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The purpose of this paper is to give a theorem relating to [6, Theorem 2]
and slightly generalize several theorems of D. A. R. Wallace [7, Theorem], [8,
Theorem’, [9, Theorem 1]. We shall use the following conventions: Let G be
a finite group, G' the commutator subgroup of G and P a p-Sylow subgroup of
G. Moreover, R will represent a semi-primary ring with 1 such that the center
of R=R/J(R) (JIR) the Jacobson radical of R) contains the prime field of charact-
eristic p, RG the group ring of G over R, and (D), an arbitary simple component
of R, where D is a division ring with the center C.

The following Lemma is trivial by [3, Lemma 1], [2, Theorem 5.6.1] and
[1, Corollary 69.10].

Lemma 1. (1) J(RGQ)=u(J(RG)), where v is a ring homomorphism of RG onto
RG defined by 3. _ a,x > D e @t JR)x (@, ER).

(2) there exists a ring isomorphism ¢ of (D),G onto (DG), defining by er(;
(@ — (e @59%) (@R D).

(8) JIDG)=D-JICG).

(4) there exists a splitting field F for G such that F is finite dimensional sepay-
able over C, and hence J[FG)=F-J(CG).

In the subsequent argument, we shall use notations which is used in Lemma

1. Concerning [6, Theorem 2], we obtain the following :

Theorem 2. Lel p be a divisor of |G|. Then, JRG)=JR)G+JRPe with a
central idempotent e of RG if and only if G is a Frobenius group with complement
P and kernel N and e=|N|=* > . %.

Proof. The “if” part is evident by [4, Theorem]. We shall prove the “only
if” part. If JIRG)=J(R)G+ J(RP)e, then (J(DG)),=(J(DP)),e*, where e*=g¢pgu(e) and
¢ is a projection from RG to (D),G. Since e* is a central in (DG), e* is a central
idempotent of DG and hence (f{DP)),e*=(/(DP)e*),. Thus, J(DG)=J(DP)}e* and e*
is an element of CG. By Lemma 1, J(FG) =J(FP)e* and hence [ J(FG) : F]1<|P|—1.
On the orther hand, [JIFG) : Fi=|P|—1 by [6, Theorem 1] and so [J(FG) : F]=
|P|—1. Therefore, by [6, Theorem 2], G is a Frobenius group with complement
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P and kernel N. Thus, by [4, Theorem], J(RP)ue)=J(RP)(f), where f=|N|-!
erzv x. Since e=y(e), f=u(f) are central idempotents of RG, (1—x)e=1—x)ef=
(1—x)fe=(1—x)f for every x&P, and so x(é—f)=e—f for every x=P. Thus, ¢—
f:Z”EN a,on, where U:ZJ,EP yand a,=R. Noting that PNzPz =1 for ze N—1,
we can see é=f. Let s be an element of RP such that ef=sf. Then, ((s)—1)f
=0 by €= 7, and so »s)=1. Since sf is an idempotent of RG and f is a central
idempotent of RG, s?=s by (s2—s)f=0. Thus, s—1 is an idempotent of J(R)G (<
J(RG)) and hence s=1, Therefore, e—f is an idempotent of J(R)G, which means
e=f.

The following contains |7, Theorem].

Theorem 3. J(RG:?=0 if and only if one of the following conditions is satisfied :

(1) JRP=0 and G is a p'-group.

(2) JIR)=0, p=2 and |G|=2m, where m is odd.

Proof. Let us assume that J(RG)?2=0, and distinguish between two cases.

Case 1. G is a p'-group: Then J(RG)=J(R)G (cf. [3, Theorem 17) and hence
JIRE=0.

Case 2. p is a divisor of |G|: At first, we shall prove that J(R)=0. Notice
that w(Re) is an ideal of square zero, where U:erG %, Then, Ra+ J(R)G C J(RG)
and so ¢ is an element of J(RG). Thus, J(R)oC J(RG)?:=0 and J(R)=0. By Lemma
1, JIFGR=0 and hence by [7, Theorem], p=2 and |G|=2m, where m is odd.

Next, we shall prove the converse. (1) implies that J(RGE=(J(R)G)?=0. (2)
implies that J(RG)?=0 by [5, Theorem 16. 3].

The following is an extension of [8, Theorem|.

Theorem 4. J(RG) is central in RG if and only if one of the following conditions
s satisfied :

(1) RG is semi-simple.

(2) RG is commutative,

(3) J(R) is central in R and G is an abelian p'-group.

(4) R is a divect sum of fields and G'P is a Frobenius group with kernel G'
and complement P.

Proof. Let us assume that J(RG) is central in RG, and distinguish between
three cases.

Case 1. J(R)=0 and (p, |G|)=1: Then, RG is semi-simple (cf. [3, Theorem
17).

Case 2. J(R)#0: Since J(R)G is contained in J(RG) (cf. [3, Lemma 1), J(R)
is central in R. For 047 J(R) and x,veG, jayx-ty-H)—j=y(jx)x~1y~1—j=0 and
hence G is abelian., If p is a divisor of |G|, then for 1#x=P, 1—x is contained
in JIRG) (cf. [3, Theorem 27). Hence, for 7,seR, #s(1—x)=(s(1—x))r and R is

commutative.
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Case 3. JIR)=0 and p||{G|: If G is abelian, then, by making use of the
same method as in Case 2, RG is commutative. Hence, we shall assume that G
is not abelian. By Lemma 1, ({IDG)), is central in (DG),. Since DG is not semi-
simple, #=1 and J(DG) is central in DG. Thus, by Lemma 1, J(FG) is central in
FG and so, by [8, Theorem], G'P is a Frobenius group with kernel G' and
complement P. By [4, Theorem], J(DG'P)=J(DP)e, where e:|G’|‘IZx,EG %',
Thus, for 1s£x€P, r,s=D, (Hl—x)e)s=s(r(1—x)e) and D is a field. Hence, R is
a direct sum of fields.

Next, we shall prove the converse. It is trivial that if one of the conditions
(1), (2) is satisfied, then J(RG) is central. (3) implies that J(RG)=J(R)G (cf. [3,
Theorem 17) and hence J(RG) is central in RG. (4) implies that J(RG)=J(RG'P)G
=([RP)e)G=(J(RP)G)eC RGe (cf. [3, Theorem 1] and [4, Theorem]), where
e=|G'|"1 Zx’EG’ x'. By [8, Lemma 5], RGe is central in RG. Hence, J(RG) is
central in RG.

The following is a generalization of [9, Theorem 1].

Theorem 5. Let p be an odd prime. Then, J(RG) is commutative if and only if
one of the following conditions is satisfied :

(1) JRG) is central in RG.

2) J(R) is commutative and G is an abelian p'-group.

(8) JIRP=0 and G is a p'-group.

(4) R is a commutative ving with J(RF=0 and G'P is a Frobenius group with
kernel G' and complement P.

Proof. Let us assume that J(RG) is commutative, and distinguish between
four cases.

Case 1. JIR)=0 and (p, |G|)=1: Then RG is semi-simple.

Case 2. J(R)3?=£0: Then there exist two elements j, 7/ of J(R) such that jj'#0.
Since J(R)G is contained in J(RG), J(R) is commutative and hence, for x, yEG,
F7' (xyxty= D) — 77 =((F' V(ja)x-ty~t—45'=0. Thus, G is abelian. If p is a divisor of
|G|, then, for 1s£xeP, 7,s€R, #(1—x):s(l—x)=s(1—x)o#(1—x) and hence (rs—sr)
(1—2x+-x%)=0. Since p is odd, #s=s7 and R is commutative.

‘ Case 3. J(R)=0 and p||G|: If G is abelian, then by making use of the
same method as in Case 2, R is commutative. Hence, we may assume that G is
not abelian, Then, as in the proof of Theorem 4, R is a direct sum of division
rings and J(FG) is commutative. By [9, Theorem 1], G'P is a Frobenius group
with kernel G' and complement P. Thus, by [4, Theorem], J(DG'P)=]JDP)e,
where e=|G'|? Ex,eG, x'. Forr,seD, 1#x&P, r1—x)e-s(1—x)e=s1—x)e-r(1—x)e
and (rs—sr)(l—2x+x%e=0. Thus, D is commutative.

Case 4. J(R)2=0 and J(R)s£0: We may assume that p is a divisor of |G| and
G is not abelian. Since J(RG) is commutative, G'P is a Frobenius group with
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kernel G' and complement P. Thus, NgP)=CqP) by G' NN P)=1, and |G| is
the number of p-Sylow subgroups of G. Hence, G is a semi-direct product of '
and Cq(P). By [3, Theorem 1] and [4, Theorem], J(RG)=J(RG' P)\G=(J(R)G' P+
J(RPe)G=J(R)G+]J(RP)Ge, where e=|G'|"1 >, ., «'. Let x be an arbitary element
of P different from 1. Then, for every 7, seR, r{l—x)es(l—x)e=s(1—x)e-r(1—x)e
implies (rs—s7)(1—2x+x%)e=0, which means that R is commutative.

Next, we shall prove the converse. By [3, Theorem 17, it is trivial that one
of the conditions (1), (2) and (3) implies the commutativity of J(RG). If (4) is
satisfied, then, as was noted above, G is a semi-direct product of G' and CgP).
Moreover, JIRG)=J(R)G+J(RP)Ge, where e=|G'|-! Z}x,eG x'. Noting that Cg(P) is
abelian, we shall easily verify the commutativity of J(RG).
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