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   The purpose of this paper is to give a theorem relating to [6, Theorem 2]

and slightly generalize several theorems of D. A. R. Wallace [7, Theorem], [8,

Theorem], [9, Theorem 1]. We shall use the following conventions: Let G be

a finite group, G' the commutator subgroup of G and P a P-Sylow subgroup of

G. Moreover, R will represent a semi-primary ring with 1 such that the center

of R:=R/rtR) (IR) the Jacobson radical of R) contains the prime field of charact-

eristic P, RG the grottp ring of G over R, and (D). an arbitary .simple component

of R, where D is a division ring with the center C.

   The following Lemma is trivial by [3, Lemma 1], [2, Theorem 5.6.1] and

[1, Corollary 69.10].

   Lemma 1. (1) 1(RG)==v("1?G)), where v is a' ring homomorPhism of RG onto

RG doj7ned by =..G a.x . =..G (a.+1<R))x (a.ER).

   (2) there exists a ring isomorPhism g of (D).G onto (DG),, dofning by :xEG

(a(leXt))X-(X..G a(il)x) (a(kXl)ED).

   (3) .1(DG)-Del(CG).

   (4) there exists a sPlitting field F for G such that F is finite dimensional sePar-

able over C, and hence 1(FG)=Fel(CG).

   In the subsequent argument, we shall use notations which is used in Lemma

1. Concerning [6, Theorem 2], we obtain the following :

   Theorem 2. Let P be a divisor of [G[. Then, 1(RG)==1(lll?)G+1(RP)e with a

central idemPotent e of RG if and onlN if G is a Frobenius grouP with comPlement

p and leernel N and e=: IIVIm' :.GN X･

   Proof. The `Cif" part is evident by [4, Theorem]. We shall prove the "only

if" part, If .1(RG)=1(R)G+1(RP)e, then (1(DG)).:=(1(DP)).e", where e"==opv(e) and

¢ is a projection from .RG to (D).G. Since e* is a central in (DG)., e' is acentral

idempotent of DG and hence (rtDP)).e*;(ADP)e*).. Thus, flDG)=flDP)e" and e'

is an elernent of CG. By Lemma 1, 1(FG) =.l(FP) e" and hence [1(FG) : F] -<1P1-1.

On the orther hand, [1(FG): F]21Pi-1 by [6, Theorem 1] and so [1(FG): F]=

IPi-1. Therefore, by [6, Theorem 2], Gisa Frobenius group with complement
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P and kernel N. Thus, by [4, Theorern], flRP)v(e)==ARP)v(f), where f==INI-i
=..NX･ Since b=v(e), f==v(f) are central idempotents of RG, (1-x)e==:(1-x)ef=

(1-x)fe---(1-x)f for every xEP, and so x(e"-f)==e-f for every xGP. Thus, -e'-

f=:IS;].EN anoii, where a==,,.p yand av.(iR. Noting that PnzPz-i=1 for 2EN-1,

we can see e=:=f. Let s be an element of RP such that ef==sf. Then, (v(s)-1)f

r-O by e=L and so v(s):==1. Since sf is an idempotent of RG and f is a central

idempotent of RG, s2:=s by (s2-s)f==O. Thus, s-1 is an idempotent of 1(R)G (g

1<RG)) and hence s==1, Therefore, e-f is an idempotent of 1(R)G, which means

e=f.

   The following contains [7, Theorem].

   Theorem 3. 1<RG)2=:O if and only if one of the following conditions is satished :

   (1) 1<1?)2:==O and G is a p'-group.

   (2) .l(R)--O, P=::2 and IGI==2m, where m is odd.

   Proof. Let us assume that 1(RG)2=O, and distinguish between two cases.

   Case 1. G is a p'-grouP : Then 1(RG)==1<R)G (cf. [3, Theorem 1]) and hence

yr<R)2 == o.

   Case 2. 'P is a divisor of IGI: At first, we shall prove that "R)=O. Notice

that v(Ra) is an ideal of square zero, where a==..Gx. Then, Ra+1<R)Gg.l<RG)

and so a is an element of 1(RG). Thus, 1(R)ag1(RG)2=O and 1(R)==O. By Lemma

1, flFG)2==O and hence by [7, Theorem], P=2 and IGI==2m, where m is odd.

   Next, we shall prove the converse. (l) implies that 1(RG)2==(1(R)G)2==O. (2)

implies that flRG)2 =O by [5, Theorem 16. 3].

   The following is an extension of [8, Theorem].

   Theorem 4. 1(I?G) is central in ,l?G if and only ifone ofthe followingconditions

is satished:

   (1) RG is semi-simPle.

   (2) 1?G is commutative.

   (3) .1(R> is central in R and G is an abelian p'-group.

   (4) R is a direct sum of fields and G'P is a Frobenius grouP with leernel G'

and comPlement P.

   Proof. Let us assume that .l(RG) is central in RG, and distinguish between

three cases.

   Case 1. rtR)=O and (P, IGI)==1: Then, RG is semi-simple (cf. [3, Theorem

1]).

   Case 2. AR)iLO: Since "R)G is contained in 1(RG) (cf. [3, Lemma 1]), "R)

is central in R. For Oy4dE.1<R) and x,yEiG, J'(xyxHiy-i)-]'=N(ju)x-iy-i-d=O and

hence G is abelian. If P is a divisor of IGI, then for llxEP, 1-x is contained

in 1<RG) (cf. [3, Theorem 2]). Hence, for r,sER, r(s(1-x))=::(s(1-x))r and R is

commutatlve.
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   Case 3, AR)=O and PBGI: If G is abelian, then, by rnaking use of the

same method as in Case 2, RG is commutative. Hence, we shall assume that G

is not abelian. By Lemma 1, ("DG)). is central in (DG).. Since DG is not semi-

simple, n=1 and "DG) is central in DG. Thus, by Lemma 1, rtFG) is central in

FG and so, by [8, Theorem], G'P is a Frobenius group with kernel G' and

complement P. By [4, Theorem], KDG'P)=1<DP)e, where e=IG'1"i=.,.G x'.

Thus, for l:iLxEP, r,sGD, (r(1-x)e)s=:=s(r(1-x)e) and D is a field. Hence, R is

a direct sum of fields.

   Next, we shall prove the converse. It is trivial that if one of the conditions

(1), (2) is satisfied, then 1<RG) is central. (3) implies that 1(RG)=="R)G (cf. [3,

Theorem 1]) and hence 1(RG) is central in RG. (4) implies that .l(RG)=1(RG'P)G

:=: (rrRP)e)G=("RP)G)e[RGe (cf. [3, Theorem 1] and [4, Theorem]), where

e=iG'I-i =.,EG, x'. By [8, Lemma 5], RGe is central in RG. Hence, 1<RG) is

central in RG.

   The fo!lowing is a generalization of [9, Theorem 1].

   TheDrem 5. Let P be an odd Prime. Then, 7(RG) is commutative if and only if

one of the following conditions is satished :

   (1) .1(JRG) is central in RG.

   (2) 1(R) is commutative and G is an abelian p'-group.

   (3) "R)2==O and G is a P'-grouP.

   (4) R is a commutative ring with 1(R)2:=O and G'1[' is a Frobent'us grouP with

kernel G' and comPlement P.

   Proof. Let us assume that ARG) is commutative, and distinguish between

four cases.

   Case 1. "R)=O and (P, IGD==1: Then RG is semi-simple.

   Case 2. "R)2;O:Then there exist two elements d, 1" of"R) sttch that ti'iLO,

Since .1<1?)G is contained ln .1<RG), .1<R) is commutative and hence, for x,yEG,

ti'(xyx-iN-i)-1-1"=((]".y)(ju))x-iy-i-ti'==O. Thus, G is abelian. If P is a divisor of

IGI, then, for 1:7LxEP, r,sER, r(1-x)es(1-x)==s(1-x)er(1-x) and hence (rs-sr)

(lr2x+x2)=O. Since P is odd, rs==sr and R is commutative.

   Case 3. 1<R)==O and PYGI: If G is abelian, then by making use of the

same method as in Case 2, R is commutative. Hence, we may assume that G is

not abelian, Then, as in the proof of Theorem 4, R is a direct sum of division

rings and "FG) is commutative. By [9, Theorem 1], G'P is a Frobenius group

with kernel G' and compleinent P. Thus, by [4, Theorem], "DG'P)=="DP)e,

where e==1G'1-i =.,.G,x'. Forr,sED, 1;-xEEP, r(1-x)e-s(1-x)e=::s(1-x)e-r(1-x)e

and (rs-sr)(1-2x+x2)e-:O. Thus, D is commutative.

   Case 4. 1<R)2t]O and 1<R)IO: We may assume that P isa divisor of IGI and

G is not abelian. Since Jr(RG) is commu'tative, G'P is a Frobenius gro-p wi'th
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kernel G' and complement P. Thus, Nc(P):=Cc(P) by G'nNG(P)=1, and iG'I is

the number of p-Sylow subgroups of G. Hence, G is a semi-direct product of G'

and CG(P), By [3, Theorem 1] and [4, Theorem], 1(RG)=1<RG'P)G=(1(R)G'P+

1(RP)e)G=f(R)G+1(RP)Ge, where e= 1G' IHi Z.,.G, x'. Let x be an arbitary element

of P different from 1. Then, for every r,sER, r(1-x)ees(1-x)e =s(1-x)eer(1-x)e

implies (rs-sr)(1-2x+x2)e=O, which means that R is commutative.

    Next, we shall prove the converse. By [3, Theorem 1], it is triviai that one

of the conditions (1), (2) and (3) implies the commutativity of 1(RG). If (4) is

satisfied, then, as was noted above, G is a semi-direct product of G' and CG(P).

Moreover, 1(1?G)==1(.l?)G+1(RP)Ge, where e= IG'I-' =.,.Gx'. Noting that Cc(P) is

abelian, we shall easily verify the commutativity of f(RG).
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