider topological extension of Borel transformation. In fact, if $F(D)$ is a function space on $D(\subset \mathbb{R})$ such that $F(D)$ contains $\operatorname{Exp}\left(\mathbf{C}^{n}\right)$ (by the restriction map), $\operatorname{Exp}\left(\mathbb{C}^{n}\right)$ is dense in $F(D)$ and if $\left\{f_{m}\right\}, f_{m} \in \operatorname{Exp}\left(\mathbb{C}^{n}\right)$ converges uniformly to f on \mathbb{C}^{n} (in wider sense), then $\left\{f_{m}\right\}$ converges to f by the topology of $F(D)$, then we can construct the largest subspace $F(D)_{S}$ of $F(D)$ such that Cauchy problem is solved and well posed for the data in $F(D)_{S}$ and the smallest space $F(D)^{s}$ such that there is a homomorphism from $F(D)^{s}$ onto $F(D)$ and for given operator, Cauchy problem is solvable and well posed for the data in $F(D)^{s}$, and Borel transformation is extended to have $\mathrm{F}(D)_{S}$ (or $\left.F(D)^{S}\right)$ to be its image and the solution of the Cauchy problem is written explicitly by this extended Borel transformation.

§ 0 Review of the properties of Borel transformation

1. In this \S, we review the definition and properties of Borel transformation.

Definition. Let $\varphi(z)$ be a germ of holomorphic function at the origin of C^{n}, the \dot{n}-dimensional complex euclidean space, given by $\varphi(z)=$
$\sum_{i_{1}, \cdots, i_{n}} a_{i_{1}}, \cdots, i_{n} z_{1} i_{1} \cdots z_{n} i_{n}$, then its Borel transformation $\mathscr{S}[\varphi](\zeta)$ is a power series in $\zeta=\left(\zeta_{1}, \cdots, \zeta_{n}\right)$ given by
(1) $\mathscr{B}[\varphi](\zeta)=\sum_{i_{1}, \cdots, i_{n}} \frac{a_{i_{1}}, \cdots, i_{n}}{i_{1}!\cdots i_{n}!} \zeta_{1} i_{1} \cdots \zeta_{n} i_{n}$.

By definition, Borel transformation has the following properties.
(i). If $\varphi(z)$ converges on $\left\{z\left|\left|z_{i}\right| \leqq \varepsilon_{i}\right\}\right.$, then
(2)

$$
\begin{aligned}
>[\varphi](\zeta)= & \frac{1}{(2 \pi \sqrt{-1})^{n}} \int_{\left|z_{1}\right|=\varepsilon_{1}} \cdots \int_{\left|z_{n}\right|=\varepsilon_{n}} \frac{1}{z_{1} \cdots z_{n}} e^{\frac{\zeta}{z}} \varphi(z) d z_{1} \cdots d z_{n} \\
& \frac{\zeta}{z}=\frac{\zeta_{1}}{z_{1}}+\cdots+\frac{\zeta n}{z_{n}}
\end{aligned}
$$

(ii). $\quad \omega[\varphi](\zeta)$ is a finite exponential type function on C^{n} and if $f(\zeta)$ is a finite exponential type function on \mathbb{C}^{n}, then there is unique germ of holomorphic function $\psi(z)$ at the origin of C^{n} such that $f(\zeta)=\mathscr{C}[\phi](\zeta)$.
(iii). If φ, Ψ are gems and a, b are constants, then

$$
\begin{align*}
& \mathscr{S}[a \varphi+b \phi]=a \mathscr{S}[\varphi]+b \mathscr{B}[\phi], \tag{3}\\
& \mathscr{D}[\varphi \cdot \phi]=\mathbb{D}[\varphi] \#[\phi],
\end{align*}
$$

where $f \# g$ is given by

$$
\begin{equation*}
(f \sharp g)(\zeta)=\frac{\partial^{n}}{\partial \zeta_{1} \cdots \partial \zeta_{n}} \int_{0}^{\zeta_{1}} \cdots \int_{0}^{\zeta_{n}} f\left(\zeta_{1}-\tau_{1}, \cdots, \zeta_{n}-\tau_{n}\right) g\left(\tau_{1}, \cdots, \tau_{n}\right) d \tau_{1} \cdots d \tau_{n} \tag{4}
\end{equation*}
$$

(iv). To define $\varphi \otimes \Psi\left(z_{1}, \cdots, z_{n_{+} m}\right)=\varphi\left(z_{1}, \cdots, z_{n}\right) \Psi\left(z_{n_{+1}}, \cdots, z_{n_{+} m}\right)$, etc., we have

$$
\begin{equation*}
\mathscr{S}[\varphi \otimes W]=\left(\mathscr{S}^{3}[\varphi]\right) \times\left(\mathscr{S}^{3}[\phi]\right) \tag{5}
\end{equation*}
$$

(v). For any i, we get

$$
\begin{equation*}
\frac{\partial}{\partial \zeta_{i}} \mathscr{S}^{\top}[\varphi](\zeta)=\mathscr{S}\left[\left(z_{i}^{-1} \varphi\right)_{+}\right](\zeta) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\zeta_{i}} \mathscr{B}[\varphi](\zeta) d \zeta_{i}=\mathscr{D}\left[z_{i} \varphi\right](\zeta) \tag{7}
\end{equation*}
$$

Here for $\phi(z)=\sum_{i_{1}=-\infty, \cdots, i_{n}=-\infty}^{i_{1}=\infty, \cdots, i_{n}=\infty} \quad a_{i_{1}}, \cdots, i_{n} z_{1} i_{1} \ldots z_{n} i_{n}, \psi_{+}$means

$$
\begin{equation*}
\phi_{+}(z)=\sum_{i_{1} \geqq 0, \cdots, i_{n} \geqq 0} a_{i_{1}}, \cdots, i_{n} z_{1} i_{1} \ldots z_{n} i_{n} . \tag{8}
\end{equation*}
$$

(vi). For any i, we get

$$
\begin{equation*}
\zeta_{i} \mathscr{B}[\varphi(z)](\zeta)=\wp^{3}\left[z_{i} \varphi(z)^{\prime}+z_{1} \frac{2 \partial \varphi(z)}{\partial z_{i}}\right](\zeta) \tag{9}
\end{equation*}
$$

By (ii) and (iii), to denote \mathbb{C}^{n} the ring over \mathbb{C} of germs of holomorphic functions of C^{n} at the origin with the usual addition and multiplication and by $\operatorname{Exp}\left(\mathrm{C}^{n}\right)$ the ring over \mathbf{C} of finite exponential type functions on C^{n} with the usual addition and the \sharp-product, we get a ring isomorphism \mathscr{D} over \mathbf{C} by
$\mathscr{S}: \mathscr{O}^{n} \rightarrow \operatorname{Exp}\left(\mathrm{C}^{n}\right), \quad \mathscr{S}[\varphi]$ is the Borel transformation of φ.
2. As usual, we denote by $\mathscr{E} \mathrm{R}^{n^{1}}$, the space of compact carrier distributions on \mathbb{R}^{n}. For $T \in \mathscr{E} \mathbb{R}^{n^{\prime}}$, we define a $\operatorname{map} t_{\alpha}, \alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in \mathbb{C}^{n}$, is fixed, by

$$
\begin{equation*}
\iota_{\alpha}(\mathrm{T})(z)=\frac{1}{(2 \pi \sqrt{-1})^{n}} \mathrm{~T}_{s}\left[\frac{1}{\left(1-\alpha_{1} \zeta_{1} z_{1}\right) \cdots\left(1-\alpha_{n} \zeta_{n} z_{n}\right)}\right] . \tag{10}
\end{equation*}
$$

We note that to define $\iota(T)(w)$ by

$$
\iota(T)(w)=\frac{1}{w_{1} \cdots w_{n}} \iota_{\alpha}(T)\left(\frac{1}{\alpha_{1} z_{1}}, \cdots, \frac{1}{\alpha_{n} z_{n}}\right), \quad w_{i}=\frac{1}{\alpha_{i} z_{i}},
$$

that is,,$(T)(w)=1 /(2 \pi \sqrt{-1})^{n} \cdot T\left[1 /\left(w_{1}-\zeta_{1}\right) \cdots\left(w_{n}-\zeta_{n}\right)\right]$, we get

$$
\begin{align*}
& T[f]=\lim _{\varepsilon_{1}, \cdots, c_{n} \rightarrow 0} \frac{1}{\left(2 \pi \sqrt{-1)^{n}}\right.} \int_{\mathrm{R}^{n}}\left(\sum_{\sigma_{1}=0, \cdots, \sigma_{n}=0}(-1)^{\sigma_{1}+\cdots+\sigma_{n}(T)\left(x_{1}+\right.}\right. \tag{11}\\
& \left.\left.\quad+(-1)^{\sigma_{1}} \sqrt{-1} \varepsilon_{1}, \cdots, x_{n}+(-1)^{\sigma_{n}} \sqrt{-1} \varepsilon_{n}\right)\right) f\left(x_{1}, \cdots, x_{n}\right) d x_{1} \cdots d x_{n}
\end{align*}
$$

if $f \in \mathscr{E}_{\mathrm{P}^{n}([4],[9],[10]) .}$
By the definitions of \mathscr{B} and ι_{α}, if we take $\alpha=-2 \pi \sqrt{-1}(=(-2 \pi \sqrt{-1}, \cdots$, $-2 \pi \sqrt{-1})$, we have

$$
\begin{equation*}
\mathscr{F}[T]=\mathscr{\mathscr { S }}\left[\ell-2 \pi_{\sqrt{ }}(T)\right], \tag{12}
\end{equation*}
$$

Where \mathscr{F} is the Fourier transformation of T. In other word, we have the following commutative diagram.

Note. We denote by A^{n} and $\mathfrak{A t}^{n}$ the spaces of real analytic functions on \mathbb{R}^{n} and entire functions on C^{n} with the normally convergence topology. Then, since $\mathscr{E} \mathrm{R}^{n} \supset A^{n} \supset \mathfrak{H}^{n}$, we have $\mathscr{E} \mathrm{R}^{n^{\prime}} \subset \mathbf{A}^{n \prime} \subset \mathfrak{H}^{n \prime}$, where $A^{n \prime}$ and $\mathfrak{N}^{n \prime}$ are the dual spaces of A^{n} and \mathfrak{Z}^{n}, and ι_{α} is defined on $A^{n \prime}$ and $\mathfrak{H}^{n \prime}$. Moreover, we know ([5], [7]),

$$
\begin{equation*}
\iota_{n}: \mathbb{R}^{\left(n^{\prime}\right.} \cong \mathcal{O}_{n} \tag{13}
\end{equation*}
$$

and the duality between \mathscr{O}_{n} and \mathfrak{A}^{n} is given by

$$
\begin{aligned}
<f, \varphi>= & \frac{(-1)^{n}}{(2 \pi \sqrt{-1})^{n}} \int_{\left|z_{1}\right|=\varepsilon_{1}}-\cdots \int_{\left|z_{n}\right|=\varepsilon_{n}-1} \frac{1}{z_{1} \cdots z_{n}} f\left(z_{1}, \cdots, z_{n}\right) \\
& \varphi\left(\frac{1}{z_{1}}, \cdots, \frac{1}{z_{n}}\right) d z_{1}, \cdots d z_{n} \quad, \quad f \in \mathfrak{Y}^{n}, \varphi \in O_{n}
\end{aligned}
$$

if φ is holomorphic on $\left\{z\left|\left|z_{i}\right| \leqq \varepsilon_{i}\right\}\right.$.
§1 Algebraic extension of Borel transformation
3. In this \S, we extend Borel transformation to be a map from the algebraic closure (of the quotient field) of O_{n} to the algebraic closure (of the quotient field) of $\operatorname{Exp}\left(\mathbf{C}^{n}\right)$.

First we note that the algebraic closure \mathscr{A}_{n} of $\mathscr{A}_{n} n$, the quotient field of O_{n}, is the (convergence) Puiseux series field of n-variables over C, that is

$$
\begin{align*}
& \operatorname{Gal}\left(\tilde{\mathscr{I}}_{n / \mathscr{A}}^{n}\right)=\mathrm{Q} / \overline{\mathrm{Z} \oplus \cdots} \bar{n}(\oplus \mathrm{Q} / \mathrm{Z} \tag{14}\\
& \tilde{\mathscr{H}}_{n}=\mathscr{A}_{n}\left(z_{1}^{1 / 2}, z_{1}^{1 / 3}, \cdots, \quad z_{1}^{1 / p}, \cdots, \quad z_{2}^{1 / 2}, \cdots, z_{n}^{1 / 2}, \cdots, z_{n}^{1 / p}, \cdots\right)
\end{align*}
$$

This can be shown by algebraic method (cf. [6]). But here we give an analytic proof. For this purpose, we use

Lemma 1. If $f(z)$ is holomorphic on $\left\{z\left|\left|z_{i}\right|<a_{i}\right\}\right.$, then there exist $0 \leqq \varepsilon_{i}<\varepsilon_{i}{ }^{\prime}$ $=a_{i}, \quad i=1, \cdots, n$ such that $f(z) \neq 0$ if $\varepsilon_{i}<\left|z_{i}\right|<\varepsilon_{i}{ }^{\prime}$, unless $f(z)$ is identically equal to 0.

Proof. Since the lemma is true for $n=1$, we use induction and assume the lemma is true for $(n-1)$-variables functions. Then to set $f(z)=z_{1}{ }^{k} h(z), h\left(0, z_{2}\right.$, $\left.\cdots, z_{n}\right)$ is not identically equal to 0 , there exist $\alpha_{1}>0, i=2, \cdots, n$, such that $h(0$, z_{2}, \cdots, z_{n}) does not vanish on $T=\left\{z\left|z_{1}=0,\left|z_{i}\right|=\alpha_{1}, i \geqq 2\right\}\right.$. Then, since min. $z \in T$ $|h(z)| \supsetneqq 0$, there exists $\varepsilon_{1}^{\prime}>0$ such that $h(z) \neq 0$ if $\left|z_{1}\right|<\varepsilon_{1}{ }^{\prime},\left|z_{i}\right|=\alpha_{i}, i \geqq 2$. This shows the lemma.

Corollary. If $g(z) \in \mathbb{R}_{n}$, then $g(z)$ is expressed as

$$
\begin{equation*}
g(z)=\sum_{i_{1}=-\infty, \cdots, i_{n}=-\infty}^{i_{1}=\infty, \ldots, i_{n}=\infty} a_{i_{1}}, \ldots, i_{n} z_{1} i_{1} \ldots z_{n} i_{n}, \quad \varepsilon_{i}<\left|z_{i}\right|<\varepsilon_{i}^{\prime} \tag{15}
\end{equation*}
$$

Note. Since $g(z)$ is meromorphic, although there may by sup-lim $i_{i_{k \rightarrow-\infty}} \mid a_{i_{1}}$, $\cdots, i n \mid \neq 0$, there exists an integer M such that

$$
\begin{equation*}
a_{i_{1}}, \cdots, i_{n}=0, \text { if } i_{1}+\cdots+i_{n}<M \tag{16}
\end{equation*}
$$

Proof of (14). If w is algebraic over . $\mathscr{l}_{n} n$, then by lemma 1 , w has no
singularity or branching point on $\Gamma=\left\{z\left|\varepsilon_{i}<\left|z_{i}\right|<\varepsilon_{i}{ }^{\prime}\right.\right.$ for some $\left.0<\varepsilon_{i}<\varepsilon_{i}^{\prime}\right\}$.
Then, since $\pi_{1}(\Gamma)=\widetilde{Z \oplus}^{n} \cdots \oplus\left(\begin{array}{l}\text { and } \\ \text { and }\end{array}\right.$ Γ only finite times, there exist integers $r_{1} \geqq 1, \cdots, r_{n} \geqq 1$ such that to set $G(r)$ the subgroup of $\pi_{1}(I)$ generated by $r_{1} e_{1}, \cdots, r_{n} e_{n}, e_{1}, \cdots, e_{n}$ are the generator of $\pi_{1}(\Gamma), \widetilde{\Gamma} / G(r)$ covers $\widehat{\Gamma}$, where $\tilde{\Gamma}$ is the universal covering space of Γ. Then, since $\widetilde{\Gamma} / G(r)$ and its projection $p: \widetilde{\Gamma} / G(r) \rightarrow \Gamma$ are given by

$$
\begin{aligned}
& \tilde{\Gamma} / G(r)=\left\{y\left|r_{i} \sqrt{\varepsilon_{i}}<\left|y_{i}\right|<r_{i} \sqrt{\varepsilon_{-i}^{\prime}}\right\},\right. \\
& p\left(\left(y_{1}, \cdots, y_{n}\right)\right)=\left(y_{1} r_{1}, \cdots, y_{n} r_{n}\right), \text { or } y_{i}=z_{i}{ }^{1 / r_{i}}, \quad i=1, \cdots, n,
\end{aligned}
$$

w can be expressed as a Puiseux series by (15) ${ }^{\prime}$, that is

$$
\begin{align*}
& w= i_{i_{1}=\infty, \cdots, i_{n}=\infty}^{i_{1}=-\infty, \ldots, i_{n}=-\infty} \tag{15}\\
& a_{i_{1}}, \ldots, i_{n}=0, \quad \text { if } i_{1}+\cdots+i_{n} z_{1} i_{1} / r_{1} \ldots z_{n} i_{n} / r_{n}, \\
& \text { for some } M .
\end{align*}
$$

By (14)' (and (3) i and (5)), to extend Borel transformation on $\widetilde{\mathscr{C}}_{n}$, it is sufficient to define Borel transformation of $z_{i^{1 / p}}$ for any i and p.
4. Lemma 2. If Re. $a>-1$, Re. $b>-1$, then
$(17)^{\prime} \quad \zeta a \sharp \zeta^{b}=\frac{\Gamma(a+1) \Gamma(b+1)}{\Gamma(a+b+1)} \zeta a+b$.
Here, in the definition of $\#$-product, integral is taken along the path $\{t \zeta, 0 \leqq t$ $\leqq 1\}$.

Proof. By definition, we get

$$
\begin{aligned}
\zeta^{a} \# \zeta b & =\frac{d}{d \zeta} \int_{0}^{\zeta}(\zeta-\tau) a \tau^{b} d \tau=\frac{d}{d \zeta} \int_{0}^{1} \zeta^{a+b+1}(1-\sigma)^{a} d \sigma \quad\left(\sigma=\frac{\tau}{\zeta}\right) \\
& =(a+b+1) B(a+1, b+1) \zeta^{a+b}=\frac{\Gamma(a+1) \Gamma(b+1)}{\Gamma(a+b+1)} \zeta^{a+b} .
\end{aligned}
$$

Corollary. For any natural number p, we have

$$
\begin{equation*}
\left(\zeta^{1 / p}\right) \# p=\zeta^{1 / p \# \cdots} \cdots \zeta^{1 / p}=\left\{\Gamma\left(\frac{1}{p}+1\right)\right\} p \zeta . \tag{18}
\end{equation*}
$$

Proof. By (17)', we get

$$
\left(\zeta_{1 / p) \# p}=\left\{\Gamma\left(\frac{1}{p}+1\right)\right\} \frac{p\left(\frac{2}{p}+1\right) \cdots\left(\frac{p}{p}+1\right) \Gamma\left(\frac{2}{p}+1\right) \cdots \Gamma\left(\frac{p-1}{p}+1\right)}{\left(\frac{2}{p}+1\right) \cdots\left(\frac{p}{p}+1\right) \Gamma\left(\frac{2}{p}+1\right) \cdots \Gamma\left(\frac{p-1}{p}+1\right) \Gamma(2)} \zeta\right.
$$

$$
=\left\{\Gamma\left(\frac{1}{p}+1\right)\right\}^{p} \zeta
$$

Since $\zeta \#(-1) \sharp f(\zeta)=d f(\zeta) / d \zeta$ by $(6)^{\prime}$, we have by (17) ${ }^{\prime}$

$$
\begin{aligned}
& \zeta-n \# \zeta^{a} a=\frac{d n \zeta^{a}}{d \zeta^{n}}, \quad \zeta-n \sharp \zeta^{-m}=\frac{d^{n+m}}{d \zeta^{n+m}}, \\
& \zeta^{a}{ }_{\#}^{4} \zeta^{-a-n}=\Gamma(a+1) \Gamma(-a-n+1) \frac{d^{n}}{d \zeta^{n}},
\end{aligned}
$$

where a and b are not negative integers.
By (14), (18) and (17), the algebraic closure $\mathscr{E} \pi /\left(\mathrm{C}^{n}\right)$ of the quotient field \mathscr{E} a/k
 of ρ_{i} is a negative integer $\}$ and $\left\{\zeta_{j_{1}} \rho_{1} \ldots \zeta_{j_{m}} \rho_{m} \partial n_{1}+\cdots+n k / \partial \zeta_{i_{1}} n_{1} \ldots \partial \zeta_{i k}{ }^{n k}, \quad k \geqq 1, \quad k+m\right.$ $=n,\left\{i_{1}, \cdots, i_{k}\right\} \cup\left\{j_{1}, \cdots, j_{m}\right\}=\{1, \cdots, n\}$ and none of $\rho_{i}, i \in\left\{j_{1}, \cdots, j_{m}\right\}$ is a negative integer $\}$ as a \mathbf{C}-module.

We denote by $\widetilde{\mathscr{E} \otimes \mathscr{A}}\left(\mathrm{C}^{n}\right)_{+}$the submodule of $\widetilde{\mathscr{C}} \cdot \neq\left(\mathrm{C}^{n}\right)$ consisted by those elements that are realized by (some multi-valued) function. That is, the element of $\mathscr{E} a / 2$ $\left(\mathrm{C}^{n}\right)$ whose (any) Puiseux expansion does not involve the term which involves ∂^{k} / ∂ $\zeta_{i}{ }^{k}$ for some i and k. By definition there is a projection π_{+}(as a \mathbf{C}-module) from

Note. By definition, wehave
and the integral closure $\widehat{\operatorname{Exp}}\left(\mathbf{C}^{n}\right)\left(\right.$ in $\mathscr{E} \mathscr{\mathscr { y }}\left(\mathbf{C}^{n}\right)$) is contained in $\tilde{\mathscr{E}} \tilde{\mathscr{F}} /\left(\mathbf{C}^{n}\right)_{+}$.
Since Borel transformation \mathscr{P} gives an isomorphism from \mathscr{O}_{n} onto $\operatorname{Exp}\left(\mathrm{C}^{n}\right)$, it is extended to an isomorphism $\widetilde{\mathscr{S}^{\prime}}: \tilde{\mathscr{M}}_{n} \cong \widetilde{\mathscr{E} \times y}\left(\mathrm{C}^{n}\right)$. By (18) (and (17)), explicitly, $\widetilde{\mathscr{V}}$ is given by

$$
\begin{equation*}
\widetilde{\mathscr{B}}\left[z_{i}^{1 / p}\right]=\frac{1}{\Gamma\left(\frac{1}{p}+1\right)^{\zeta_{i}^{1 / p}}, \quad \widetilde{\mathscr{S}}\left[z_{i}{ }^{-n}\right]=\frac{\partial^{n}}{\partial \zeta_{1}{ }^{n}} ~ . ~} \tag{19}
\end{equation*}
$$

To fix the above $\mathscr{\mathscr { O }}$, we define
Definition. The Borel transformation \mathscr{S}^{\prime} of $\mathscr{\mathscr { I }}_{n}$ is the map from $\tilde{\mathscr{H}}_{n}$ onto $\tilde{E}_{\mathscr{E}} \tilde{q}_{\left(\mathrm{C}^{n}\right)_{+}}$given by

$$
\begin{equation*}
\mathscr{S}[w]=\pi_{+} \mathscr{\mathscr { B }}[w] . \tag{20}
\end{equation*}
$$

By definition, if w is given by Puiseux series (15), then
$(20)^{\prime}$

$$
\mathscr{B}[w](\zeta)=\sum_{i_{1}=-\infty, \cdots, i_{n=-\infty}}^{i_{1}=\infty, \cdots, i_{n=-\infty}} \frac{a_{i_{1}}, \cdots, i_{n}}{\Gamma\left(i_{1} / r_{1}+1\right) \cdots \Gamma\left(i_{n} / r_{n}+1\right)} \zeta_{1}^{i_{1} / r_{n} \cdots \zeta_{n} i_{n} / r_{n}},
$$

where $1 / \Gamma\left(i_{1} / r_{1}+1\right) \cdots T\left(i_{n} / r_{n}+1\right)=0$ if some of i_{k} / r_{k} is a negative integer.
Lemma 3. (1). S $\boldsymbol{S}^{[}[w]$ converges on $\Gamma=\left\{z\left|\varepsilon_{i}<\left|z_{i}\right|<\varepsilon_{i}\right\}\right.$ if w is given by (15) and it converges on Γ.
(ii). If u is integral over \mathcal{O}_{n}, then the Riemann surface of $\mathscr{B}^{\prime}[u]$ covers \mathbb{C}^{n}.
(iii). If Ψ belongs in $\varepsilon_{\mathscr{s}} y^{\prime}\left(\mathrm{C}^{n}\right)$, then

$$
\begin{equation*}
\mathscr{O}[\Psi](\zeta)=\left.\frac{1}{\left(2 \pi \sqrt{-1)^{n}}\right.}\right|_{\left|z_{1}\right|=\varepsilon_{1}} \cdots \int_{\left|z_{n}\right|=\varepsilon_{n}} \frac{1}{z_{1} \cdots z_{n}} e^{\xi / z} \Psi(z) d z_{1} \cdots d z_{n}, \tag{2}
\end{equation*}
$$

if $\Psi(z)$ is holomorphic on $\left\{z\left|\left|z_{i}\right|=\varepsilon_{i}\right\}\right.$.
Proof. (i) follows from (16). Since $\mathscr{T}[u]$ satisfies the equation

$$
\mathscr{B}[u] \# m+\mathscr{B}\left[\varphi_{1}\right] \# \mathscr{B}[u] \#(m-1)+\cdots+\mathscr{\mathscr { B }}\left[\varphi_{m}\right]=0,
$$

if u satisfies the equation $u^{m}+\varphi_{1} u^{m-1}+\cdots+\varphi_{m}=0$, we have (ii) by (18) and the fact that each $\mathscr{\mathscr { S }}\left[\varphi_{i}\right]$ converges on \mathbf{C}^{n}). (2) follows from the definition.

Note. On $\widetilde{\Gamma} / G(r)$, to set $y_{i}=z_{i} 1 / r i, i=1, \cdots, n$, we set

$$
\begin{gathered}
r_{1}, \cdots, r_{n} \\
e \cdots, \cdots, \cdots, m_{n}
\end{gathered} \sum_{i_{1} \geqq m_{1}, \cdots, i_{n} \geqq m_{n}} \frac{y_{1}^{i_{1} \ldots y_{n} i_{n}}}{\Gamma\left(i_{1} / r_{1}+1\right) \cdots \Gamma\left(i_{n} r_{n}+1\right)},
$$

where $1 / \Gamma\left(i_{1} / r_{1}+1\right) \cdots \Gamma\left(i_{n} / r_{n}+1\right)=0$ if some of i_{k} / r_{k} is a negative integer, then to set $\eta_{i}=\zeta_{i}^{1 / r_{i}}$, we have
$(2)^{\prime \prime}$

$$
\begin{gathered}
\mathscr{T}[w]=\lim _{m_{1} \rightarrow-\infty, \cdots, m_{n} \rightarrow-\infty} \frac{1}{(2 \pi \sqrt{-1})^{n}} \int_{\left|y_{1}\right|=\varepsilon_{1}} \cdots \int_{\left|y_{n}\right|=\varepsilon_{n}} \frac{1}{y_{1} \cdots y_{n}} . \\
\begin{array}{c}
r_{1}, \cdots, r_{n} \\
e_{m_{1}, \cdots, m_{n}}\left(\frac{\eta_{1}}{y_{1}}, \cdots, \frac{\eta_{n}}{y_{n}}\right) w\left(y_{1}, \cdots, y_{n}\right) d y_{1} \cdots d y_{n} .
\end{array} . . . \begin{array}{ll}
\end{array} .
\end{gathered}
$$

By (2) $)^{\prime \prime}$, we can show analytically if $\sum a_{i_{1}}, \cdots, i_{n}{ }^{\prime} z_{1} i_{1} / r_{1} \ldots z_{n} i_{n} / r_{n}$ is an analytic continuation of w, then $\sum a_{i_{1}}, \cdots, i_{n} / / \Gamma\left(i_{1} / r_{1}+1\right) \cdots \Gamma\left(i_{n} / r_{n}+1\right) \zeta_{1} i_{1 / r_{1}} . \cdots \zeta_{n} i_{n} / r_{n}$ is an analytic continuation of $\mathscr{B}[w]$. In fact, since the branching points and poles of w are given by $\varphi(z)=0, z \in \mathcal{O}_{n}$, to set

$$
\varphi(z)=\sum_{I} z^{I} \varphi_{I}(z), \quad I=\left(i_{1}, \cdots, i_{n}\right), z^{I}=z_{1} i_{1} \cdots z_{n}^{i_{n}}, \quad \varphi_{I}(0) \neq 0,
$$

any Puiseux expansion of w covers a connected component Γ_{i} of $U(0)-\left\{z| | z^{I} \mid=\right.$
$=\left|z^{J}\right|$ for some $\left.I, I\right\}$. But if $z_{0} \in \partial \Gamma_{i}$ and $\varphi\left(z_{0}\right) \neq 0$, the Riemann surface of w which covers such Γ_{j} that $z_{0} \in \partial \Gamma_{j}$ can be extended to cover z_{0} and since on which (2)" is hold, we have the assertion.
5. Definition. We set $\widetilde{\mathscr{S}}^{-1} \pi_{+}, \widetilde{\mathscr{S}}=p_{+}$and set
(21) $\quad p_{+} w=w_{+}$.

Theorem 1. Borel transformation (of $\tilde{\mathscr{C}}_{n}$) has the following properties.
(i). $\mathscr{B}[w]=0$ if and only if w belongs in ker. p_{+}, that is, each term of Puiseux expansion of w involve negative power of some z_{i}.
(ii). If $v, w \in \mathscr{M}_{n}$ and a, b are constants, then
(3)i ${ }^{\prime} \quad \mathscr{S}[a v+b w]=a \mathscr{S}[v]+b \mathscr{B}[w]$,
(3) $\mathrm{ii}^{\prime} \quad \mathscr{B}[v w]=\pi_{+}(\mathscr{B}[v] \# \mathscr{B}[w])$. In (3)ii', if v, w both contained in $\hat{\mathcal{O}}_{n}$, the integral closure of \mathscr{O}_{n}, then
(3) ii $\mathscr{S}[v w]=\mathscr{S}[v] \mathbb{H}[w]$.
(iii). To define $v \otimes w$, etc., similarly as $\varphi \otimes \phi$, we have
(5) ${ }^{\prime} \quad \mathscr{S}[v \otimes w]=\mathscr{S}[v] \otimes \mathscr{S}[w]$.
(iv). For any i, we get
(6) $\frac{\partial}{\partial \zeta_{i}} \mathscr{\mathscr { S }}[w]=\mathscr{S}\left[z_{i}-1 w\right]$.
(9) ${ }^{\prime}$

$$
\zeta_{i} \mathscr{\mathscr { K }}[w]=\mathscr{\mathscr { S }}\left[z_{i} w+z_{i} \frac{2 \partial w}{\partial z_{i}}\right] .
$$

Theorem 2. If $P(e / \partial \zeta)$ is a constant coefficients partial differential operator given by

$$
P\left(\frac{\partial}{\partial \zeta_{5}}\right)=\frac{\partial^{m}}{\partial \zeta_{1}^{m}}+P_{1}\left(\frac{\partial}{\partial \zeta_{2}}, \cdots, \frac{\partial}{\partial \zeta_{n}}\right) \frac{\partial^{m-1}}{\partial \zeta_{1}^{m-1}}+\cdots+P_{m}\left(\frac{e}{\partial \zeta_{2}}, \cdots, \frac{\partial}{\partial \zeta_{n}}\right),
$$

then its solution with the data

$$
\frac{\partial f}{e \zeta_{1} k}\left(0, \zeta_{2}, \cdots, \zeta_{n}\right)=g_{k_{+1}}\left(\zeta_{2}, \cdots, \zeta_{n}\right), 0 \leqq k \leqq m-1, \quad g_{k} \in \operatorname{Exp}\left(\mathrm{C}^{n-1}\right),
$$

is given by

$$
\begin{equation*}
f(\zeta)=\mathscr{S}\left[\sum_{i} \sum_{1 \leqq \rho_{i}<r_{i}}\left(1-z_{1} \sigma_{i}\left(z_{2}^{-1}, \cdots, z_{n}^{-1}\right)\right)^{-\rho_{i} \varphi_{i}, \rho_{i}}\left(z_{2}, \cdots, z_{n}\right)\right](\zeta) . \tag{22}
\end{equation*}
$$

This $f(\zeta)$ is holomorphic on \mathbf{C}^{n} if deg. $P_{i} \leqq m-i$ for each i. Here

$$
\begin{aligned}
& P(z)=\prod_{i}\left(z_{1}-\sigma_{i}\left(z_{2}, \cdots, z_{n}\right)\right)^{r_{i}}, \\
& \sum_{i} \sum_{1 \leqq \rho_{i} \leq r_{i}} c_{k, \rho_{i}\left(\sigma_{i}^{k} \varphi_{i}, \rho_{i}\right)\left(z_{2}, \cdots, z_{n}\right)=\mathscr{S}^{-1}\left[g_{k}\right]\left(z_{2}, \cdots, z_{n}\right), 0 \leqq k \leqq m-1,}, 0 \leqq 2
\end{aligned}
$$

where $c_{k, \rho_{i}}$ is given by $(1-x)^{-\rho_{i}}=\sum{ }_{k} c_{k, \rho_{i}} x^{k}$.
In the rest, we set

$$
T\left(_{\sigma_{1}, \cdots, \sigma_{s}}^{r_{1}, \cdots, r_{s}}\right)=\left(\begin{array}{l}
1, \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots, 1 \\
\sigma_{1}, \cdots \cdots, c_{1}, r_{1} \sigma_{1}, \cdots \cdots, c_{1}, r_{s} \sigma_{s} \\
\sigma_{1}^{2}, \cdots \cdots, c_{2}, r_{1} \sigma_{1}^{2}, \cdots \cdots, c_{2}, r_{s} \sigma_{s}^{2} \\
\cdots \\
\cdots \cdots, \ldots \\
\sigma_{1}^{m-1}, \cdots, c_{m, r_{1} \sigma_{1}{ }^{m-1}, \cdots, c_{m, r_{s} \sigma_{s}}{ }^{m-1}}
\end{array}\right)
$$

Note. If in $\operatorname{Exp}\left(\mathbf{C}^{n}\right)$, a system of constant cofficiente partial differential operators is given, then by normalization theorem ([11]), is equivalent to the system of operators

$$
\begin{aligned}
P_{i}\left(\frac{\partial}{\partial \zeta}\right)= & \frac{\partial^{m_{i}}}{\partial \zeta_{i}^{m_{i}}}+P_{i, 1}\left(\frac{\partial}{\partial \zeta_{h_{+1}}}, \cdots, \frac{\partial}{\partial \zeta_{m}}\right) \frac{\partial^{m_{i}-1}}{\partial \zeta_{i}^{m_{i-1}}}+\cdots+ \\
& +P_{i m_{i}}\left(\frac{\partial}{\partial \zeta_{h+1}}, \cdots, \frac{\partial}{\partial \zeta_{m}}\right), \quad 1 \leqq i \leqq h
\end{aligned}
$$

by a change of variables. Then the solution of the overdetermined system \mathfrak{F} with the data

$$
\begin{aligned}
& \frac{\partial^{k_{1}+\cdots+k_{h} f}}{\partial \zeta_{1}^{k_{1} \cdots \partial \zeta_{h}^{k} h}}\left(0, \cdots, 0, \zeta_{j_{+1}}, \cdots, \zeta_{n}\right)=g_{k_{1+1}}, \cdots k_{h+1}\left(\zeta_{j_{+1}}, \cdots, \zeta_{n}\right), \\
& 0 \leqq k_{i} \leqq m_{i}-1, \quad g_{h_{1}}, \cdots, k_{h} \in \operatorname{Exp}\left(\mathbf{C}^{n-h}\right),
\end{aligned}
$$

is given by
$(22)^{\prime}$

$$
\begin{aligned}
f(\zeta)= & \mathscr{O}\left[\sum_{(i, j) 1 \leqq} \sum_{i, j \leqq}\left(1-z_{1} \sigma_{1}, j_{1}\left(z_{h_{+1}}{ }^{-1}, \cdots, z_{n}-1\right)\right)^{-\rho_{1},,_{1} \cdots}\right. \\
& \left(1-z_{h} \sigma_{h}, j\left(z_{h+1}{ }^{-1}, \cdots, z_{n}^{-1}\right)\right)^{\left.-\rho_{h}, j_{h} \varphi_{\rho_{1}},{ }_{j_{1}, \cdots, \rho_{h}, j_{h}}(z)\right](\zeta),} \\
P^{i}(z)= & \Pi_{j}\left(z_{i}-\sigma_{i}, j\left(z_{h+1}, \cdots, z_{n}\right)\right)^{r i, j},
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{(i, j) 1 \leq \rho_{i}, j \leq r_{i, j}} c_{k_{1}, 1, j_{1}} \cdots c_{k_{h}, 1, j h}\left(\left(\sigma_{1}, i_{1}\right)^{k_{1} \ldots\left(\sigma_{h}, j_{h}\right)^{k_{h}}}\right. \\
& \left.\quad \varphi_{\left.\rho_{1}, j_{1}, \ldots \rho_{h, j_{h}}\right)}\right)(z)=\mathscr{S}^{-1}\left[g_{k_{1}+1}, \ldots, k_{h+1}\right](z)
\end{aligned}
$$

we note that this last coeficients matrix is given by $T\left({ }_{\sigma_{1,1}, \ldots, \sigma_{1}, s_{1}}^{r_{1,1}, \ldots, \gamma_{1}, s}\right) \otimes \cdots$
$\otimes T\left({ }_{\sigma_{h}, 1, \cdots, o_{h}, s_{h}}^{\gamma_{h 1}, \cdots, r_{h}, s_{h}}\right)$.
As in the single equation case, if deg. $P_{i, k} \leqq m_{i}-k$ for each i and k, then this f is holomorphic on \mathbf{C}^{n}.

§2 Topological extension of Borel transformation

6. Let D be a subset of \mathbb{R}^{n} such that Int. $D \neq \emptyset$ and $F(D)$ is a complete topological vector space (over C) consisted by the functions on D and satisfy
(i). $\quad r_{D}(f)=f \mid D$, the restriction of f on D belongs in $F(D)$ if $f \in \operatorname{Exp}\left(\mathbb{C}^{n}\right)$.
(ii). $\quad\left\{r_{D}(f) \mid f \in \operatorname{Exp}\left(\mathbf{C}^{n}\right)\right\}$ is dense in $F(D)$.

We note that by assumption, $r_{D}: \operatorname{Exp}\left(\mathrm{C}^{n}\right) \rightarrow F(D)$ is an (into) isomorphism.
Definition. To regard $\operatorname{Exp}\left(\mathrm{C}^{n}\right)$ to be a subspace of $F(D)$ by the map r_{D}, the induced topology of $\operatorname{Exp}\left(\mathbf{C}^{n}\right)$ from $F(D)$ is called $F(D)$-topology of $\operatorname{Exp}\left(\mathbf{C}^{n}\right)$. If a series $\left\{f_{m}\right\}$ of the elements of $\operatorname{Exp}\left(\mathbf{C}^{n}\right)$ converges to f by this topology, then we denote $F(D)-$ lim $_{m \rightarrow \infty} f_{m}=f$.

By definition, to denote the completion of $\operatorname{Exp}\left(\mathbf{C}^{n}\right)$ by $F(D)$ - topology by $\operatorname{Exp}\left(\mathbf{C}^{n}\right)^{*}\left(\operatorname{or}\left(\operatorname{Exp}\left(\mathbf{C}^{n}\right)\right)^{* F(D)}\right)$, we have

$$
\begin{equation*}
r_{D} *: \operatorname{Exp}\left(\mathbf{C}^{n}\right)^{*} \cong F(D) \tag{23}
\end{equation*}
$$

Example. If D is a bounded domain, then for all $p, L p(D)$ can be taken as $F(D)$. The k - th Sobolev space $L^{2 k},(D)$ and $C^{k}(D)$ (with the C^{k} topology) can also be taken as $F(D)$. The k-th local Sobolev space $L^{2, k}$ loc. $\left(\mathbf{R}^{n}\right)$ or $C^{k}\left(\mathbf{R}^{n}\right)$ are also taken as $F(D)$. Here, k might be negative.

Since Borel transformation \mathscr{S}^{5} is an isomorphism between \mathscr{O}_{n} and $\operatorname{Exp}\left(\mathrm{C}^{n}\right)$, \mathscr{S}^{-1} induces $F(D)$ - topology of $\operatorname{Exp}\left(\mathbf{C}^{n}\right)$ to \mathscr{O}_{n}. It is also called $F(D)$-topology of \mathcal{O}_{n} and if $\left\{\varphi_{m}\right\}, \varphi_{m} \in \mathcal{O}_{n}$ converges to φ by $F(D)$ - topology, we also denote $F(D)-\lim \varphi_{m}=\varphi$.

By $n^{0} 2$ and (23), to denote $\bigodot_{n^{*}}$, etc., the completions of \mathscr{O}_{n}, etc., by $F(D)$ - topology, we have the following commutative diagram.

$$
\begin{aligned}
\mathscr{E} \mathbf{R}^{n *} \xrightarrow{t^{*}-2 \pi_{V} \sqrt{-1}} & \mathscr{O}_{n^{*}} \\
\downarrow \mathscr{E}^{*} & \\
F(D) \leftrightarrow \downarrow \mathscr{S}_{D^{*}}^{*} & \cong \\
\cong & \operatorname{Exp}\left(\mathbf{C}^{n}\right)^{*} .
\end{aligned}
$$

Note. If we consider $\operatorname{Exp}\left(\mathrm{C}^{n}\right)$ to be a topological vector space by the compact open topology (of \mathbb{C}^{n}, the completion of $\operatorname{Exp}\left(\mathbb{C}^{n}\right)$ is \mathbb{Y}^{n}, the space of entire functions on \mathbb{C}^{n}, and the completion of \mathscr{O}_{n} by this topology (induced by \mathscr{S}^{-1}) is $\operatorname{Exp}\left(\mathrm{C}^{n}\right)^{\prime}$, the dual space of $\operatorname{Exp}\left(\mathrm{C}^{n}\right)$, and the extended Borel transformation \mathscr{S}^{*} is \mathscr{S}^{\prime}, the dual map of $\mathscr{B}^{2}: \mathscr{O}_{n} \rightarrow \operatorname{Exp}\left(\mathrm{C}^{n}\right)$.

Lemma 4. If $f \sharp g$ is defined in $F(D)$ for any $f, g F(D)$ and the $\#-$ product is continuous in $F(D)$, then $\mathcal{O}_{n}{ }^{*}$ is a ring (by the usual multiplication) and we have

$$
\mathscr{S}^{*} *[\varphi \psi]=\left(r_{D} \mathscr{S}^{*} *[\psi]\right) \#\left(r_{D} \mathscr{S}^{\prime} *[\psi]\right) .
$$

7. We set

$$
\begin{align*}
& \widetilde{\mathbb{R}^{n}}=(\mathbb{R} \times \mathbb{Z})^{n}=(\mathbb{R} \times \mathbb{Z}) \times \cdots \times(\mathbf{R} \times \mathbb{Z}), \tag{24}\\
& p\left(\left(x_{1}, m_{1}\right), \cdots,\left(x_{n}, m_{n}\right)\right)=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}, \quad\left(\left(x_{1}, m_{1}\right), \cdots,\left(x_{n}, m_{n}\right)\right) \in \widetilde{\mathbf{R}^{n}} .
\end{align*}
$$

By Definition, \mathbb{Z}^{n} acts on \mathbb{R}^{n} and we set

$$
\begin{equation*}
\mathbb{R}^{n}{ }_{(r)}=\widetilde{\mathbb{R}^{n}} / G(r), \widetilde{D}=p^{-1}(D), \quad D_{(r)}=\widetilde{D} / G(r), \quad r=\left\langle r_{1}, \cdots, r_{n}\right) . \tag{24}
\end{equation*}
$$

The projection from $\mathbb{R}^{n}{ }_{(r)}$ (or $\left.\mathrm{D}_{(r)}\right)$ onto $\mathbb{R}^{n}\left(\right.$ or D) is denoted by p_{r}.
Since $\mathrm{D}_{(r)}$ is a $G(r)$ - direct sum of D, we define $F\left(D_{(r)}\right)$ as the $G(r)$-direct sum of $F(D)$. Then if $r \mid r^{\prime}$, that is $r_{i} \mid r_{i}^{\prime}$ for all i, there is a map $p^{r} r^{\prime} *: F\left(D_{(r)}\right)$ $\rightarrow F\left(D_{\left(r^{\prime}\right)}\right)$ and since
we define $F(\widetilde{D})$ by

$$
F(\widetilde{D})=\lim \left[F\left(D_{(r)}\right), p^{r} r^{\prime *}\right]
$$

By definition, we can define $\tilde{r}_{D}: \widehat{\operatorname{Exp}}\left(\mathbf{C}^{n}\right) \rightarrow F(\widetilde{D})$. More general, if $\varphi \in \widehat{\mathscr{\mathscr { E }} \mathscr{y}^{\prime \prime}}\left(\mathrm{C}^{n}\right)_{+}$ has no singularity on D and $F(D)$ satisfies (i) of $n^{0} 6$, then $\tilde{r}_{D}(\varphi)$ is defined and belongs in $F(\widetilde{D})$.

Definition. Let S be a subset of \mathscr{H}_{n} which contains 1, $F(D)$ a function space such that

$$
\widetilde{r}_{D}(\mathscr{S}[\varphi \sigma]) \in F(\widetilde{D}), \text { if } \varphi \in \mathscr{O}_{n}, \sigma \in S
$$

Then we call $\left\{f_{m}\right\}, f_{m} \in \operatorname{Exp}\left(\mathbf{C}^{n}\right)$, converges to f by the $F(D)$-topology with respect to S if $\left\{\tilde{r}_{D}\left(\mathscr{B}\left[\mathscr{B}^{-1}\left[f_{m}\right] \sigma\right]\right)\right\}$ converges to $\widetilde{r}_{D}\left(\mathscr{S}^{[}\left[\mathscr{B}^{-1}[f] \sigma\right)\right.$ in $F(\widetilde{D})$ for any $\sigma \in S$ and denote $F(D)_{S}-\lim f_{m}=f$.

If $F(D)_{S}-\lim \mathscr{O}\left[\varphi_{m}\right]=\mathscr{\mathscr { S }}[\varphi]$, then we denote $F(D)_{S}-\lim \varphi_{m}=\varphi$.

Example. We take $C\left(\mathbf{R}^{1}\right)$ as $F(D)(n=1)$. If $S=\left\{(1+a z)^{-1} \mid a \in \mathbb{R}\right\}$, we have

$$
C\left(\mathbb{R}^{1}\right)_{S}-\lim _{m \rightarrow \infty} f_{m}=f \text { if and only if } C\left(\mathbb{R}^{1}\right)-\lim _{m \rightarrow \infty} f_{m}=f .
$$

On the other hand, if $S=\left\{(1+\sqrt{-1} a z)^{-1} \mid a \in \mathbb{R}\right\}$, we have

$$
C\left(\mathbb{R}^{1}\right) S-\lim _{m \rightarrow \infty} f_{m}=f \text { if and only if }\left\{f_{m}\right\} \text { converges uniformly to } f \text { on } \mathbf{C}^{1} .
$$

These may be two extremal cases and in the rest, we assume $F(D)$ satisfies
(iii). If $\left\{f_{m}\right\}$ converges uniformly to f on \mathbb{C}^{n}, then $r_{D}\left(f_{m}\right)$ converges to $r_{D}(f)$ in $F(D)$.
8. By (iii), denoting $U(0)$ a neighborhood of $\{0\}$ by $F(D)$ - topology, to set

$$
U_{S}(0)=\left\{g \mid \mathscr{S}\left[\mathscr{S}^{-1}[g] \sigma\right] \in U(0), \sigma \in S\right\}
$$

$U_{S}(0)$ contains $\left\{g\left||g(z)|<\varepsilon, z \in K\right.\right.$, a compact set in $\left.\mathbf{C}^{n\}}\right\}$ for some $\varepsilon>0$ and K $\neq \emptyset$.

We denote the vector space of all Cauchy sequences of the elements of Exp $\left(\mathrm{C}^{n}\right)$ by $F(D)$ - topology by $F(D)-\operatorname{Exp}\left(\mathbb{C}^{n}\right)$. We consider $F(D)-\operatorname{Exp}\left(\mathrm{C}^{n}\right)$ to be a topological vector space to take

$$
\begin{gathered}
U\left(\left\{f_{m}\right\}\right)=\left\{\left\{g_{m}\right\} \mid g_{m}-f m \in U_{m}(0), U_{m}(0) \text { is a neighborhood of } 0\right. \text { by } \\
\left.F(D)-\text { topology and } U_{m}(0) \supset U_{m_{+1}}(0),{ }_{m} U_{m}(0)=\{0\}\right\} .
\end{gathered}
$$

On the other hand, to take

$$
\begin{gathered}
U_{s}\left(\left\{f_{m}\right\}\right)=\left\{\left\{g_{m}\right\} \mid g_{m}-f_{m} \in U_{m}, s(0), U_{m}(0) \text { is a neighborhood of } 0\right. \\
\text { by } \left.F(D)-\text { topology and } U_{m}(0) \supset U_{m+1}(0), \cap_{m} U_{m}(0)=\{0\}\right\},
\end{gathered}
$$

to be the neighborhood basis of $F(D)-\operatorname{Exp}\left(\mathbf{C}^{n}\right), \quad F(D)-\operatorname{Exp}\left(\mathbf{C}^{n}\right)$ also becomes a topological vector space. This space is denoted by $F(D)-\operatorname{Exp}\left(\mathbb{C}^{n}\right)_{s}$.

In $F(D)-\operatorname{Exp}\left(\mathbf{C}^{n}\right)$, we set

$$
\begin{aligned}
& F(D)_{s}-\operatorname{Exp}\left(\mathbb{C}^{n}\right)=\left\{\left\{f_{m}\right\} \mid\left\{f_{m}\right\} \text { is a Cauchy sequence with respect to } S\right\} \text {, } \\
& F(D)-\operatorname{Exp}\left(\mathbb{C}^{n}\right) 0=\left\{\left\{f_{m}\right\} \mid F(D)-\lim _{m \rightarrow \infty} f_{m}=0\right\}, \\
& F(D)_{S}-\operatorname{Exp}\left(C^{n}\right) 0=\left\{\left\{f_{m}\right\} \mid F(D)_{s}-\lim _{m \rightarrow \infty} f_{m}=0\right\} \text {. }
\end{aligned}
$$

The same spaces regarded as the subspaces of $F(D)-\operatorname{Exp}\left(\mathbf{C}^{n}\right)_{s}$ are denoted by $F(D)_{S}-\operatorname{Exp}\left(\mathbf{C}^{n}\right)_{s}, F(D)-\operatorname{Exp}\left(\mathbf{C}^{n}\right)_{0, s}$ and $F(D)_{S}-\operatorname{Exp}\left(\mathbf{C}^{n}\right)_{0, s}$.

Lemma 5. $F(D)_{S}-\operatorname{Exp}\left(\mathrm{C}^{n}\right)$ and $F(D)_{S}-\operatorname{Exp}\left(\mathrm{C}^{n}\right)_{0}$ are equal to $F(D)_{S}-\operatorname{Exp}$ $\left(\mathbf{C}^{n}\right)_{S}$ and $F(D)_{S}-\operatorname{Exp}\left(\mathbf{C}^{n}\right)_{0, s}$ as topological vector spaces.

Proof. Since $F(D)_{S}-\lim \left(f_{m}-g_{m}\right)=0$ if $\left\{g_{m}\right\} \in U\left(f_{m}\right)$ in $F(D)_{S}-\operatorname{Exp}\left(\mathbb{C}^{n}\right)$, $\left\{g_{m}\right\}$ should belong some $U_{S}\left(f_{m}\right)$ and we have the lemma.

Lemma 6. To set

$$
\begin{aligned}
& F(D)_{s}=F(D)_{s}-\operatorname{Exp}\left(\mathbf{C}^{n}\right) / F(D)_{s}-\operatorname{Exp}\left(\mathbf{C}^{n}\right)_{0}, \\
& F(D)^{s}=F(D)-\operatorname{Exp}\left(\mathbf{C}^{n}\right)_{s} / F(D)_{S}-\operatorname{Exp}\left(\mathbf{C}^{n}\right)_{0, s}, \\
& N_{S}(F(D))=F(D)-\operatorname{Exp}\left(\mathbf{C}^{n}\right)_{0, s} / F(D)_{s}-\operatorname{Exp}\left(\mathbf{C}^{n}\right)_{0, s},
\end{aligned}
$$

We have the following commmutative diagram with exact (as) topological vector spaces) columns and raws. Here the maps are induced by the natural inclusions and projections.

Proof. Since $F(D)=F(D)-\operatorname{Exp}\left(\mathrm{C}^{n}\right) / F(D)-\operatorname{Exp}\left\langle\mathbf{C}^{n}\right\rangle_{0}$ by the condition (ii) of $n^{0} 6$ and we know

$$
\begin{equation*}
F(D)_{S}-\operatorname{Exp}\left(\mathbf{C}^{n}\right)_{0}=F(D)_{S}-\operatorname{Exp}\left(\mathbf{C}^{n}\right) \cap F(D)-\operatorname{Exp}\left(\mathbb{C}^{n}\right)_{0} \tag{25}
\end{equation*}
$$

we have the lemma by lemma 5 .
In the rest, we denote by $F(\widetilde{D})_{S}$ and $F(\widetilde{D})^{s}$, the spaces constructed from $F(D)_{s}$ and $F(D)^{S}$ similarly as $F(\widetilde{D})$.
9. For a series $\left\{\varphi_{m}\right\}$ of the elements of \mathscr{O}_{n}, we define $F(D)_{s}-\lim \varphi_{m} \operatorname{simi}$ larly as $F(D)_{s}-\lim f_{m}$. Then we can define $F(D)-\mathcal{O}_{n}, F(D)_{s}-\mathcal{O}_{n}$, etc., similarly as $F(D)-\operatorname{Exp}\left(\mathbf{C}^{n}\right), \quad F(D)_{S}-\operatorname{Exp}\left(\mathbf{C}^{n}\right)$, etc., Then to define $\mathscr{\mathscr { O }}: F(D)$ $-\mathcal{O}_{n} \rightarrow F(D)-\operatorname{Exp}\left(\mathrm{C}^{n}\right)$ by

$$
\mathscr{B}\left[\left\{\varphi_{m}\right\}\right]=\left\{\mathscr{B}\left[\varphi_{m}\right]\right\},
$$

\mathscr{F} maps $F(D)_{s}-\mathcal{O}_{n}, F(D)-\mathcal{C}_{n 0}$, etc., isomorphiscally onto $F(D)_{s}-\operatorname{Exp}$ $\left(\mathrm{C}^{n}\right), F(D)-\operatorname{Exp}\left(\mathrm{C}^{n}\right)_{0}$, etc. . Moreover, \mathscr{D} can be regarded as the map from $F(D)-\mathcal{O}_{n, s}$ onto $F(D)-\operatorname{Exp}\left(\mathrm{C}^{n}\right)_{s}$. Hence to set $\mathcal{O}_{n, s}=F(D)_{s}-\mathcal{O}_{n} / F(D)_{s}$ $-\mathscr{O}_{n, 0}, \mathscr{O}_{n}^{S}=F(D)-\mathscr{O}_{n} / F(D)_{s}-O_{n, 0}, \mathscr{S}^{2}$ induces maps

$$
\begin{aligned}
& \mathscr{B} s^{\prime}: \mathscr{C}_{n} s \xrightarrow{\cong} F(D)_{s} \\
& \mathscr{B}^{s}: \mathscr{O}^{\prime} n^{s} \cong F(D)^{s} .
\end{aligned}
$$

Then, if $\varphi_{S}\left(\right.$ resp. $\left.\varphi^{S}\right)$ is an element of $\mathscr{O}_{n, S}\left(\right.$ resp. $\left.\mathcal{O}_{n}{ }^{s}\right)$ given by $F(D)_{s}-\lim \varphi_{m}$ $=\varphi_{S}\left(\right.$ resp. $\left.\quad F(D)_{S}-l i m \varphi^{m}=\varphi^{S}\right), \quad$ for any $\sigma \in S, \quad F(D)_{S}-\lim \varphi_{m} \sigma\left(\right.$ resp. $\quad F(D)_{S}$ - lim $\varphi^{m_{\sigma}}$) exists as an element of $F(\widetilde{D})_{S}\left(\right.$ resp. $\left.F(\widetilde{D})^{S}\right)$, and to set

$$
\begin{equation*}
F(D)_{S}-\lim _{m \rightarrow \infty} \varphi_{m} \sigma=\varphi_{S} \sigma, \quad F(D)_{S}-\lim _{m \rightarrow \infty} \psi^{m} \sigma=\varphi^{s} \sigma, \tag{26}
\end{equation*}
$$

$\mathscr{W} s^{\prime}$ and $\mathscr{B}^{s \prime}$ are extended to maps

$$
\bigoplus_{s}: \bigoplus_{n, s}\langle S\rangle \rightarrow F(\widetilde{D})_{s}, \prod^{s} \bigoplus_{n}{ }^{s}<S>\rightarrow \mathrm{F}(\widetilde{\mathrm{D}})^{s}
$$

Here, $\mathscr{O}_{n, s}\langle S\rangle$ and $\mathscr{O}_{n}^{S}\langle S\rangle$ are the completions of modules generated by $\mathscr{O}_{n, s}$ (or \mathscr{O}_{n}^{s}) and S under the operations given by (26), by the topologies of $F(D)_{S}$ and $F(D)^{S}$.

Theorem 3. We assume D is given by $\Omega \times k$, where Ω is an open set in \mathbb{R}^{n-1} (may be equal to \mathbf{R}^{n-1}, K is a simply connected subset of C^{1} such that K contains either of intervals $(a, b),[0, b)$ or $(a, 0](a<0<b)$ in \mathbb{R}^{1}, and $F(D)$ is given by

$$
F(D)=L(\Omega) \widehat{\otimes}^{\pi} A(K)
$$

where $V \hat{\otimes}_{\pi} W$ means the completion of $V \otimes W$ by $\pi-$ topology (cf. [11]), $A(K)$ is a space of analytic functions on K such that by the map $r_{K}, \operatorname{Exp}\left(\mathbf{C}^{1}\right)$ is containd in $A(K)$ with the variable ζ_{1}, and $L(\Omega)$ is a function space such that to satisfy (i), (ii) of $n^{0} 6$ and (iii) of $n^{0} 7$ for $\operatorname{Exp}\left(\mathrm{C}^{n-1}\right)$ with the variables $\zeta_{2}, \cdots, \zeta_{n}$.

Let $P(z)=z_{1}^{m}+P_{1}\left(z_{2}, \cdots, z_{n}\right) z_{1}^{m-1}+\cdots+P_{m}\left(z_{2}, \cdots, z_{n}\right)$ be a polynomial such that

$$
P(z)=\prod_{i}\left(z_{1}-\sigma_{1}\left(z_{2}, \cdots, z_{n}\right)\right)^{r}, \quad 1 \leqq i \leqq k, \quad \sum_{i=1}^{k} r_{i}=m
$$

and set

$$
\begin{aligned}
& S=\left\{\left(1-z_{1} \sigma_{i_{1}}\left(z_{2}^{-1}, \cdots, z_{n}^{-1}\right)\right)^{-\rho_{i 1} \ldots}\left(1-z_{1} \sigma_{i j}\left(z_{2}^{-1}, \cdots, z_{n}^{-1}\right)\right)^{-\rho_{i j}} \mid\right. \\
&\left.1 \leqq i_{1}<\cdots<i_{j} \leqq k, 1 \leqq \rho_{i} \leqq r_{i}\right\}
\end{aligned}
$$

Then to set

$$
\begin{array}{ll}
L(\Omega)_{S}=p_{a}\left(F(D)_{S}\right), & L(\Omega)^{S}=p_{a}\left(F(D)^{S}\right) \\
p_{g}\left(\left\{f_{m}\right\}\right)=\left\{p_{a} f_{m}\right\}, & \left(p_{n} f\right)\left(\xi_{2}, \cdots, \xi_{n}\right)=f\left(0, \xi_{2}, \cdots, \xi_{n}\right)
\end{array}
$$

for any data in $L(\Omega)_{S}$ (rep. in $\left.L(\Omega)^{S}\right)$, the equation $P\left(\partial / \partial \xi_{i}\right) f=0$ has unique solution in $F(D)_{S}$ (resp. in $\left.F(D)^{S}\right)$ and it is well posed by the topology of $F(D)_{S}\left(\right.$ resp. $\left.F(D)^{S}\right)$.

Proof. By assumption, for the given data $\left\{g_{k}\right\}$ in $L(\Omega)_{S}$ (resp. in $\left.L(\Omega)^{S}\right)$, we can solve the equation

$$
\sum_{i} \sum_{1 \leqq \rho_{i \leqq r}} c_{k}, p_{i}\left(p_{i}, k \varphi_{i \psi_{i}}\right)=D^{-1}\left[g_{k}\right]\left(\text { or }\left(S^{S}\right)^{-1}\left[g_{k}\right)\right], \quad 0 \leqq k \leqq m-1
$$

Then to set

$$
f=\dot{\mathscr{B}}^{\dot{B}}\left[\sum_{i} \sum_{1 \leqq \rho_{i} \leq r_{i}}\left(1-z_{1} \sigma_{i}\left(z_{2}^{-1}, \cdots, z_{n}^{-1}\right)\right)^{-\rho_{i}} \varphi_{i}, p_{i}\right]
$$

(resp. 邪 $\left.\left.{ }^{S}\left[\sum_{i} \sum_{1 \leqq \rho_{i \leqq r} r_{i}}\left(1-z_{1} \sigma_{i}\left(z_{2}^{-1}, \cdots, z_{n}^{-1}\right)\right)\right)^{-\rho_{i}} \varphi_{i}, \rho_{i}\right]\right)$,
we get a solutiom in $F(\widetilde{D})_{S}$ (resp. in $\left.F(\widetilde{D})^{S}\right)$. But, since the solution is invariant under the covering transformation, f should belong in $F(D)_{S}\left(r e s p\right.$. in $F(D)^{s}$. Moreover, since $T\left({ }_{\sigma_{1}, \cdots, \sigma_{s}}^{\gamma_{1}, \cdots, r_{s}}\right)$ is ergular and operates continuously on $L(\Omega)_{s}{ }^{m}$, the m - direct sum of $L(\Omega)_{S}$ (sesp. on $\left(L(\Omega)^{S}\right)^{m}$), we have the theorem.

Note. Similarly, starting from $D=\Omega \times K, \Omega \subset \mathbb{R}^{n-k}, K \subset \mathbf{C}^{k}$ and $F(D)=L(\Omega)$ $\widehat{\otimes}_{\pi} A(K)$, we get corresponding theorem for systems.

Appendix. Borel transformation of $\log z$.

Since the universal covering space \widetilde{T} of $\Gamma=\left\{z\left|\varepsilon_{i}<\left|z_{i}\right|<\varepsilon_{i}^{\prime}\right\}\right.$ is given by $\{w \mid$ $\left.\log \varepsilon_{i}<R e . w_{i}<\log \varepsilon_{i}{ }^{\prime}\right\}$ with the covering map $\left.\left(z_{1}, \cdots, z_{n}\right)=\exp w_{1}, \cdots, \exp w_{n}\right)$, to extend Borel transformation for the functions on $\widetilde{\Gamma}$, it is sufficient to define $\mathscr{S}[\log z]$. For this purpose, first we note, if $\mathscr{S}[\log z]$ is defined, then by (9), $\zeta \mathscr{P}[\log z]=[z \log z+z]$ and by (6), it must be

$$
\frac{d}{d \zeta} \mathscr{S}[\log z]=1
$$

Therefore $\mathscr{S}[\log z]=\log \zeta+c$, if $\mathscr{\mathscr { S }}[\log z]$ is defined. To determin this constant, we use

Lemma. For $t<0$, we get

$$
\sum_{n=0}^{\infty} \frac{t^{n}}{n!}(\log z) \#^{n}=\frac{e^{-r t}}{\Gamma(1+t)} x^{t}
$$

where r is Euler's constant.
Proof. To set $\log x \sharp(\log x)^{n-1}=\sum_{k=0}^{n} a_{n, k}(\log x)^{k}$, we get

$$
\begin{aligned}
& a_{n, n}=1, \quad a_{n, n-1}=0, \quad a_{n, k}=\frac{(n-1)!}{k!(n-k-1)!} a_{n-k, 0}, \quad 2 \leqq k \leqq n-1 \\
& a_{n, 0}=(-1)^{n-1}(n-1)!\zeta(n), \quad n \geqq 2, \quad \zeta(n)=\sum_{m=l m}^{\infty} \frac{1}{n},
\end{aligned}
$$

because $\int_{0}^{x} \log (x-t)(\log t)^{n-1} d t=\log x \int_{0}^{x}(\log t)^{n-1} d t-\sum_{m=1}^{\infty} 1 / m x^{m} \int_{0}^{x} t^{m}(\log t)^{n-1}$ $d t$.

Then, to set $(\log x)^{\# n}=\sum_{k=0}^{n} b_{n, k}(\log x)^{k}$, we get

$$
\begin{aligned}
& b_{n, n}=1, \quad b_{n, n-1}=0, \quad b_{n, k}=\frac{n!}{k!(n-k)!} b_{n-k, 0}, \quad 2 \leqq k \leqq n-1, \\
& b_{n, 0}=\sum_{s=1}^{[n / 2]} \quad \sum_{j_{1}-\cdots+j_{s}=n, j_{i} \geq 2}(-1)^{n-s} \frac{n!\zeta\left(j_{1}\right) \cdots \zeta\left(j_{s}\right)}{j_{1}\left(j_{1}+j_{2}\right) \cdots\left(j_{1}+\cdots+j_{s}\right)}, \quad n \geqq 2 .
\end{aligned}
$$

Hence we get

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{t^{n}}{n!}(\log x) \#^{n} \\
= & \left.\left(1+\sum_{n=2}^{\infty} \sum_{s=1}^{[n / 2]} \sum_{j_{1}+\cdots+j_{s}=n, j_{1} \leq 2}(-1)^{n-s} \frac{\zeta\left(j_{1}\right) \cdots \zeta\left(j_{s}\right)}{j_{1}\left(j_{1}+j_{2}\right) \cdots\left(j_{1}+\cdots+j_{s}\right)}\right) t^{n}\right) . \\
& \left(\sum_{n=0}^{\infty} \frac{t^{n}}{n!}(\log x)^{n}\right) .
\end{aligned}
$$

But since we know $\log (1+t)=-\gamma t+\sum_{m=2}^{\infty}(-1)^{m} \zeta(m) / m t^{m}([1])$, we obtain

$$
\begin{aligned}
& 1+\sum_{n=2}^{\infty}\left(\sum_{s=1}^{[n / 2]} \sum_{j_{1}+\cdots+j_{s}=n, j_{i} \geqq 2}(-1)^{n-s} \frac{\zeta\left(j_{1}\right) \cdots \zeta\left(j_{s}\right)}{j_{1}\left(j_{1}+j_{2}\right) \cdots\left(j_{1}+\cdots+j_{s}\right)}\right) t^{n} \\
= & 1+\sum_{n=2}^{\infty}\left(\sum_{s=1}^{[n / 2]} \sum_{j_{1}+\cdots+j_{s}=n, j_{i} \geq 2}(-1)^{n-\zeta} \frac{\zeta\left(j_{1}\right) \cdots \zeta\left(j_{s}\right)}{s!j_{1} \cdots j_{s}}\right) t^{n} \\
= & \exp \left[\log \frac{e^{-r t}}{\Gamma(1+t)}\right] \\
= & \frac{e^{-r t}}{\Gamma(1+t)} .
\end{aligned}
$$

Hence we have the lemma.
Definition. We define the Borel transformation $\mathscr{S}[\log z](\zeta)$ of $\log z$ by

$$
\mathscr{S}[\log z](\zeta)=\log \zeta+\gamma
$$

By definition, if $f(z)=\sum I z_{I}{ }^{\alpha}{ }_{I} f_{I}(z), \quad I=\left(i_{1}, \cdots, i_{k}\right), \alpha_{I}=\left(i_{1} / r_{1}, \cdots, i_{k} / r_{k}\right)$, $z_{I}{ }^{\alpha I}=z_{i_{1}}{ }^{i_{1} / r_{1} \cdots z_{i k}}{ }^{i k / r k}$ and $f_{I}(0) \neq 0$, then

$$
\begin{aligned}
& \mathscr{B}[\log f(z)]=\sum_{j=1}^{h} \frac{i_{j}}{r_{j}}\left(\log \zeta_{i_{j}}-\gamma\right)+\mathscr{B}\left[\varphi_{I}\right], \varphi_{I} \in \mathscr{\mathscr { H }}, \\
& \left.\zeta \in \Gamma^{\alpha}{ }_{\left({ }_{(\alpha}^{I_{1}}, \cdots, \alpha_{I_{m}}\right.}\right)=\left\{\zeta| | \zeta_{I_{m}}{ }^{\alpha} I^{\prime}=>\left|\zeta_{J}{ }^{\alpha} J^{\prime}\right|, \alpha_{I}, \alpha_{J} \in\left(\alpha_{I_{1}}, \cdots, \alpha_{I_{m}}\right)\right\} .
\end{aligned}
$$

In the rest, the corresponding set of $\Gamma^{"}{ }^{\prime}\left(\alpha_{\boldsymbol{I}_{1}}, \cdots, \alpha_{\boldsymbol{I}_{m}}\right)$ in the z - space is also denoted by same notation and set

$$
\left.\pi^{-1}\left(\Gamma^{\alpha} I_{\left({ }_{I_{1}}, \cdots, \alpha\right.}{ }_{\left.I_{m}\right)}\right)=\widetilde{T}^{\alpha} I_{\left({ }_{I_{1}}, \cdots, \alpha\right.}\right)
$$

We consider following class \mathscr{H}^{\prime} of holomorphic functions on $\left(w_{1}, \cdots, w_{n}\right)$ -space such that
(*) $^{*} f$ is holomorphic on some open set D in $\left\{w \mid R e . w_{i}<\rho_{i}\right\}$ for some $\rho_{1}, \cdots, \rho_{n}$ such that for any $\delta_{1}, \cdots, \delta_{n}$ there exist $r_{1}<r_{1}{ }^{\prime} \leqq \delta_{1}, \cdots, r_{n}<r_{n}{ }^{\prime} \leqq \delta_{n}$ such that D contains $\left\{w \mid r_{i}<R e . w_{i}<r_{i}{ }^{\prime}\right\}=T\left(r_{1}, r_{1}^{\prime}, \ldots, r_{n}, r_{n^{\prime}}\right)$. If f_{1} and f_{2} both belongs in \mathscr{C}^{\prime}, then we denote $f_{1} \sim f_{2}$ if for any $\delta_{1}, \cdots, \delta_{n}$, there exist $r_{1}<r_{1}{ }^{\prime} \leqq \delta_{1}, \cdots, r_{n}<r_{n}{ }^{\prime} \leqq \delta_{n}$ such that

$$
f_{1}\left|\Gamma_{\left(r_{1}, r_{1}^{\prime}, \cdots, r_{n}, r_{n^{\prime}}\right)}=f_{2}\right| T_{\left(r_{1}, r_{1}^{\prime}, \ldots r_{n}, r_{n^{\prime}}\right)} .
$$

The set of this equivalence classes form an integral domain \mathscr{C} by natural way and to set the quotient field of $\mathscr{\mathscr { H }}$ by $\hat{\mathscr{H}}$, the elements of \mathscr{H} and $\hat{\mathscr{M}}$ both considered to be the germs of multi - valued analytic functions at the origin of z-space, where $w_{i}=\exp z_{1}, i=1, \cdots, n$. Similarly, we define the germ of those functions which are holomorphic on each $T^{\alpha}{ }^{\prime} k_{\left.{ }_{\left(\alpha I_{1}, \cdots,\right.}, \alpha I_{m}\right)}, \quad k=1, \cdots, m$, for some $\left(\alpha_{I_{1}}, \cdots, \alpha_{I_{m}}\right)$. The set of those germs form an integral domain and its quotient field is denoted by $\hat{\mathscr{E}}$. As the elements of $\hat{\mathscr{H}}$, we consider the elements of $\hat{\mathscr{E}}$ to be the germs of multi - valued functions of ζ - space. Then by the above, we can define Borel transformation $\mathscr{\mathscr { S }}$ for the elements of $\hat{\mathscr{M}}$ to be the map from $\hat{\mathscr{M}}$ into $\hat{\mathscr{E}}$ and it also satisfies (3)i, (3)ii, (5), (6), (7) and (9).

Note. In this extended Borel transformation, although $f(z)$ is analytic near the origin, $\mathscr{B}[f]$ may not be analytic on any neighborhood of the origin. if $n \geqq 2$. For example, we have

$$
\begin{aligned}
\mathscr{S}\left[\log \left(z_{2}+z_{2}\right)\right]\left(\zeta_{1}, \zeta_{2}\right) & =\log \zeta_{1}+\gamma, & & \left|\zeta_{1}\right|>\left|\zeta_{2}\right|, \\
& =\log \zeta_{2}+\gamma, & & \left|\zeta_{2}\right|>\left|\zeta_{1}\right| .
\end{aligned}
$$

References

[1] Bateman, H (edited by Erdélyi, A. et al.): Higher Transcendental Functions, I. New York, 1953.
[2] Boas, R. P. : Entive Functions, New York, 1954.
[3] Borel, E. : Leçons sur les séries divergents, Paris, 1928.
[4] Ehrenpreis, L.: Analytically uniform spaces and some applications, Trans. Amer. Math. Soc., 101 (1961), 52-74.
[5] Evgrafov, M. A.: The method of near systems in the space of analytic functions and its applications to interpolation, Trudy Moskow Mat. Absi. 5(1956), 79-201, Amer. Math. Soc. Translations, II, 16 (1960), 195-314.
[6] Lefschetz, S. : Algebraic Geometry, Princeton, 1953.
[7] Martineau, A.: Les hyperfunctions de M. Sato, Seminaires Bourbaki, n10214, 1960.
[8] Polya, G.: Unterschungen über Lücken und Singularitäten von Potenzreihen, Math. Zeit., 29(1929), 549-640.
[9] Picard. E. : Leçons sur quelques types simples d' equation aux derivées partielles avec des applications à la physique mathématiquss, Paris, 1925.
[10] Premerj, J.: Riemannsche Funktionenscharen mit gegebenen Monodromiegruppe, Monatsch. für Math. Phys., 19(1908), 211-246.
[11] Samuel, P. -Zariski, O. : Commutative Algebra, II. Princeton, 1960.
[12] Treves, F.: Topological Vector Spaces, Distributions and Kernels, New York, 1967.

