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Introduction.

As was announced in the introduction of I of this paper, we treat the inte-
gration of b Jg,f(m)*ga(t), ¢ is a variable, in this paper. But, since b Lg"(leLgD(a)
is a probabilistic distribution on R!, we treat the integration (in some sence) of
w(t), a probability distribution valued function on S, a measurable subset of RY,
in this paper.

In §4, we first treat the integration of log & [x](t), or in other word, the
integration of bﬁ(Rl)*go(t) (cf. §3 of I). Then, since bﬁ(m)*(p(t) can be con-
sidered to be a function of 2-variables and b Lg—’(Rl)J“gD(t, 0)=0, we can reduce
the integration of b fum*go, to the integration of Alexander -Spanier 1-cochain

b g @y etNs—)=0a(, s) (cf. 15) and we have

[ 04, =stt—t0)

under the suitable condition about ¢. We also change this to the integration of
F b /(/,7-’(R1)+90:|(1f) by using the product integral (cf. [17]).
Next, we consider direct integration of b j*(Rl)J'(p(t), or wt). For this pur-

N

pose, we define the #-product integral of u(f) on [a, bJ, denoted by *— Jp t by

La,b]
Tt

= [im. JRL. “le f (§<ai+1 - ai)l‘i>dy(a0')t0. A p{@m" s

1, %10 d
a=aya;< - <am<am1=b, a;<a;'<ai,1.

Then we get
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(=], b game)li=et)—ste)

if ¢(t) is (right) Borel derivable on [a, 0] and B,e(f) is Riemannian integrable on
[a, b]. In general, if E(y(t)):JR sdp(t)s exists for t[a, b] and E(x(?)) is Riemannian

integrable on [a, &], then we have
[N
- J o b],aza IZE e the Dirac measure concentrated

at JbE(ﬂ(t))dt.

a

By this reason, we define the #-product integral of p(f) on S, a measurable set
of R, hy

YanY
G JS#:fj S EGnar the Dirac measure concentrated
at [ But)at,

if E(y(f)) exists almost everywhere on S and E(u(?) is Lebesgue integrable on S
(§5, n°15).

In §6, we also consider the x-product integral of those p(f) that do not have
E({t) on S but for some «, 0<la<1, JRls“d/,z(t)s exists almost everywhere on S.
But, since we can show that under this condition,

lim. h=o( 7 [p(@))(H)—1)=C"a

li=+0

lim. h=e( 57 [0 —1)=C_a,

h——0
both exist, we consider the #-product integral of those g(f) that the Fourier
transformation . [ p(t)] of p(f) has the form
L s) =128/ —Tea, . (dt)s* +0(s%), 20,
=1—2ry/ Tleq, -(ut)s o5, s<0,
st=|s|®eam/ =1 if 50,
almost everywhere on S. Then we can show that, if es .(u() and e, _(¢(f)) both

absolutely Riemannian integrable on [@, 0] and f is the Fourier transformation
of a holomorphic function ¢ such that

oo l—2 1 —om =Ist 4 =
J s (s«)e dste=1 has the mean value in
0

Jsea, H[u(d)dt-direction,
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0 e 1, g S )
J s« (s%)e dst*=1  has the mean value in

cog¥ —lam

J e, -{ult)dt-direction,

we have

lim. %lim. Jj JRI---[le (;i:‘:hti>d‘u(a+ Goh)ey

s—0 £—(

<dpla+ k) Onci)))taardh

= L[ o atptenar |7

_Cl"“l a

'N[arg. (fsea, +Ca(E)dE) UO

- Ub Ca, (D)t

a—1lg

oM

0 1—a 1 _2”‘/?1 a_z_v__
arg,(fzea,_(u(z))dt)H_m,/:ia,,S (s*)e dst 1}

Here, n(h) means [(b—a)/k], the integer part of (b—a)/h, 0;, 0 i <n(h) are real
numbers such that 0<8; <1, and M,[g7] is the mean value of g in #-direction,
that is

. 1 (e+TH
Mi[g]~lim. ——J g(bdt.

Tﬁ ab
Therefore, if e, .(u()) and e, -(u(f)) both exist almost everywhere on S, a measur-
able set of R!, and both Lebesgue integrable on S, and if f is the Fourier trans-
formation of a holomorphic function ¢ (defined on suitable domain of C*) such
that

wloa 1 on/Tist ;. %
J 5@ g(se)e ds t==1  has the mean value in
0

J €, (1) dt -direction,
S

0 l—e 1, — @
.[ 2/ =Ist s ga=i

@ (44 ¥
= p(s e has the mean value in

js €a, ((t)) dt -direction,
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then we define the * -product integral of p(f) on S by

e = [ )

L

:ai U €a, (A1) dt]l *

1

M ) o2 lstds = ah_

arg.(f e, +Cuiat) U

oo

el dfri—a

1 f— «
o (eu\p—2m/ —1st 1
M, (J sea, —(,u(t))dt)[JMOQ /Tar® (S Je dst 1]'
We note that if e« .(p(f))ea, -(p(t)) (=ea((t)) almost everywhere on S, then we may
write simbolically (cf. [167)

e[

= JRIQ’(V)GXP. (—2m8/ rl_L e () dt)re)dr

or, in other word, we may set

[ plriexp. (—2my/ =T _ex(putatore)dr
m s

L[ etnar]

a—1

oo l—a

1 -
e U
Mg (s Seuwm)wo s« plse ds+

0 1—a 1 -
+J v Tiax® o(s=)e 2 1srds)z‘vf 1}
—oog

Here, f=_% [¢] and ¢ is assumed to have these mean values,

Since this paper is the continuation of [, the numbers of §, formulas and
references etc. are continued from /. Theorems, formulas and references efc. in
I are refered by their numbers in /.

§ 4. Integration.

11. Let F(t, s) be a (continuous) function of 2-variables such that

Ft, 0)=0.
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Then, to set
(41) Dy, t1)=F (to, ti—10),

Or defines an Alexander -Spanier 1 -cochain of D, the intersection of D, the
open set on which F is defined, and #, -axis.
Lemma 16. If F is differentiable in s, then

(42) J: @F:JZ %(t, 0,
if La, b] is contained in D, Here, the integral in the left hand side is the integral
of the Alexander-Spanier 1-cochain Pp on the chain y: [a, bl—[a, b], the identity
map, and the right hand side is the Riemannian integral.

Proof. By assumption, we get

F, s):—a(,g(t, O)s+o(ls]), sio.

Hence to set a=ay<lay<---<am=>b, we have by the definition of the integral (cf. [15]),

b
" o,

Ja

m

= [lim. EF(di, (@i 1—ai))
la,, —a,1=0 i=1

= lim. ﬁ(g‘(‘li, 0) (ai+1—ai)+0(|di+1—di|))

—a | 7=\ 0s
1120 =1

3 aF

= laiizlq/l‘.’,- 0 ; ’a—s‘(ai, 0) (@i41—ai)
bR
”L it O)dt.

Definition. If b k/gz-’(Rl)‘Lgo(t) exists for all t, a <t <b, then we set

drglt, )=(0_g oy glt)).

We note that by the definition of b f(mfgp(t), drp(t, s) is defined on [g, 0]
X R' and we have

(43) dyit, 0)=0.

Example. If ¢ is differentiable on [«, &], then
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d
diplt, s)==2At)s.

Theorem 8. [f ¢ is continuous and (vight) Borel derivable almost everywhere on
a <t <b, and B,p(t) is Riemannian integrable on a <t <b, then

(44) [ @ary=el1—ota), 1<,
Proof. By assumption and theorem 7, we have
drplt, s)=Brp(t)s—1)+o(|s—t]),
almost everywhere on [a, 6]. Hence, to set

La, ble,s={t] t€la, b], |drelt, s)—Brpt)s—1)| <,
if |s—t| <o},

we have

b
Hdt=b—

L XUE)O[‘Z, b]s,s( ) b—a,
for any ¢>0. Here yz is the characteristic function and the integral is the Rie-
mannian integral. Therefore, by the same calculation as in lemma 16, we have

J': D= Ji Brp(u)du,

because Byp is Riemannian integrable by assumption.
On the other hand, we know (cf. [9], §46)

|| Brgtudu=olt)—ota),

‘ t
holds almost everywhere on [«, b]. But, since J' Biplu)du and ¢(t)—¢(a) are hoth
a

continuous by assumption, we have the theorem.
12, If ¢ is an Alexander -Spanier 1 -cochain with the value in R* the mul-
tiplicative group of non zero real numbers, (or in C*), then we can define the

o

product integral J ¢ of ¢ on 7, a singular 1 -chain, by
;

VY b7
J o= Iim. [T o(ya), @i+
r la;,472,1~0i=]
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N
ei, 1=1, 2, or J ¢, i=1, 2 are both exist, then we
T 7.

—)

By definition, if

have

Lemma 17. [f ¢ is (an R* -valued) 1 -cochain of R', y is the identity map and
¢ 1s smooth in s, then

N I

dp,,
(45) Jﬁ””“ jr (1—1——3;@, t)dt),
where the integral of the vight hand side is the wusual product integral of ¢dt, §)

7).

Proof. By assumption, we have
dp

Therefore, we get (45) by the definition of the product integral.
Corollary. Under the same assumption, we have

(45) TT p=exp. (L %‘;i(t, t)dt).
Proof. Since we know
T op dp
JT (1 +t, t)dt) —exp. (L 2, t)dt),

because ¢s(t, ?) is a scalar valued function, we have the corol‘lary.
If ¢ is % (R!) -derivable on [q, ], then we set

(46) bty $)=(.F [b_gr rny*o(t)1Ns).

By definition, if d,o(f, s) exists, then we have
47) Aot $)=———Tlogbrlt, S)
( rplt, S)=g——logbrplt, 5).

Since byp(t) is the characteristic function of some probability distribution on
R!, we get
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(43y ro(t, 0)=1.

Therefore, to set
Dy, (to, 1)=Dr0(ty, ti—t),

as in n°1, @y, defines a C* -valued Alexanded -Spanijer 1 -cochain. Hence we
Yoy

can consider J Dyo.
T
Theorem 8'. If ¢ satisfies same assumptions as in theovem 8, then

@ [ e =exp. (g Wl0—ela)), 1

Proof. By assumption and theorem 7, we have
Dryolt, =1+ Byltis—t)-+o(ls—t|)
Drond, - 271.‘/\/:———1— 7P g .

Hence we have

-1

[ 20 L ol g Bt

by the same reason as in lemma 17 and theorem 8.
Then, since we know (cf. (45)")

0 -1
J[ y b](1+—_2n —— B,go(u)du)

22

=exp. <~2—7M7—1:—fja B,go(u)du),

¢
and J Byp(u)du=¢(t)—¢(a), we obtain the theorem.
a

13. If ¢{f) is . (RY) -derivable on @, b, then D Jor(Rx)*go(t) is a probability
distribution valued function on [&, b]. To construct directly the (indefinite} integral
of bj-'(Rl)*p(t), we define

Definition. Let p(t) be a probability distribution valued function on [a, b]. Then
the = -product integral of p(t) at f, denoted by
(% — J[a’ b],u(f), is defined by

)

(49) (=] )
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g

= ( lim. H*(P(ci+1—ci)$#(cil))(f),

l6;,176;170 =g
a=¢y<61< - LCorn<lms1=0, €i;=Ze;" <14y,

m

if the limit of the right hand side exists for any partition of [a, b]. Here II i
i=
MEAnSs vy xypkeeeiy,,,

Since we know

m

(Detoc, ey ries W A)

1=

b3

_ J e J S (Z} (cl.“_c,.)t,.)dﬂ(co’)to---dg(cm')tm,

i=0
N
we have that, if (x — J[ b],u)( f) exists, then
@,
N

(40) )

"

= lim, Lﬂ . 'JRI s <§) (Cis1— Ci)ti) dpco’Jeo A dCm" Y.

e |-
16,4 il >0

Lemma 18. = -product integral has the following properties.

(). If fis a constant function c, then (x — JE " I f) exists for any p(t) and
@,
N
(50) (r — j wie)=c.
La, 0]
(ii). If p(t) has the expectation E(u(t)) for any t, and E(p(t)) is Riemannian integrable
on [a, b], then (x — { )t exists and
La, b3
i b
(50)i (| io=| B,
[a, b] a

N
(iii). [f plt) satisfies the assumptions of (i) and (x —J b]p,)(e—Zfrv/—_lf) exists, then
[a,

using same notations as in (i),

N

(50 (s — j[a , ez 1= j[a | (1—2ny = TE(t)a)

— exp. (jb — 2/~ TE(t)dt).
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Proof. Since [Rld‘u(t)zl for any t, we have (i by (49). By (49, we also

obtain

JRI .. .JRI (é (Civ1— ci)ti) dpcd ey A p(Con Vem

7

= i+17 6 tdpc! i’
2ea—a i) 11 [ dntey)

b

=

=D j(cisi— ) E(plc)).
i=1
Hence we have (ii). Similarly, since we get

772

J J exp. (—2ra/—1 <Z (Ci+1_ci)ti) dpdcy)ey - dpdem Ve
Rl JR1 i=0
ot —2n,/=1(c, ,~c)t
= e i+1 7 dulc),
gojR T dpe))
we obtain (iii). Because by (the proof of) theorem 7, we have

R

=1—2ma/ —1(¢;s1—C)Eple; ) +0(] €;01—C;1).

Theorem 8''. Under the same assumptions about ¢ as in theorem 8, we have

Yan

Q). (5 — Jm D5 gl exists and we have

(51} (*—Tm D g @ et =¢ls)—ela)

(i), (*—Tm K g (e ) exists and we have
(51) ( *——Tm s]b ng'(Rl).”w(u))(e—ZWTU)

(s
=exp. (—2ry/—1 j Bplu)du.
@
Proof. By assumption, b Lg-’(Rl)*'go(a) has the expectation, and we have

(52) E® g wy'ola)=Brola).
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Hence we obtain (i) by (ii) of lemma 18 (and the proof of theorem 8).
Similarly, by (52} and (iii) of lemma 18, we have (ii).
14. Lemma 19. For any integer k=1, we have

(53) 77’1"?'”“]?., ;;;Ck:O(mk'l).

Proof. Since k!/nC,=m!/(im—k)!=m@m—1)--m—k+1), we get (53).
Lemma 20. Let f(t) be (Riemannian) integrable on [a, b] and set F(s):r fihdt,

then ’
54 31 [ e e p et dti= LR,

Proof. Since j FOLFRYe-1dt=1/k-{F(t)}*, we have (54) by induction.
‘ Theorem 9. [f p(t) has the j-th moment aj(,u(t)):JRlsfdy(t)s for j<k and a <t
<b, and assume that, each aju(t) is uniformly bounded on [a,b], 1<j <k, and
N

ay (p)=E(pt)) is Riemannian integrable on [a, b, then (x — J () exists for j
La, ]
<k and we have
N

(55) (v | ) =( AN

»

Here, () is given by
S
SNe)=| Bpiehd, s<b.
Proof. Since we know

(E Ci”i>]:ﬂ 20 CiveCiti i
7 iﬁéu-%zj

-+ ) i Ci1"'Cijui1"'uij,
i =ig for some a,f

we get

J o J N (E(Cm— c,-)tl->jd‘u(00)to'--dﬂ(cm)tm

z

=4l 20 (Cimi—Cin){cijri—Cif)e
jl%...%;j

'J . J biyeeotidplcole, A p(Co)tm+
R R
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4+ 2 (Ciyr1—Ciy) +(Cije1—Cij)e
i =ig for some @,

o ] it dptedes - dpenen,

Then, since each pc,) is a probability distribution, for the first term of this right
hand side, we get

J . 'JRl(t iyl it jApCo) o A Cm)tm
= E(p(es ) Epeles ).
Hence we have

lim. 20 (Ciyer—Ciy)o{Cijrr—cij)e
le; 7m0 i F L

'J "'J til"‘tl'jdﬂ(co)to'"dﬂ((“”l)tm
r Jm

= lim. 2 (Ci1+1—0i1)'"(Cij+1—cij)'

c —c.|—0 i, 0.
e, 1760 iy

 E(plci) - Epdci )

B J b j i,‘--]ijﬂmw»- ~E(plt)dty---di;

a
_1 i
=i & (WY,
by lemma 20. On the other hand, for the second term we get

] o] e tisdpenesdpenen]

= |ay (pltr,)--a (ot ) <M,

vt ve=74, (e1, -, o)y, o, i),

for some constant M, by assumption. Because, each gc;) is a probabilistic distri-
bution. Hence we get

| JZ (Givri— e} (e —ci)e
Z“=lﬁ, oy sonme «,

of ] ety dpiemlen|
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< Z [Ciye1—Ciy| | Cijer—ci; | M.

i =i, for some a,f
« ﬁ

Then by lemma 20, we have

lim, Z (Civ+1—Ciy) (Cijr1—Cij)e
le, ,=c.t=01i =i, for some a,f
i+l i a B

.JRl"'Jthil"'tijd#(cﬂ)to“'d/‘l((/‘m)tm

Therefore, we have the theorem.
§ 5. Generalization of x-product integrals.
15. Theorem 10. If p()=0dycrr and ¢(t) is Riemannian integrable on [a, b, then

N

(% — J u(f) exists for any continuous f and we have
La, b]

N
(56) T J[(z, b]5¢(t):0f2w(t)dt'

N
Here, —J decy means the element of C(RY* whose value at f is
fa, 21

N

(e — J[a’ b]tio(t)(f).

Proof. Since we know

JR} ° .JRL f <Z(Ci+1ﬂci) tl) 540(00), to"* '599(6‘171), tm

H

= £ (S era—cipled),

7

we have (56).
Corollary. Lf ¢(f) is (vight) approximately derivable at any point of [a, b] and
AD ¢ is Riemannian integrable on [a, b], then

N

(57) * = JE y o5 @D A= —pcan.
a,

To extend (57) for (right) Borel derivable ¢, we show
Lemma 21. Let f(f) be given by f (t)=Jng(s)exp(—ZnM—_lst)ds, geLYRY), then

( —JEE b]#(f ) exists if p(t) has the expectation E(i(l)) for any t<(a, b] and E(p(t))

is Rimannian integrable on [a, b]. Moreover, we have
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(58) (s —T =1 :Em(t»dt).

La, b1

Proof. By assumption, we have

le...Jle(.m (ci+1—ci)ti>d;z(co’):0---d,u(Cm')tm

=0

. m
- JRI,,_J’R!Jng(s)e—ﬁ/—l(go(cHl—ci) ti)Sde/l(Co')to“‘du(cm')tm

. m
- Jng (S)Jm '“JRle_Z”/_l(izzlo(c”;C")ti)sd“(cﬂl)h“'dﬂ(Cm')tmdS

i

:Jng (S)H JRIe—Zm/—l(cl.+1-—cl.)tsdﬂ(ci/>tds.
1=0

Hence by lemma 18, we have
( —T =] gexp(—2my/ =1 ([ " But)aneds
Ta, b] R a

b
=£(| Blupa.

a

By lemma 21, we may consider

N
! o —
(58) * J'[n’ b],u~5 | ZE(u(t))dt’
if p(f) satisfies the assumption of lemma 21.
By (58)', we generalize the notion of #-product integral as follows.
Definition. Let p(t) be a probability distribution valued real variable function on
S, a measurable set of R', such that E(u(t)) exists almost everywhere on S and E(u(t))
is (Lebesgue) integrable on S. Then we define the «-product integral of p on S,

N

denoted by = — Js#’ by

N
(59) * J J1=a [ ECun)dt

Here, LE(p(t))dt is the Lebesgue integral of E(u(t)) on S.
Example. If n(t) is given by b j"(le@(t), where ¢(f) is (right) Borel derivable

almost everywhere on [a, b] and B{p){) is measurable on [, 5], then

N
(60) * — JSb’_g?’(R‘)+$D(t):5fsBr(w)(l‘)di’
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if Scla, b] and measurable. Especially, we have

N

(60)' H — J[a’ S]b g7 B )= 0cotsr-vad,

almost everywhere on [, ], s <b. We note that, by (60), we get

N

(5L (=] b g ell=el)—ela)

16. Theorem 11. = -product integral has the following properties.
(). Lf 1 and ps are both « -product integrable on S, them uyxp, given by (pxpsXt)
=pm)rpft), is also = -product integrable on S and we have

(61): * —Ts (propes)=(x —TS fir) * ( “TS £12).

(). If p is = -product integrable on S, then o.*, given by (o5 )t)=pc*((t)), is also
x -product integrable on S and we have

N

[N
(61 o — [ orp=pcte — | g,
N

S

(iii). If Sy and Sy are disjoint and p is = -product integrable both on S; and S,
then p is = -product integrable on S,US: and we have

(61)iii * —TS Us p=(* st DEXC —«TS 7).

1 2 2

(iv). If {p} is a series of probability distribution valued functions on S such that
n(2) converges to a probability distribution p(t) almost everywhere on S in the + -weak
topology as the elements of C\x| (RY* and there exists a Lebesgue integrable function
g(t) on S such that |E(u, ()| <g(t) for all v on s, then p is = -product integrable on
S and we have in the = -weak topology of Cx) (RY¥, ‘

[N ~
(61)w lim. x — J sy =% — J .
v S s

Proof. Since we know E(p#ps)=E(t)+ E(ps), we have
N

® —

J R0 pi iy ar § B i

:(éf E(ul(t))dt) * (OISE(ﬂZ(t))dt)
N

N

=(r— J 5#1) *(x —Ts )
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which shows (i). Similarly, since we know E(p*p)=cE(z) and dce=pc(0a), we have
(ii) and since dca.py="04%0p, we get (iii).

To show (iv), first we note that E(u(f)) exists almost everywhere on S and
Lebesgue integrable by assumption. Then, by assumption, we have

lim. LE(,uy(t))dt:L E(u)dt.

v

Then, since lim. . fla.,)= f(a), if lim. ,a,=a and f €Cx (RY), we obtain (iv).
N

Note. If = — JS r is defined to satisfy (iii), (iv) of theorem 11 and

N
(a) * — J[(Z’ bj‘u:z?f[a’ ) if E(u) is Riemannian integrable on
La, 0]
N
(b) Z(Mgfzo* — JS n=a, m(S) means the Lebesgue measure of S, then
(s )—

N

* "J ¢ should be equal to 3. for some ¢. Because by (iii) and (b), #* — sz is
N

N

infinitely divisible and by (iv), (a) and (b), |.& [* — JS#:H:l (cf. [7], [8].

N
To consider the (generalized) derivation of =* —J ];z, we first note that,
[a, ¢

since dg+6=0q%0s, We get

Ja Y| y=0-a, where 0,7'], means the inverse of d. by the convolution
product.

Hence we obtain

(lim. Liim. JS (o) BrcasppOrcay™ [ )dE) f)

s—0 e—0

=lim. L1im, j Ft-NFat)—F@)dt

$—0 e—0 e
=0 g~ @y Fla)f).

Here the limit of the left hand side exists if and only if F is (right) & (&Y
-derivable at @ and f = & (RY.

Especially, if I is given by the indefinit integral F(t):ﬁ o(u)du, then since
we know

b g @y F(b)=04t),



Generalized Derivatives and Their Integrations, II 111

almost everywhere, we get

N IR LN T ,
(fi’?f S 51—7»73 L (or'y( J[a,b+t]ﬂ)*«* JEa, b]ﬂ) KT
=S (E(ud),
almost everywhere. Hence, if p{f)=b> y—’(Rx)‘Lgo(t), then we have

N

. 1,. S N1/ AW
(51"3 ?ilfg L e (G {m bmbycm-) o)
- jm DS EGT N)
= f{Bule)d),

almost everywhere.
17. Since we get

N

v =1t =1f ECu@))dt

(o~ [ o™= T Ee,
s

we define by (50)i,
Definition. [f E(u(t)) is Lebesgue integrable on S, a measurable set in R', we
define the product integral of en/—1 E(u(t) on S by

(62) J (1+«/_—_1E(/J(t))dt):e'/—“lfSE(#(t))dt.

S

Similarly, if ¢(t, #1) is (a representative of) an Alexander-Spanier 1 -cochain
defined on some neighborhood of S, a measurable set of R!, then for sufficiently
small s, we may consider a function F.({¢, s), teS, by

(63) Fut, s)=¢(t, t+s).

Moreover, by the definition of Alexander -Spanier cochain, we have

Lemma 22. (B,)sFu(t, s)|s=o does not depend on the choice of (the representative
of) ¢.

Definition. We define L(p by

60 | o= (Bt 9)le-dt,

where the right hand side is the Lebesgue integral on S,
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Note. Although ¢ is an Alexander -Spanier 1 -cochain on a topological space
M, if y is a singular 1 -cochain on M given by 7: I—M, then to set

r*elto, t)=plr(t), 7(¢1),
we have
(65) Jire=l,e

by the definition of the integralj But since 7*¢ is anAlexander -Spanier 1 -cochain
on I, we can define F,,, and (B,)sF; .., s) and we have

[ o= (BFruett, oo,

if the left hand side and right hand side (and (B:)sF40(f, s)) both exist. Hence,
although JT ¢ does not defined in its original sence (cf. [15]), if (Br)slrsolt, $)ls=0

exists and Lebesgue integrable on I, then we define J ¢ by
T

(66) | o=] @Bty Slomolt
Similarly, since we know to set

F(F(tf Sty 00 sp):?’(t: t~|—$1, ) t+8p),
teIP={(t,, -, t,)|0<H;<1, 1<i<p}, s;elr, 1<i<p,

we have

Lﬁ Fe

:Lp((Br)sll"'(Br)sppFw(t, S1, sp)lsl=-~~=sp=o)dl‘1"'dtﬁ,

Si:(silr ) sip): 1-—_<—_iép,
if the both sides exist, we can define J' o by
T
(66) | ¢
T

=] B, B, Fraolty $1, 0 $p)ls,=ooms il
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')’*gD(to, tl’ ) tp)zﬁﬁ(T(tO)y T(tl)r "ty T(fp))-

Moreover, if ScI? is Lebesgue measurable, then we can define J (go by
7(s)
(66) | o
7(s)
= [ (B, Bo)s, Fraolty 51+, )5, mooms ~0t v,
S
if (Br)s“‘"(Br)SPPFTw(t, Sy, 0, Siz)lsl=-“=51,=0 is Lebesgue integrable on S.

§ 6. Generalized + -product integrals.

18. In this §, we consider the problem to genealize the notion of * -product
integrals for those p(f) that does not have E(¢{t)). For this purpose,. we first prove

Lemma 23. Let « be a real number such that 0<a<1. Then we have

67) FLell)=1+ctat0(]£]%), 10,

if (and only if) J \2|edy: exists.
Rl
Proof. By assumption, to set

¢ —
wlidt)=| sedpls),  se=lsle, 520, 520, se=|s|een T, 50,

ve{p)(t) is continuous and bounded on R!. Then, since

1

hJ " 1)
Tk
1
:hn—aj” tretedp)
-

1 1

—hn-e[tn-egalp) (]| —(n— an-a " tn-ety i,

h "

. a/hy
lim, p hn-aJ
A0 — /B

#n, n=>1, and the convergence is uniform in #. Because, since

1 dp(t)=cn o(pr) exists and |cuo{e)| is uniformly bounded for all

lim. ya(p)t)=0,

f——co

lim. yalp)(t) = Ealp) = jwmt“du(t),

t—co -
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there exist positive numbers A=A(e) and B=2B() for given >0, such that

[zaleft) e, if t<B,
| Eo(p)—2a{p)0)| <&, if 1>4,

and we have

1

A e
TR
7
—(n—a)(n=a| " tn-a-iyap)dt|
Tha
1 1

=| (n—a)hm-a(K_UrJ"Ff)tn-a—lxa(y)(t)dt) +
hs  Thi

n—ayn-a—hgre) [ in-s-pa(upidt|
Tl
e,
if 1/hy, 1/hy =A and —1/hy, —1/hy <B (hi>hs).
On the other hand, if f(&, ¢) is bounded and continuous on R!Xx[0, §] for
some >0 and [im. o f(k, £)=0 (for any fixed £), then we have

(68) lim. Iz{(E—]—Ki) fh, t)dy(t)} =0,

fi—ca h

Because by assumption, to set
¢
o, AR, 0= [ 575 (B, S)dpts),

e, f(p)(h, 1) exists and continuous and bounded on R!'X[0, ¢] and we have (for any
fixed t)

lim. ya (AR, t)=0.
ot Xa, f( )
Then, since we have

hee( 7, gt

Sy j ;Z t-ataf (h, Hdp(t)
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= et fuh, 8], —he| ; t5ge, (00, i,
h "

we get lim. poo J g ik, Hdpt)=0. Similarly we have

lim, ,Hx,j Y £, dp(t)=0 and we obtain (68).

Then, since

lim, h-o( 7 [p)(h)—1)

h—(

~tim. h( j T eI Ik g 1)

—0co

=lim. h-=( J fm(e‘z”‘/ “Ish_q d,u(s))

=0

1
o

—lim. h- (j_”_ (T v+ [ +J_71;>(e_2"‘/ T 1))

k-0 -7 7 —co
1 -
~lim. h(j’ eI 1)d,u(s)> by (68)
-0 ——

h

— 1
Yy » (—2ma/—1)" 3
i (5 )

= lim. E(_,Mhn « J/Z s"dp(s)

=0 3=1 nl!

(—2ma/—1)"

Cn,a{t)
nzl n! ’

we have the lemma.
Note. Similarly, under the same assumption, we can show the expansion

67) F Lelt)=1+c"tx+o(|£]%), 10.

In the rest, we set

(69) Ca, ) = ggplim. oo [0
h—+0

e, - (1) = «/ lzm o 7 [ —1).

h——>—0

Note. if 2<0, we set h-«=|h|-2¢am/~1, Hence €, +€s - in general.
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By definition, we have
(70) ep(1)=0, if e exists and f<a, 0<a, <1,

Here eg(p) means ep, +(z) and ep,-(1).

Hence we have

Lemma 24. eq +(p) and eq (p) do not exist if ea +(p)70 or eq ()50 and y>a,
0<r<1.

Definition. For a probability distribution p on R', we set
(71) a(/«t):sgtﬁ. {Blles,+(1)| =0 and e, -(p)| =0, 01}

19. Lemma 25. Let a=cy<lc;<l---<cm<cme1=b be a partition of the interval
La, 0], « a real number such that 0a<1, then

m

(72) lim. max. (| €;51— ;|19 V¢ —c; |2 =b—aq,
e, —e1=0 1 i=0

if and only if the partition satisfies
max. (|¢;p1—C;| %)

73 lim. : =1.
(73) le, —c.|—pMn, (|Ci+1_cz’|1_a)
i+1 1 i

Proof. Since we know

i

(mazx. (|c;oi—c; | =N D S €ra1—c; |
H =0

m

>3 eia—c;| (=b—a)
=

3

Z(min. (C;o1—¢; [ N N era—cil e,
i =0

we have the sufficiency.
Conversely, to set

Cpo=0, Cp1=a+b—a)k-c, 0 cl,

(b—a)(1—Fk-c)

ck,l‘:a“{—(b—a)k_c—[_(i—l) 7 y 2§Z§_k+1y

we have

k
(maz. (I, ia1—Cay 1 =N DNy 11— C, 11
=0
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—(b—a)i-k-ci-a)(b— a)(fe-cx 4 (k— 1)k-a(1— k-¢)%)

(1= ke —1)— k(1 — k<))

=(b—a)(k-c+ k1-eX1-0 4 Tetia)

Hence to get (72), it should be [im. p—eok(i-001-0>=1  But, since
min. ;| Cp, i1—Cp, i | =(0— @)1 —k-)/k, we get

max. (| ¢y, 51— Cp,:11-%)
1

- =Fk(-0-a)(] — f-c)x-1
min. (|Cp, 01— Cpi117%) ’
z

(73) is necessary to get (72).
In the rest, we assume g(f) is a probability distribution valued function defined
on [a, b] and satisfies the following conditions (i), (ii) and (iii).
(A). a{pt)#0 for any t.
(i1). eacucry), () and eacucry, -(ult)) both exist for any t and the functions ewcucty,  (pt))
and eagucryy, -(((t)) are both absolutely Riemannian integrable on [a, b].
(iii). To set e(g)=1nf. tcra,pia(edt)), ()40, and for any t, we have

FL8)](h) = 1— 2/ — Leatuesy, + (UENRKHEI - 0(h*o), ] 1 0,

=127/ —Leatuey, -(fE)AXHED +o( | R *), k| 0.

Under these conditions, if ¢(f) is given by the Fourier transformation of an
entire function with suitable conditions about the degree of increase at oo (in some

(suitable) direction), that is go(t)zJR f(r)e'Q"‘/:T”dr, where f(r) is the entire func-

tion with the above condition. Then we have

Where n(h)=[b(—a)/h]. In this last formula, we get by (iii},

J e—2ﬂ,/—_lr/zt dpla-+ih))
R

= 12/ T Leaucasin, a-t i) ecCarimhetcariny
o 7|20 | B 0a)

— 1= 2/ LCauCarin, o(pa-+ IACarinD-tyatucarimdh
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to(| | *otd-1|7|xlD] k),

where ¢ is either + (if 2=0) or — (if 2 <{0). Hence we have

n(l) e
H JRle—2n,/~1r/ztdp(a+ih)(t)

=0

N

= J (1—2m8/ — Teausy), o pENRCHEN-1yaCu(t)dt «
La, 4]

.eo(mlao(#)—lmao(ﬂ))

.
=exp. (_Zﬂ\/_lj ea(u(t)), ea(ﬂ(t))h“(”(f))'17“(”U>)dt—]—
a
-+ o(}h\ao(u)—liriao(#))).

Here, ¢ is same as above and 7¢=|r|xeen/=1 if » <0.
By the above calculation, we get

[ ] o (g)hti)d,u(a)to-..dp(a+%(h)h)t,z<h>

oo (b
:J f(r)exp. (—2zs/ *1J Cau(r), « (et heCHEN -1yt dt -
0 a

+-o(haoled-1| 7| 2(ed)dy -+

oo

0 b

+[ friexp. (—2mv/ =1 eutucon, -(uthscuen-iyacind +
- a

+o(| | wotr-1] | aoCd)dr,

Here, 220 in the first term of the right hand side and %<{0 in the second term.

To calculate the limit of this formula, we assume that p(t) satisfies (iv). a(u(f)
is a constant o, 0<a<l.

Then, since we have
r’ Frlexp. (—2ry/—Tha-1 Jb Ce, o (pt)dtra+o(ha-1)dr+-
0 a
0 _ b ’
" rtrexp. @ry/=Thos | e (uithdtretof || =-s)dr
1(® o ,, L — b
=gj g« " f(g*)exp.(—2ry/ ~1h“~lL Ca, +(p{E)dEq+o(h*-1))dq+-

0 1, b
| 107 £ G exp. (~20/ =1 e (Ehdiq-+ol| | *-2)dg
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we obtain

n(h)
] (2383 -yt i

1oL, L — b
:EJ q% " flg*) exp. (2m/—1hd—lL ea, . (pt)dtqg+ohe-1))dg+

(=]

1, 1 _ b
Loem/rl g« £(q*) exp. (—2ny/ —The-1 L e, -(p(t))dtq-+

4~

+o(||=-1))dg.

0 N eny/ =1 )
Here J ars/—1 means the integration along the line {¢ id 1t|0§t‘<00} and J

>3

0 . A .
and J ara/—1 both mean lim. 4o e J and im. A-co, oo JA ans/—1,
coe £ e

But, since we know that to set arg.c=60, we have

. 1,. S
lim. S 1im. j glha-1c)dh

s5—0 e—0 &

=lim. SO

w0l ¢1/(1-a)
J ————g(mut/ e~ D-1dy
S

S¢ a—

=lim, 5+

Toroo 10

(a+T)0 1/(1-a)
1 J .C____.g(u)ul/(a-l)+1du,

at a—1

we may set

h—0

n(h)
(74) tim. | o[ o(3] hts)dpahe-dpat i,
b Vi=o

=] bea,+<ﬂ(t»dt}ﬁMo+U:’s%‘ljf‘ltso](s%)e“z”“‘_“’dst&l—‘l]+
([l et [[) s s .
. ta%l}

where M,[ g(f)] means the mean value of g(f) in 0-direction, that is

1 J'(zz+T)0

and #, and 6_ are given by

0,—arg. J Z Ca, ((t)dt, 0-=arg. Jb Ca, _(pt)dt.
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20. Definition. We denote by Ma g, 6. the funclion space given by

Moo, 0-={ f|f= _F [¢], where ¢ satisfies the following conditions
() and (%).3,

o l—a 1 _, 3 e . . X
%), J s @ osa)e ™ I gstx=T  has the mean value in 0, -direction,
0
0 1-a 1 —27r,/jlst 2 . . .
(") J wry =18 ® o(s2)e dste=1 has the mean value in 6 -direction.
[==T24

Note. Since 0<a <1, lim. .- ﬁo exists if ¢ is regular at 0. Here, st/a=|s|t/a
if s>0 and in the second integral, s« means -|s|V=,
Definition Let p(t) be a probability distvibution valued function defined on S, a
measurable set on R', and satisfies the following conditions (i) and (ii).
(). a(u(t)=«a, a constant not equal to 0 or 1 almost everywhere on S.
(ii). €, (u(t)) and e, .(p4t) both exist almost everywhere on S and (as the functions on
S) they are both (Lebesgue) integrable on S.
Then we define the generalized = -product integral of pt) on S, also denoted by

N

* — jsﬂ’ to be the element of the dual space of

Mo, arg. fsea, +Cutt))dt,arg. S sea, -Cuttrat glven by

(75) (= | _exs)

1

1 L
a

:LUS Ca, +(/‘(t))dt}1_“Marg, S e, +(#(t))dt[J:S¥f_l[f](s o

a—1
.e—Zm/'-_lstdsta—_“l}_l_

1

1 0
EUS Ca, —(ﬂ(t))dt]l_aMarg- fsea,-cm))d;UwM oS e

o I e I dst“aTl].

ran)

By definition, * — jsis linear but since arg. (@+b) may not be equal to arg.
a+arg. b and although we get
a(prpp)=ea, if alu)=a(pm)=ea,

Ca, +(pr% o) = €a, (1) +€a, ,(t12),
€a, (pr#pt2=Ca, (1)t €a, -(t22),
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(a+ b/ (1-a)zLqt/(1-a) - p1/(-) we can not obtain corresponding results of theorem
11 for generalized * -product integrals.

If #,=0_ in the definition of Ma 4, -, then to set 6=0,, we denote M,
instead of My 9,,0-, that is M« is given by

Mo o=[f| f= .5 [p], where ¢ satisfies the following condition(*)},

(0 lma 1 —ory st , =
(") (J +J a_/—1>s @ p(se)e dste=1  has the mean value
R T
in 0-direction.

We assume g(f) satisfies the above (i), (ii) and the following condition (iii),
({ii). ew,.(ut))=eaq, (1)) almost everywhere on S.

Then to set ea{p(t)=¢a,.(p(t)), we can define x — Js,u to be an element of the dual

space of Ma o as follows:

7oy o= | )
:“—i—lusea(#(t))dt}%(Marg. J eatutinat [(J:Jrﬁgm,/—_l) s

AL Y T s,
f EMa, Ge

Note. Since we may write simbolically,

(+— ], 1)

=lim, URl---Jngo (g)htz)d/z(a):a---dﬂ(a+n(h)h)tﬂ<m

h—0

co b
= Friexp. (—2my/=1] eatucon, HENdEPCOPCONr
0 a

_rb
[ rteexp. (—2ay =1 eucucon, (plthatyedraccydr,

o= F Lf]

if p(f) satisfies the conditions (i), (ii), (iii) of n°19, we may write
if p(f) satisfies the conditions (i), (ii) of n° 20,

(76) | :f(r)exp. (—2my/ =1 ex, e dt)ore)dr+
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+j°_ Fexp. (—2m/1’ijsea, (e dtyrydr

co

e | [ 3 T P | (e

Ta—1

‘e—Z«T/Tlst dsta—_l]+

0 1=

1 1
+aT1Usea’ _(,u(t))dt]l—aMarg,fse,,,_(u(t))dt Umg“”/ﬁs a o

o ALY T gt

S EMa, arg. fsea, +(u()de, arg. fsea, -(u@Ndt.
Especially, if p(f) satisfies conditions (i), (ii), (iii) of n°20, we may write

(76) j°_° F)exp. (—2a¢?1jsea(y(t))(dt)«ra)dr

co

~1 Usea(ﬁ(t»dt]l—l;Marg.fsea(,u(t))a't[(J?+Jlea” /fl> o

a—1
1 — [44
L LS YT astan ),
S EMa,arg. f eatuttyat.

By (76)', we may also set
0 L] fenare)

=|" gtexp. —2xy 1| _swNatynar

oo

__ = [Isf(t)dt]ri“&Mérg.fsf(t)dg[qw_kjlga”l/?l);%’.

1—a 0

e g (sgn. M7 )ls e T T dsﬁ%l

Where g is the class of functions such that the mean value in the last formula
exists and f is (Lebesgue) integrable on S. '
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