An Explicit Formula of the Solution of Constant Coefficients Partial Differential Equation with the Meromorphic Cauchy Data

by Akira Asada

Department of Mathematics, Faculty of Science, Shinshu university (Received Nov. 29 1974)

The analytic Cauch problem with the meromorphic data has been studied dy Hamade ([2] cf. [3]). In this note we give an explicit formula of the solution of constant coefficients equation with the meromorphic data by means of the extended Borel transformation ([1]).

In [1], we give an explicit formula of the solution of constant coefficients partial differential equation $P\left(\frac{\partial}{\partial \zeta}\right)u=0$ with the Cauchy data

$$\frac{\partial^k u}{\partial \zeta_1^k}(0, \zeta_2, \cdots, \zeta_n) = g_{k+1}(\zeta_2, \cdots, \zeta_n), \quad 0 \leq k \leq m-1 \quad ,$$

in the form

$$(1) u(\zeta) = \mathscr{B} \left[\langle (1 - z_1 \sigma(z_2^{-1}, \dots, z_n^{-1}))^{-r}, T(_{\sigma_1, \dots, \sigma_s}^{r_1, \dots r_s})^{-1} \mathscr{B}^{-1}[g] \rangle \right] (\zeta) ,$$

where $P(z) = \prod_{i=1}^{s} (z_1 - \sigma_i(z_2, \dots, z_n))^{r_i}$ and $(1 - z_1 \sigma(z_2^{-1}, \dots, z_n^{-1}))^{-r}$ and $\mathscr{B}^{-1}[g]$ are vectors such that

$$\begin{split} &(1-z_1\sigma(z_2^{-1},\cdots,z_n^{-1}))^{-r}\\ &=((1-z_1\sigma_1(z_2^{-1},\cdots,z_n^{-1}))^{-1},\ (1-z_1\sigma_1(z_2^{-1},\cdots,z_n^{-1}))^{-2},\cdots,\\ &(1-z_1\sigma_1(z_2^{-1},\cdots,z_n^{-1}))^{r_1},\ (1-z_1\sigma_2(z_2^{-1},\cdots,z_n^{-1}))^{-1},\cdots,\\ &(1-z_1\sigma_s(z_2^{-1},\cdots,z_n^{-1}))^{-r_s}),\\ &\mathcal{A}^{-1}\lceil g\rceil = (\mathcal{A}^{-1}\lceil g_1\rceil,\cdots,\mathcal{A}^{-1}\lceil g_n\rceil)\ ,\end{split}$$

and
$$\langle F, G \rangle = \sum F_i G_i$$
, $F = (F_1, \dots, F_m)$, $G = (G_1, \dots, G_m)$.
On the other hand, in [1], we also show that to define

(2)
$$\mathscr{B}[\log z](\zeta) = \log \zeta + \gamma$$
, γ is Euler's constant,

 $\mathcal{B}[\log z]$ is well defined and most of the properties of Borel transformation is preserved. Espescially, by (2), we get

(3)
$$\mathscr{B}\left[z^{t}\right](\zeta) = \frac{1}{\Gamma(1+t)}\zeta^{t}, \quad t \neq negative \ integer,$$

(4)
$$\mathscr{B}[z^{-n}\log z](\zeta) = (-1)^{n-1}(n-1)! \zeta^{-n}, n \ge 1$$
.

By (4), we get

(5)
$$\zeta_{i_{1}}^{-m_{1}} \cdots \zeta_{i_{s}}^{-m_{s}} \zeta_{j_{1}}^{\alpha_{1}} \cdots \zeta_{j_{n-s}}^{\alpha_{n-s}}$$

$$= \mathscr{B} \left[\frac{(-1)^{m_{1}+\cdots+m_{s}-s}}{(m_{1}-1)!\cdots(m_{s}-1)!} \Gamma(1+\alpha_{1})\cdots\Gamma(1+\alpha_{n-s})z_{i_{1}}^{-m_{1}} \log z_{i_{1}} \cdots z_{i_{s}}^{-m_{s}} \log z_{i_{s}} \cdot z_{j_{1}}^{\alpha_{1}} \cdots z_{i_{n-s}}^{\alpha_{n-s}} \right] (\zeta) ,$$

$$m_{1} \geq 1, \cdots, m_{s} \geq 1, \alpha_{1}, \cdots, \alpha_{n-s} \text{ are not negative integers.}$$

Hence, since any element of $\widetilde{\mathcal{M}}^n$ can be expressed as a Puiseax series (cf. [1]), \mathscr{B}^{-1} is defined on $\widetilde{\mathcal{M}}^n$. Therefore, (1) also express the solution of $P\left(\frac{\partial}{\partial \zeta}\right)u=0$ with the meromorphic Cauchy data.

Similarly, we obtain the solution of $P\left(\frac{\partial}{\partial \zeta}\right)u=f$ for $f\in \mathcal{M}^n$. For example, for $f=1/\zeta_1\cdots\zeta_n$, we get

(6)
$$u(\zeta) = \left[\frac{1}{P(z_1^{-1}, \dots, z_n^{-1})} \frac{\log z_1 \dots \log z_n}{z_1 \dots z_n}\right](\zeta) .$$

References

- [1] Asada, A.: Some extensions of Borel transformation, J. of Fac. Sci. Shinshu Univ. 9 (1974).
- [2] HAMADA, Y.: The singularities of the solutions of the Cauchy problem, Publ. RIMS, Kyoto Univ. 5 (1969), 21-40.
- [3] WAGSCHAL, C.: Problème de Cauchy analytique, a données mèromorphes, J. Math. pures et appl., 51 (1972), 375-397.