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                            IRtroductioR,
   In this paper, we give examples of Morse functions on O(n), U(n), SU(n), Sq(n),

G2. Ii.,., = O(n)/O(n - m) and Gw. == O(n)/O(m) × 0(n - m).

   The results are as follows:

   We set

           0(n) == {(xi,･) [= YE MZ (n, R)1tXX = E},

           U(n) ={(xi+yii) =XE MZ (n, C)1`XX =:: E},

           Sp(n) == {(XiJ･ + UiJ･i + vi,･J' + zvijk) == X EI! MZ (n, H)1tXX =:: E},

           G2:=:{XE sot (8, R)IX: g-S an automorPhism of Cayley numbers]･.

   Then the Morse functions of O(n), U(n) and Sp(n) are given by weighted trace

functions

                 )z           g(x) =lll I] aixii, O<evt<･･････<ar.,

                i-1

   The Morse functions of X,,. are

                 ･m.            g(x) ==aixii, O<al <･･････<a,..

                i--1

   The Morse functions of G2 and SU(n) are given by the same form, but their

coethcients ai need to satisfy some conditions (cf. Lemma 5 of g4).

   The Morse functions of G.,,. are given by

                                 '
            sD (X) ::= = eievjxiJ･, Ei = 1, if i = 1, ･.,･,･, k,

                 i' )'

                            -1, if i=k+1, ･･････, n

                            O< ev1 <''b'''< avn.
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They are different from above functions but calculations are given by the same

method.

   We note that the Morse indices of the above functions show that they are

best possibie.

    The outline of this paper is as follows: In 51, we state some general theorems

for explicit calculations of critical points. They are' proved in g2. The related

results are shown in g3 using these theorems. g4 is an appendix but the possi-

bilities of the existence of the Morse functions of G2 and SU<n) defined in S3 is

shown by Lemma 5 of this section.

    In this paper, we refer [1], [2] for the theory of Morse functions and the

method of calculations of singularities of mappings.

                           Sl, Some Theorems.

    We denote by R" the the n-dimensional Euclidean space.

    Let f=(fi, ･･････, file) be a smooth rnapping from R'i to Rk and Y the zero set

of L i. e.

             V= {x ff R"1f(x) :- O}.

   We assume Df, the Jacobian of L is not equal toOon V. Then, it is easy

to see from the implicit function theorem that V is a smooth manifold. For a

smooth function ip of R", we denote plv the restriction of g on V. The gradient

vector at P is denoted by 7q(P).

    Theorem 1. A Point P of V is a critical Point of eplv, if and only if 7f(P) is

a linear combinaton of {f`(P)}, i.e. there exist real numbers {ai}i-rmi,･･････,k szach that

                     k
             Vop(P) = X a,mf '( p).

                    i=1

    This theorem is proved in the proof of Theorem 2.

    We denote the Hessian of ip at P by 72g(P), i.e.

             v2g(p) ::::(a21.g.,(p)) i, 7' -- i, ･･････, n, ･

    The orthogonal projection from R" to the tangent plane of V at P is denoted

by P. We set

                              k
             M(p) - P(V2op(p)- = a,rrVi(p))P.

                             i-=1

    Theorem 2. VVe assume that P is a critical Point of glv. Then P is nondege-

nerated if and only if
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            rank M(p) =: dim V(==n- le).

   Moreover, the index of glv at P is the number of negative ei.crenvalues of M(p).

   This theorem is proved in the next section.

   Theorem 3. Let x: ,igfeAT be a locally trivial smooth fibre sPace overasmooth

manifbld N, and op: Ar-R a smooth fonction on N. Then P, a Point ofN is a critical

Point of g, if and only if any Point of rr-i(P) is a critical Point of gerr, .

   Moreover, a critical Point p of g is nondegenerated if and only if the ranle of

72(feT) on T-i(P) is equal to dim. N, and the index offat P is the numbers of

negative eigenvalues of 72(fez).

   The proof of Theorem 3 is straightforword from the local 'triviality of T.

Therefore, we prove only Theorem 2.

                         g2. Proof of Theorem 2.

   Lemma 4. in the Proof of Theorem 2, we can assume withoztt loss of generality,

the .fbllowings for some coordinate of R".

            p == o,

            7fi(O) = ffg(O) -= (1, O, ･･････, O),

            vf'(O) == (O,･････tO, 1, O,t･････,O) == e,, the i-th canonical base,

   Proof. At first, we can choose a coordinate (xi, ･･････, x.) of R'i such that

P :== O, g(O)=(1, O, ･･････, O) and the tangent space of V at O is given by xi =x2 =

Xk =:] O.

    Let gi==Xaift and gj ==ai"'fi, where ai" is defined by

            Z1
            eJ =M ai]7ft(o),

                 t'

The existence of {ai"} is verified from rank(Df)=:n-k. Then V is also defined

by the zeros of {gi} and {gB satisfies the above conditions. We take {g'} the

place of {f'}, then we have Lemma 4.

    Proof of Theorem 2. We can define a Iocal coordinate of V on a neighbour-

hood of P := O by u = (ui, u2, ny･･･ny･, u.-k) such that

             i(u)=(Fi(u), ･････-, Fk(zt), ui, ･･････, u.-k)

where i is the inclusion of V into R" and Fi,･･･`･･,Fk, are somesmooth functions.

    Then
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           ,a., g(Fi(tt), ････--･ zti) -=.k=, -i9diep;. ZF.,a + -b9.9,.,

                                  '                               aF,            o              g(F,(u), zti, ･･･i-･)), == (           (-                                 )o            E)zti 6ui
   On the other hand

(") o=( oO.,fj(Fi(u), -･････, ui, ''''''))e

                t
            =:`t/i.il,'iOtxnv,',3i,2,rr"alf,'i,)o=`"g':i,i!,')"･

   Thus we have

             O
           (-blll,-9(Fi(U), ･･････, ui, ･･････)), =::: o.

              t

   We note that Theorem 1 follows from this formula. We also have

             a2g(Fi(te), ･･････, zti, ･-････)
                               )o            (
                    OuiOuj

           - (.*., o.O.2:.,, giil," 3-i.p + tt/, o.iS9.0,., 31il,ff+

              '
              '.tR., oOxZ axO.2:,･ 3£, ' lii.i], aOxZ oO:S･oZ, ' E.1., oxiS9x,., aOu",･fi

              " ,=k=, oOxep,, sxii:･ aBtt, " ox,?lo9x,., )e

           =(o.,.0,2oq.,,j )o -( o,O,l,flli,. )o.

on the other hand, from (*), we have

                02
                   fi(F,(u), ･･･t･･, tly-'･･･))o           o :---(
              D'vti 6ztj

            =(-E5rxk?l,ilil,,j )o+ ( oO,2,,F.oi}j) ,.

Thus we have

                        62fi            o2Fl
           (6uiou,･ )O = -( axk,ioxk,j ) O'

Let P be the orthogonal projection to the tangent plane of V at O, i. e.

+
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            P(Xb '''''', Xn) == (O, '''''', O, Xk+1, '''''', Xn).

Then

                     a2g 02fi
            M(o) == P( oxioxj - 6xioxj)o P

                       o2epIv
                == o,(D (                           ) o.
                      OuiOztj

Hence P( 60x2iopoxj - ]S.l]iah6xa,toxtj)oP is simiiar to oke(oOt2c,9. 3i)ofor a generai coordi-

nate without conditions of Lemma 4. Thus we have Theorem2.

                          g3. SoTne examples.

   In this section we give Morse functions of some spaces as examples of The-

orems 1, 2 and 3.

   1. 0(n), Ll<n) and Sp(n). t

   They are represented in Rn2, R2n2, R4'i2, as in the introduction. And we set

      ･il･
g(x) == Z ai xii, O < ai <･･････< cr.,

     i--1
   Then nondegenerated critical points of each case are commonly

            l(ei . ,.)=PEt == :!F`ill

and the the inde)g atp is i,Iiis=i(Ei TS 1)(ai-1), where a is 1, 2 and 4 respectively

O (n), U(n) and SP(n). We give a proof of the case of U(n). The others are obtained

similarly.

   Proof of the case of U(ie).

   we set

                                        n      U(n) ={(xi,･ + yi,･i)=: x Ei E)]l (n, C)lflet =:=(xkixii+ ykiYii) - Oki =:] O for

                                       i:-1
                            ll
          1 si k i/.". I :i･{gv n, glkt == (xkixii - xijyki) =.- O for 1 s-{l-. k< l :!.:In}

                           i--1

   It is easily verefied that ･[vf]ek, 7.IZei, vgki]･ is linearly independent.

The Grammian of {ffflak, m]li, Vgki, 7p} iS
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                                                 '
Now, we assume G=O on U(n). Then we have

            alXkl = evkXtk, crIYkt = 'akYtk,

          '                                    .tFrom .flLt(X) = fii(tX) -- O, we have

            1 - Xl12 un Yl12 ==: V122 + Y122 +'''+ Xtn2 + Ntn2

                        :=i: X212 + Y212 +'''+ Cnl2 + Ynl2.

            ( acr,222 m 1) Xi22 +'''+( CaV'i2 - 1) Xln2 =O'

Thus we have

            X12 =!= Y12 = X13 = Y13 =L"''= Xtn = Ytn = O,

            X21 = Y21 = X:31 = Y31 =:i'''== Xnl =:: Ynl =::T O.

Inductively, from fii(X) == Li("X) = O, we obtain

            XiJ･ =' yiJ･ =- O, for i iE d.

And from criyii =:: -aiyii, we also have yii =:: O.

   Thtts, xii == tl. Hence from Theorem 2, we have that

                 .,,/111(ei ,' e .O ,.)iei='il'

e

      e
      le

--
 ny 2cvlXtt, ･'''''''''''

      e
           '      i

''' ctIXkt + crkXlk, '''

      e
      e
      e
      e
"avIYkt{MevkYlk''''''

      e
      .
      e

  ll
: llllll] evi2)

 i--1
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where

Hence we

  Aij. = (.1.i,ej,siei)

     'get

            n  M(p)=:P(-=
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where Bij.-(III[i:l.1e,')ev.Ij I,Ell i'11i,Ej'IIII)

Therefore the eigen valttes of M(b) are

              O. multiplicity n.            i -(cvi - crj)(ei - ej), i ,!: j,

              -(avi -l- aj)(ei + EJ･), 'i -t Ji,

            <-cyiEi, i=1, ･･････, n,

Hence we have rank M(p) = n2.

                                                           Vl
    Thus, each critical point is nondegenerated and the index is Z ((ei + 1)/2)(2(n

                                                           '                                           ･ t=1
- i) + 1) by Theorem 2. Therefore, g(x) is a Morse function of U(n) and it is best

possible.

   2. Yn,m, CVn,m and ffILi,n,-

   We set

             V.,., :== O(n)/O(n - m); Real Stiefel manifold.

            CVw. = U(n)/U<n - m): Complex Stiefel manifold,

            UV.,. ::= SP(n)/SP(n - m); Quarternionic Stiefel manifold.

   We use th'e same coordinate as in 1. and consider that the groups o(n - m),

U(n - m) and SP(n - m) act on the last (n - m)-coordinates. We set

                  'iJ?.
            cD(x) =:I:I] cvixii, O < cvi <･･･-･-< ct.,.

                  1. =1

Then g(x) is invariant ttnder the actions of O(n - m), etc. By the same calculations

as above and by Theorem 3, we have the following results.

                               ,' /El .Ox i
   The criticai points of g'lv are 'IP=i':' krmo.",.J Ei -rm :[fL-ii'

                                                      i
   In O(n)-case, the eigenvalues at P are

            ,' O, multiplicity (n -F (n - 7n) (n - 7n - 1)),

            li rm (cti - aj)(Ei - Ej), i < g' f-i{1 m,

            I/
            i -(ai + cl:j)(si -l- EJ･), i< .1' :uE{g.L m,

            l -cri(Ei - EJ), i .<.u m < Jr-,

            l, -cvi(ei + e,･), i.g{m<i



              Weighted Trace Functions as Examples of Morse Functions 93

                                                             7n
   Thus critical points are nondegenerated and the index at P is = ((ei + 1)12)(n

                                                             .
                                                                     '+i-m- 1).
   In CX,,m (resp. IilX,,.)-case, similar calculations show that the index at P is

= ((ei + 1)12)(2(n - m + i) - 1)(resp. = ((si + 1),X2)(4(n - m + i) - 1). Therefore these

g(x) are Morse functions of V),,., CIL,,nt and ffTL,,m.

   We give an order of the cannonical base of g, the Cayiey number field, by

            (1, el, e2, e3, e2e3, e3el, ele2, el(e2e3)).

G2 is represented by

            G2={XE Dt (8, R)1 X: g-ig; an automorPhism of CaJ,ley numbers'J.

   Simple calculations show that G2 is given simply, by

            G2={XI XS(xn, ･･････, xi7, x2t, ･･････, X27, Xsi, ''-･･-, X37),

                          7
                    .IC}j -- X xiixji - tiij =:= O, 1 ;S;i.gjf-{g 3,

                         l-1
                    g =: Re. (xi(x2x3) + (xix2)x3) = O},

where xi=(O, xii, -･-･･･, xi7) and the product is of Cayley numbers.

    We set

            g(x) = axll + Px22 + rx33,

                                                                  '
where (a, P, r) satisfies the conditions of Lemma 5 (given in the last section of

this paper).

    The Grammian of (ntj, 7g, mp) is

          4                                               2cYXII

            ･4 4･ o :
                                               Px32+rx23                     2

                                                                  .                            2e                 O 3 (X2X3)i+(X3Xi)2+(XiX2)3
          2x", e e , x32 -1- x23, e e , (x2x3)i + (x3xi)2 + (xi c2)3, cr2 + P2 + rF.

Now, we assume G=:O, then, similarly in U(n)-case, the critical points are of

the following forms.
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                ei, O, O, Prpt, O, O, O            ?b==(o, E,, o, o, rev,u, o, o                                        ts･

               ko, o, e5,                            o, o, appt, ol

   We put Prpt == sin0i,

            rcrp == sin 02,

            aPps == sin 03.

         $in Ol sin O2 sin e3 .
   Then =: = ･                             . Since g=O on G2, we have
          a P 7'
            0i ± 02 ± 03 =- O (mod 2z).

   From Lemma 5 we have ei !! e2 ! 0s Ei! O (mod T). That' is,

            rt =: O, ei, e2, E3 ==: t1.

   Hence the nondegenerated critical points are

                                              t            Ip(e,, e,, e,)==:(gt eOo, ii, o) eb e2, E3l1],

   And straightforward calucuiations show that Kei, E2, E3), the index at P(Gi,

E2, e3), iS

            K-1, -1, -1)=O I(-, -1, 1)=3

            K-1, 1, -1)=4 l(1, -1, -1,)=5

            K-i, 1, 1) =:9 I(1, -1, 1,)-i lO

            ny1, 1, -1) =:: 11 ql, 1, 1)=14,

Therefore ep(X) is a Morse function of G2 and it is best possible.

   4, SU(n).

   We give the special unitary group SU(n) by

             SU(n) =: {(xij + yi,･i) = X1`XX = E, det X = 1}

              n   Let g(X) == =aixii, and ai satisfy the conditions of Lemma 5.

              i--1
Straightforward caluculations show that critical points are of following forms.

            p= (ei + ai Ptg e . ,,1)+ a.Ftt)
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   Now we put ei {- aipti = eei. Since det P == O,

             f'l
            =ei -= O (mod 2z).
            i=1

And Sin0i .......... Sin0n (.,.pt). By Lemma 5, the critical points Of g are

       cVl crn

            II Ei , " O ,. I" P1 fi" 6t= il

Simmilarly as in 1., we have that the index at P is equal to

             11･
            X((Ei + 1)!2)(2i rm 1), i

            1=1

 Therefore g(x) is a Morse function of SU(n) and it is best possible.

   5. G.,. - O(n)10(m) × O(n - nz).

   We use the same coordinates as in 1, for O(n).

    We set

                                   '                   ･1･l .            go(x) =:EiajxiJ･, Ei-- 1, i-- 1, -･･･-･, m

                  i' j'
                              -1, i -- m+ 1, ･-････, n,

                              O< al <b･････< a..

   Since g is O(n) × O(n-m)-invariant, g is a smooth function on G.,.. This rp
has a different form of g in 1t--4, but by Theorems ' 2 and 3, straightforword

calculations give us the following results. ,
   LetTbea combination of m-elements in the set of n-elements then T is
                                                               ,
represented in O(n) as T=:: (Tii Tii ==: 5'i,Ti for 7'.Slm and Tii' == tii,?(i-m) for 7'>m,

where i is the complementary combination of T. Then the critical points of g(x)

are {TIT is a combination of m-elements in the set of n-elements}, and the index

at T is the number of positive (Ti - 7Tj･)'s, where i=1, ･･････,m and ]'=1, ･･････, n-m.

   Therefore g(x) is a Morse function of G.,,. and it is best possible.

                             g4. Appemdix.

   Lemma 5. There exist Positive numbers ai, -･･-･-, cu. such that

            O< cul < a2 <･･････< a.

and the equations
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(") 0i ±･-････± e. =-o(mod n), Sin ei ........= sin e.,

                                     ct1 an

have only the trivial solution ei =･･････ii 0. =O (mod it).

   Proof. We put a.= 1, a.Li== (n-1)s, ････t･, nvi=e, where O<s<11(n2). If (*)

has nontrivial solutions (0i, ny･････, 0.), then we can assume 0i ci (O, x), (if not, we

take -ei). Moreover, we can assume 0iE(O, x/2], because if 0iE(z!2, T), then

we may take 0i' = rc - 0i i'n the place of ei, then we have

            0i ±--････± 0i' ±･･････g O (mod rr), sin ei = sin ei'.

For e<1!(n2), we have

                 . 1. .            1 lllL sin 0. := -:-- sm ei >n sin 0i:
                       ZE

Then ei, ･･････, 0..i Ei (O, T12n) and e.E(O, 7f2]. Thus

            sin 0. = sin(± ei ±･･････± 0n)

                    < sin (0i +･･････+ e.)

                                          n(n - 1)
                    < sin 0i +･･････+ sin 0. ='                                                 e sin en
                                            2

                    < sin 0n･

This is a cotradiction. Therefore, we have the Lemma.
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