Weighted Trace Functions as Examples of Morse Functions

By Hisao Kamiya

Department of Mathematics, Faculty of Sciensce, Shinshu University
(Received October 30, 1971)

Introduction.

In this paper, we give examples of Morse functions on $O(n), U(n), S U(n), S q(n)$, $G_{2} . \quad V_{n, m}=O(n) / O(n-m)$ and $G_{n, m}=O(n) / O(m) \times O(n-m)$.

The results are as follows:
We set

$$
\begin{aligned}
& O(n)=\left\{\left(x_{i j}\right)=\left.\mathrm{Y} \in \mathfrak{M}(n, R)\right|^{t} X X=E\right\} \\
& U(n)=\left\{\left(x_{i}+y_{i j} i\right)=\left.X \in \mathfrak{M}(n, C)\right|^{t} \overline{X X}=E\right\} \\
& S_{p}(n)=\left\{\left(x_{i j}+u_{i j} i+v_{i j} j+w_{i j} k\right)=\left.X \in \mathfrak{M}(n, H)\right|^{t} \bar{X} X=E\right\} \\
& G_{2}=\{X \in \mathfrak{M}(8, R) \mid X:(5 \longrightarrow(5, \text { an automorphism of Cayley numbers }\} .
\end{aligned}
$$

Then the Morse functions of $O(n), U(n)$ and $S_{p}(n)$ are given by weighted trace functions

$$
\varphi(x)=\sum_{i=1}^{n} \alpha_{i} x_{i i}, \quad 0<\alpha_{1}<\cdots \cdots<\alpha_{n}
$$

The Morse functions of $V_{n, m}$ are

$$
\varphi(x)=\sum_{i=1}^{m} \alpha_{i} x_{i i}, \quad 0<\alpha_{1}<\cdots \cdots<\alpha_{m}
$$

The Morse functions of G_{2} and $S U(n)$ are given by the same form, but their coefficients α_{i} need to satisfy some conditions (cf. Lemma 5 of $\S 4$).

The Morse functions of $G_{n, m}$ are given by

$$
\begin{aligned}
& \varphi(x)=\sum_{i, j} \varepsilon_{i} \alpha_{j} x_{i j}, \quad \varepsilon_{i}=1, \text { if } i=1, \cdots \cdots, k \\
&-1, \text { if } i=k+1, \cdots \cdots, n \\
& 0<\alpha_{1}<\cdots \cdots<\alpha_{n}
\end{aligned}
$$

They are different from above functions but calculations are given by the same method.

We note that the Morse indices of the above functions show that they are best possible.

The outline of this paper is as follows: In $\S 1$, we state some general theorems for explicit calculations of critical points. They are proved in $\S 2$. The related results are shown in $\S 3$ using these theorems. $\S 4$ is an appendix but the possibilities of the existence of the Morse functions of G_{2} and $S U(n)$ defined in $\S 3$ is shown by Lemma 5 of this section.

In this paper, we refer [1], [2] for the theory of Morse functions and the method of calculations of singularities of mappings.

§ 1. Some Theorems.

We denote by R^{n} the the n-dimensional Euclidean space.
Let $f=\left(f^{1}, \cdots \cdots, f^{k}\right)$ be a smooth mapping from \boldsymbol{R}^{n} to \boldsymbol{R}^{k} and V the zero set of f, i.e.

$$
V=\left\{x \in R^{\prime \prime} \mid f(x)=0\right\}
$$

We assume $D f$, the Jacobian of f, is not equal to 0 on V. Then, it is easy to see from the implicit function theorem that V is a smooth manifold. For a smooth function φ of R^{n}, we denote $\left.\varphi\right|_{V}$ the restriction of φ on V. The gradient vector at p is denoted by $\nabla \varphi(p)$.

Theorem 1. A point p of V is a critical point of $\left.\varphi\right|_{V}$, if and only if $\nabla f(p)$ is a linear combinaton of $\left\{f^{i}(p)\right\}$, i.e. there exist real numbers $\left\{a_{i}\right\}_{i=1}, \cdots \cdots,{ }_{k}$ such that

$$
\nabla \varphi(p)=\sum_{i=1}^{k} a_{i} \nabla f^{i}(p)
$$

This theorem is proved in the proof of Theorem 2.
We denote the Hessian of φ at p by $\nabla^{2} \varphi(p)$, i. e.

$$
\nabla^{2} \varphi(p)=\left(\frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}}(p)\right) i, j=1, \cdots \cdots, n
$$

The orthogonal projection from R^{n} to the tangent plane of V at p is denoted by P. We set

$$
M_{(p)}=P\left(V^{2} \varphi(p)-\sum_{i=1}^{k} a_{i} \nabla^{2} f^{1}(p)\right) P
$$

Theorem 2. We assume that p is a critical point of $\left.\varphi\right|_{V}$. Then p is nondegenerated if and only if
$\operatorname{rank} M_{(p)}=\operatorname{dim} V(=n-k)$.
Moreover, the index of $\left.\varphi\right|_{V}$ at p is the number of negative eigenvalues of $M_{(p)}$. This theorem is proved in the next section.
Theorem 3. Let $\pi: \widetilde{N} \rightarrow N$ be a locally trivial smooth fibre space over a smooth manifold N, and $\varphi: N \rightarrow \boldsymbol{R}$ a smooth function on N. Then p, a point of N is a critical point of φ, if and only if any point of $\pi^{-1}(p)$ is a critical point of $\varphi \cdot \pi$.

Moreover, a critical point p of φ is nondegenerated if and only if the rank of $\nabla^{2}(f \circ \pi)$ on $\pi^{-1}(p)$ is equal to dim. N, and the index of f at p is the numbers of negative eigenvalues of $\nabla^{2}(f \cdot \pi)$.

The proof of Theorem 3 is straightforword from the local triviality of π. Therefore, we prove only Theorem 2.

§ 2. Proof of Theorem 2.

Lemma 4. In the proof of Theorem 2, we can assume without loss of generality, the followings for some coordinate of \boldsymbol{R}^{n}.

$$
\begin{aligned}
& p=0, \\
& \nabla f^{1}(0)=\nabla \varphi(0)=(1,0, \cdots \cdots, 0), \\
& \nabla f^{i}(0)=(0, \cdots \cdots \cdot 0,1,0, \cdots \cdots, 0)=e_{i}, \text { the } i-\text { th canonical base. }
\end{aligned}
$$

Proof. At first, we can choose a coordinate ($x_{1}, \cdots \cdots, x_{n}$) of k^{n} such that $p=0, \varphi(0)=(1,0, \cdots \cdots, 0)$ and the tangent space of V at 0 is given by $x_{1}=x_{2}=$ $x_{k}=0$.

Let $g^{1}=\sum_{i} a_{i} f^{\prime}$ and $g^{j}=\sum_{i} a_{i}{ }^{j} f^{i}$, where $a_{i}{ }^{j}$ is defined by

$$
e_{j}=\sum_{i} a_{i}^{j} \nabla f^{i}(0) .
$$

The existence of $\left\{a_{i}{ }^{j}\right\}$ is verified from $\operatorname{rank}(D f)=n-k$. Then V is also defined by the zeros of $\left\{g^{i}\right\}$ and $\left\{g^{i}\right\}$ satisfies the above conditions. We take $\left\{g^{i}\right\}$ the place of $\left\{f^{i}\right\}$, then we have Lemma 4.

Proof of Theorem 2. We can define a local coordinate of V on a neighbourhood of $p=0$ by $u=\left(u_{1}, u_{2}, \cdots \cdots, u_{n-k}\right)$ such that

$$
i(u)=\left(F_{1}(u), \cdots \cdots, F_{k}(u), \quad u_{1}, \cdots \cdots, u_{n-k}\right)
$$

where i is the inclusion of V into R^{n} and $F_{1}, \cdots \cdots, F_{k}$, are some smooth functions.
Then

$$
\begin{aligned}
& \frac{\partial}{\partial u_{i}} \varphi\left(F_{1}(u), \cdots \cdots, u_{1}\right)=\sum_{\alpha=1}^{k} \frac{\partial \varphi}{\partial x_{\alpha}} \frac{\partial F_{\alpha}}{\partial u_{i}}+\frac{\partial \varphi}{\partial x_{1+\kappa}} \\
& \left(\frac{\partial}{\partial u_{i}} \varphi\left(F_{1}(u), u_{1}, \cdots \cdots\right)\right)_{0}=\left(\frac{\partial F_{1}}{\partial u_{i}}\right)_{0}
\end{aligned}
$$

On the other hand

$$
\begin{align*}
0 & =\left(\frac{\partial}{\partial u_{i}} f^{j}\left(F_{1}(u), \cdots \cdots, u_{1}, \cdots \cdots\right)\right)_{0} \tag{*}\\
& =\left(\sum_{\alpha=1}^{k} \frac{\partial f^{\jmath}}{\partial x_{k}} \frac{\partial F_{\alpha}}{\partial u_{i}}+\frac{\partial f^{j}}{\partial x_{i+k}}\right)_{0}=\left(\frac{\partial F_{j}}{\partial u_{i}}\right)_{0}
\end{align*}
$$

Thus we have

$$
\left(\frac{\partial}{\partial u_{i}} \varphi\left(F_{1}(u), \cdots \cdots, u_{1}, \cdots \cdots\right)\right)_{0}=0
$$

We note that Theorem 1 follows from this formula. We also have

$$
\begin{aligned}
&\left(\frac{\partial^{2} \varphi\left(F_{1}(u), \cdots \cdots, u_{1}, \cdots \cdots\right)}{\partial u_{i} \partial u_{j}}\right)_{0} \\
&=\left(\sum_{\alpha, \beta=1}^{k} \frac{\partial^{2} \varphi}{\partial x_{\alpha} \partial x_{\beta}} \frac{\partial F_{\alpha}}{\partial u_{i}} \frac{\partial F_{\beta}}{\partial u_{j}}+\sum_{\alpha=1}^{k} \frac{\partial^{2} \varphi}{\partial x_{a} \partial x_{k+1}} \frac{\partial F_{\alpha}}{\partial u_{i}}+\right. \\
& \quad+\sum_{\alpha, \beta=1}^{k} \frac{\partial \varphi}{\partial x_{\beta}} \frac{\partial^{2} F_{\beta}}{\partial x_{R} \partial u_{j}} \frac{\partial F_{\alpha}}{\partial u_{j}}+\sum_{\alpha=1}^{k} \frac{\partial \varphi}{\partial x_{\alpha}} \frac{\partial^{2} F_{\alpha}}{\partial u_{i} \partial u_{j}}+\sum_{\beta=1}^{k} \frac{\partial^{2} \varphi}{\partial x_{\beta} \partial x_{k+i}} \frac{\partial F_{\beta}}{\partial u_{j}}+ \\
&\left.+\sum_{\beta=1}^{k} \frac{\partial \varphi}{\partial x_{\beta}} \frac{\partial^{2} F_{\beta}}{\partial x_{k+i} \partial u_{j}}+\frac{\partial^{2} \varphi}{\partial x_{k+i} \partial x_{k+j}}\right)_{0} \\
&=\left(\frac{\partial^{2} \varphi}{\partial x_{k+i} \partial x_{k+j}}\right)_{0}-\left(\frac{\partial^{2} F_{1}}{\partial u_{i} \partial u_{j}}\right)_{0 .} .
\end{aligned}
$$

on the other hand, from $\left({ }^{*}\right)$, we have

$$
\begin{aligned}
0 & =\left(\frac{\partial^{2}}{\partial u_{i} \partial u_{j}} f^{1}\left(F_{1}(u), \cdots \cdots, u_{1} \cdots \cdots\right)\right)_{0} \\
& =\left(\frac{\partial^{2} f^{1}}{\partial x_{k+i} \partial x_{k+j}}\right)_{0}+\left(\frac{\partial^{2} F_{1}}{\partial u_{i} \partial u_{j}}\right)_{0}
\end{aligned}
$$

Thus we have

$$
\left(\frac{\partial^{2} F_{1}}{\partial u_{i} \partial u_{j}}\right)_{0}=-\left(\frac{\partial^{2} f^{1}}{\partial x_{k+i} \partial x_{k+j}}\right)_{0}
$$

Let P be the orthogonal projection to the tangent plane of V at $0, i, e$.

$$
P\left(x_{1}, \cdots \cdots, x_{n}\right)=\left(0, \cdots \cdots, 0, x_{k+1}, \cdots \cdots, x_{n}\right)
$$

Then

$$
\begin{aligned}
M_{(0)} & =P\left(\frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}}-\frac{\partial^{2} f^{1}}{\partial x_{i} \partial x_{j}}\right)_{0} P \\
& =0_{k} \oplus\left(\frac{\partial^{2} \varphi \mid \mathrm{v}}{\partial u_{i} \partial u_{j}}\right)_{0} .
\end{aligned}
$$

Hence $P\left(\frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}}-\sum_{h=1}^{k} a_{h} \frac{\partial^{2} f h}{\partial x_{i} \partial x_{j}}\right)_{0} P$ is similar to $0_{k} \oplus\left(\frac{\partial^{2} \varphi \mid \mathrm{v}}{\partial u_{i} \partial u_{j}}\right)_{0}$ for a general coordinate without conditions of Lemma 4. Thus we have Theorem 2.

§ 3. Some examples.

In this section we give Morse functions of some spaces as examples of Theorems 1,2 and 3 .

1. $O(n), U(n)$ and $S p(n)$.

They are represented in $R^{n^{2}}, R^{2 n^{2}}, R^{4 n^{2}}$, as in the introduction. And we set $\varphi(x)=\sum_{i=1}^{n} \alpha_{i} x_{i i}, \quad 0<\alpha_{1}<\cdots \cdots<\alpha_{n}$,

Then nondegenerated critical points of each case are commonly

$$
\left.\left.\left\{\begin{array}{lllll}
\varepsilon_{1} & \cdot & & & \\
& & \cdot & & \\
& & & & \varepsilon_{n}
\end{array}\right)=p \right\rvert\, \varepsilon_{i}= \pm 1\right\}
$$

and the the index at p is $\sum_{i=1}^{n}\left(\frac{\varepsilon_{i}+1}{2}\right)(a i-1)$, where a is 1,2 and 4 respectively $O(n), U(n)$ and $S p(n)$. We give a proof of the case of $U(n)$. The others are obtained similarly.

Proof of the case of $U(n)$.
we set

$$
\begin{gathered}
U(n)=\left\{\left(x_{i j}+y_{i j} i\right)=x \in \mathfrak{M}(n, C) \mid f_{k l}=\sum_{i=1}^{n}\left(x_{k i} x_{l i}+y_{k i} y_{l i}\right)-o_{k l}=0\right. \text { for } \\
\left.1 \leq k \leq l \leq n, \quad g_{k l}=\sum_{i=1}^{n}\left(x_{k i} x_{l i}-x_{l j} y_{k i}\right)=0 \text { for } 1 \leq k<l \leq n\right\}
\end{gathered}
$$

It is easily verefied that $\left\{\nabla f_{k k}, \nabla f_{k l}, \nabla g_{k l}\right\}$ is linearly independent. The Grammian of $\left\{\nabla f_{k k}, \nabla f_{k l}, \nabla g_{k l}, \nabla \varphi\right\}$ is

Now, we assume $G=0$ on $U(n)$. Then we have

$$
\alpha_{l} x_{k l}=\alpha_{k} x_{l k}, \quad \alpha_{l} y_{k l}=-\alpha_{k} y_{l k}
$$

From $\left.f_{11}(X)=f_{11}{ }^{(t} X\right)=0$, we have

$$
\begin{aligned}
1-x_{11}{ }^{2}-y_{11}^{2} & =x_{12}{ }^{2}+y_{12}^{2}+\cdots+x_{l n}{ }^{2}+y_{l n}{ }^{2} \\
& =x_{21}{ }^{2}+y_{21}{ }^{2}+\cdots+x_{n l}{ }^{2}+y_{n l}{ }^{2} . \\
\left(\frac{\alpha_{2}^{2}}{\alpha_{1}^{2}}-1\right) x_{12}{ }^{2} & +\cdots+\left(\frac{\alpha_{n}^{2}}{\alpha_{1}^{2}}-1\right) x_{l n}{ }^{2}=0
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& x_{12}=y_{12}=x_{13}=y_{13}=\cdots=x_{t n}=y_{l n}=0 \\
& x_{21}=y_{21}=x_{31}=y_{31}=\cdots=x_{n l}=y_{n l}=0
\end{aligned}
$$

Inductively, from $\left.\mathrm{f}_{i i}(X)=f_{i i}{ }^{t} X\right)=0$, we obtain

$$
x_{i j}=y_{i j}=0, \text { for } i \neq j
$$

And from $\alpha_{i} y_{i i}=-\alpha_{i} y_{i i}$, we also have $y_{i i}=0$.
Thus, $x_{i i}= \pm 1$. Hence from Theorem 2, we have that the critical points

$$
\operatorname{are}\left\{\left(\begin{array}{ccccc}
\varepsilon_{1} & & & 0 & \\
& 0 & 0 & & \\
& 0 & & & \varepsilon_{n}
\end{array}\right) \varepsilon_{i}= \pm 1\right\}
$$

Now, we shall calculate the index at $p=\left(\begin{array}{lllll}\varepsilon_{1} & & & & 0 \\ & \cdot & & 0 & \\ & 0 & & & \\ & & & & \varepsilon_{n}\end{array}\right)$.
By simple calculation, we have

$$
\nabla \varphi(p)=\sum_{i=1}^{n} \frac{\alpha_{i} \varepsilon_{i}}{2} \nabla f_{i i}(p)
$$

Let the coordinate ($x_{i j}$) be ordered as

$$
\left(x_{11}, x_{22}, \cdots \cdots, x_{n n}, x_{12}, x_{21}, \cdots \cdots, x_{n}, n-1, y_{11}, \cdots \cdots, y_{n, n-1}\right)
$$

Then P, the projection of Theorem 2, is represented as

where

$$
A_{i j}=\left(\begin{array}{ll}
1, & \varepsilon_{i} \varepsilon_{j} \\
\varepsilon_{i} \varepsilon_{j}, & 1
\end{array}\right)
$$

Hence we get

$$
M_{(\phi)}=P\left(-\sum_{i=1}^{n} \frac{\alpha_{1} \varepsilon_{1}}{2} \nabla f_{i i(p)}\right) P .
$$

where $B_{i j}=\left(\begin{array}{cc}-\varepsilon_{i} \alpha_{i}-\varepsilon_{j} \alpha_{j}, & -\varepsilon_{i} \alpha_{j}-\varepsilon_{j} \alpha_{i} \\ -\varepsilon_{i} \alpha_{j}-\varepsilon_{j} \alpha_{i}, & -\varepsilon_{i} \alpha_{i}-\varepsilon_{j} \alpha_{j}\end{array}\right)$
Therefore the eigen values of $M_{(p)}$ are

$$
\left\{\begin{array}{l}
0 . \quad \text { multiplicity } n . \\
-\left(\alpha_{i}-\alpha_{j}\right)\left(\varepsilon_{i}-\varepsilon_{j}\right), \quad i \neq j, \\
-\left(\alpha_{i}+\alpha_{j}\right)\left(\varepsilon_{i}+\varepsilon_{j}\right), \quad i \neq j, \\
-\alpha_{i} \varepsilon_{i}, \quad i=1, \cdots, n,
\end{array}\right.
$$

Hence we have rank $M_{(p)}=n^{2}$.
Thus, each critical point is nondegenerated and the index is $\sum_{i=1}^{n}\left(\left(\varepsilon_{i}+1\right) / 2\right)(2(n$ $-i)+1$ by Theorem 2. Therefore, $\varphi(x)$ is a Morse function of $U(n)$ and it is best possible.
2. $V_{n, m}, \boldsymbol{C} V_{n, m}$ and $\boldsymbol{H} V_{n, m}$.

We set

$$
\begin{aligned}
& V_{n, m}=O(n) / O(n-m) ; \text { Real Stiefel manifold. } \\
& C V_{n, m}=U(n) / U(n-m) \text { : Complex Stiefel manifold. } \\
& H V_{n, m}=S p(n) / S p(n-m) ; \text { Quarternionic Stiefel manifold. }
\end{aligned}
$$

We use the same coordinate as in 1 . and consider that the groups $o(n-m)$, $U(n-m)$ and $S p(n-m)$ act on the last $(n-m)$-coordinates. We set

$$
\varphi(x)=\sum_{i=1}^{m} \alpha_{i} x_{i i}, \quad 0<\alpha_{1}<\cdots \cdots<\alpha_{m} .
$$

Then $\varphi(x)$ is invariant under the actions of $\mathrm{O}(n-m)$, etc. By the same calculations as above and by Theorem 3, we have the following results.

The critical points of $\left.\varphi\right|_{V}$ are $\left\{\left.p=\left(\begin{array}{ccc}\varepsilon_{1} & & 0 \\ & & \\ 0 & & \\ \underbrace{}_{m} & \varepsilon_{m}\end{array}\right) \right\rvert\, \varepsilon_{i}= \pm 1\right.$.
In $O(n)$-case, the eigenvalues at p are

$$
\begin{aligned}
& 0, \quad \text { multiplicity }(n+(n-m)(n-m-1)) \\
& -\left(\alpha_{i}-\alpha_{j}\right)\left(\varepsilon_{i}-\varepsilon_{j}\right), \quad i<j \leqq m \\
& -\left(\alpha_{i}+\alpha_{j}\right)\left(\varepsilon_{i}+\varepsilon_{j}\right), \quad i<j \leqq m \\
& -\alpha_{i}\left(\varepsilon_{i}-\varepsilon_{j}\right), \quad i \leqq m<j \\
& -\alpha_{i}\left(\varepsilon_{i}+\varepsilon_{j}\right), \quad i \leqq m<j
\end{aligned}
$$

Thus critical points are nondegenerated and the index at p is $\sum_{i=1}^{m}\left(\left(\varepsilon_{i}+1\right) / 2\right)(n$ $+i-m-1$).

In $\boldsymbol{C} V_{n, m}$ (resp. $\boldsymbol{H} V_{n, m}$)-case, similar calculations show that the index at p is $\sum_{i=1}^{m}\left(\left(\varepsilon_{i}+1\right) / 2\right)(2(n-m+i)-1)\left(\right.$ resp. $\sum_{i=1}^{m}\left(\left(\varepsilon_{i}+1\right) / 2\right)(4(n-m+i)-1)$. Therefore these $\varphi(x)$ are Morse functions of $V_{n, m}, C V_{n, n}$ and $\boldsymbol{H} V_{n, m}$.
3. G_{2}.

We give an order of the cannonical base of $\mathfrak{¢}$, the Cayley number field, by

$$
\left(1, e_{1}, e_{2}, e_{3}, e_{2} e_{3}, e_{3} e_{1}, e_{1} e_{2}, e_{1}\left(e_{2} e_{3}\right)\right)
$$

G_{2} is represented by

$$
G_{2}=\{X \in \mathfrak{M}(8, R) \mid X: \circlearrowleft \rightarrow \circlearrowleft ; \text { an automorphism of Cayley numbers }\} .
$$

Simple calculations show that G_{2} is given simply, by

$$
\begin{gathered}
G_{2}=\left\{X \mid X={ }^{*}\left(x_{11}, \cdots \cdots, x_{17}, x_{21}, \cdots \cdots, x_{27}, x_{31}, \cdots \cdots, x_{37}\right),\right. \\
f_{i j}=\sum_{l=1}^{7} x_{i l} x_{j l}-\delta_{i j}=0,1 \leqq i \leqq j \leqq 3, \\
\left.g=\operatorname{Re}\left(x_{1}\left(x_{2} x_{3}\right)+\left(x_{1} x_{2}\right) x_{3}\right)=0\right\},
\end{gathered}
$$

where $x_{i}=\left(0, x_{i 1}, \cdots \cdots, x_{i 7}\right)$ and the product is of Cayley numbers.
We set

$$
\varphi(x)=\alpha x_{11}+\beta x_{22}+\gamma x_{33},
$$

where (α, β, γ) satisfies the conditions of Lemma 5 (given in the last section of this paper).

The Grammian of ($\nabla f_{i j}, \nabla g, \nabla \varphi$) is

$$
G=\left|\begin{array}{ccccccc}
4 & & & & & & 2 \alpha x_{11} \\
& 4 & & & & & \\
& & 4 & 2 & & & \\
& & & 2 & & & \\
& & 0 & & & 2 & \\
& & & & & \\
2 x_{11}, & \cdots & x_{32}+x_{23}, & \cdots,\left(x_{2} x_{3}\right)_{1}+\left(x_{3} x_{1}\right)_{2}+\left(x_{1} x_{2}\right)_{3}, \alpha^{2}+\beta^{2}+\gamma^{2} .
\end{array}\right|
$$

Now, we assume $G=0$, then, similarly in $U(n)$-case, the critical points are of the following forms.

$$
p=\left(\begin{array}{ccccccc}
\varepsilon_{1}, & 0, & 0, & \beta \gamma \mu, & 0, & 0, & 0 \\
0, & \varepsilon_{2}, & 0, & 0, & \gamma \alpha \mu, & 0, & 0 \\
0, & 0, & \varepsilon_{3}, & 0, & 0, & \alpha \beta \mu, & 0
\end{array}\right)
$$

We put $\beta \gamma \mu=\sin \theta_{1}$,

$$
\gamma \alpha \mu=\sin \theta_{2}
$$

$$
\alpha \beta \mu=\sin \theta_{3}
$$

Then $\frac{\sin \theta_{1}}{\alpha}=\frac{\sin \theta_{2}}{\beta}=\frac{\sin \theta_{3}}{\gamma}$. Since $g=0$ on G_{2}, we have

$$
\theta_{1} \pm \theta_{2} \pm \theta_{3} \equiv 0(\bmod 2 \pi)
$$

From Lemma 5 we have $\theta_{1} \equiv \theta_{2} \equiv \theta_{3} \equiv 0(\bmod \pi)$. That is,

$$
\mu=0, \varepsilon_{1}, \quad \varepsilon_{2}, \quad \varepsilon_{3}= \pm 1
$$

Hence the nondegenerated critical points are

$$
\left\{\left.P\left(\varepsilon_{1}, \quad \varepsilon_{2}, \quad \varepsilon_{3}\right)=\left(\begin{array}{cccc}
\varepsilon_{1} & 0 & 0 & \\
0 & \varepsilon_{2} & 0 & 0 \\
0 & 0 & \varepsilon_{3} &
\end{array}\right) \right\rvert\, \varepsilon_{1}, \quad \varepsilon_{2}, \quad \varepsilon_{3} \pm 1\right\}
$$

And straightforward calucuiations show that $I\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$, the index at $P\left(\varepsilon_{1}\right.$, $\varepsilon_{2}, \varepsilon_{3}$, is

$$
\begin{array}{ll}
I(-1,-1,-1)=0 & I(-1,-1,1)=3 \\
I(-1,1,-1)=4 & I(1,-1,-1,)=5 \\
I(-1,1,1)=9 & I(1,-1,1,)=10 \\
I(1,1,-1)=11 & I(1,1,1)=14
\end{array}
$$

Therefore $\varphi(X)$ is a Morse function of G_{2} and it is best possible.
4, $\quad S U(n)$.
We give the special unitary group $S U(n)$ by

$$
S U(n)=\left\{\left(x_{i j}+y_{i j} i\right)=\left.X\right|^{t} \bar{X} X=E, \operatorname{det} X=1\right\}
$$

Let $\varphi(X)=\sum_{i=1}^{n} \alpha_{i} x_{i i}$, and α_{i} satisfy the conditions of Lemma 5 .
Straightforward caluculations show that critical points are of following forms.

$$
p=\left(\begin{array}{rrrl}
\varepsilon_{1}+\alpha_{1} \mu i & & & 0 \\
& \bullet & & \\
0 & & & \bullet \\
\\
0 & & & \varepsilon_{n}+\alpha_{n} \mu i
\end{array}\right)
$$

Now we put $\varepsilon_{i}+\alpha_{i} \mu i=e^{\theta i}$. Since $\operatorname{det} P=0$,

$$
\sum_{i=1}^{n} \theta_{i} \equiv 0(\bmod 2 \pi)
$$

And $\frac{\sin \theta_{1}}{\alpha_{1}}=\cdots \cdots=\frac{\sin \theta_{n}}{\alpha_{n}}(=\mu)$. By Lemma 5, the critical points of φ are

$$
\left\{\left.\left(\begin{array}{ccccc}
\varepsilon_{1} & \cdot & & 0 & \\
& & \cdot & & \\
& 0 & & & \varepsilon_{n}
\end{array}\right)=p \right\rvert\, \prod_{i=1}^{n} \varepsilon_{i}=1\right\} .
$$

Simmilarly as in 1., we have that the index at p is equal to

$$
\sum_{i=1}^{n}\left(\left(\varepsilon_{i}+1\right) / 2\right)(2 i-1) .
$$

Therefore $\varphi(x)$ is a Morse function of $S U(n)$ and it is best possible.
5. $\quad G_{n, m 2}=0(n) / 0(m) \times 0(n-m)$.

We use the same coordinates as in 1 , for $O(n)$.
We set

$$
\begin{aligned}
& \varphi(x)=\sum_{i, j}^{n} \varepsilon_{i} \alpha_{j} x_{i j}, \quad \varepsilon_{i}=1, \quad i=1, \cdots \cdots, m \\
&-1, \quad i=m+1, \cdots \cdots, n \\
& 0<\alpha_{1}<\cdots \cdots<\alpha_{n}
\end{aligned}
$$

Since φ is $O(n) \times O(n-m)$-invariant, φ is a smooth function on $G_{n, m}$. This φ has a different form of φ in $1 \sim 4$, but by Theorems 2 and 3 , straightforword calculations give us the following results.

Let τ be a combination of m-elements in the set of n -elements, then τ is represented in $O(n)$ as $\tau=\left(\tau_{i j}\right), \tau_{i j}=\delta_{i, \tau j}$ for $j \leqq m$ and $\tau_{i j}=\delta_{i, \tau}(j-m)$ for $j>m$, where $\bar{\tau}$ is the complementary combination of τ. Then the critical points of $\varphi(x)$ are $\{\tau \mid \tau$ is a combination of m-elements in the set of n-elements $\}$, and the index at τ is the number of positive $\left(\tau_{i}-\bar{\tau}_{j}\right)$'s, where $i=1, \cdots \cdots, m$ and $j=1, \cdots \cdots, n-m$.

Therefore $\varphi(x)$ is a Morse function of $G_{n, m}$ and it is best possible.

§4. Appendix.

Lemma 5. There exist positive numbers $\alpha_{1}, \cdots \cdots, \alpha_{n}$ such that

$$
0<\alpha_{1}<\alpha_{2}<\cdots \cdots<\alpha_{n}
$$

and the equations

$$
\begin{equation*}
\theta_{1} \pm \cdots \cdots \pm \theta_{n} \equiv 0(\bmod \pi), \frac{\sin \theta_{1}}{\alpha_{1}}=\cdots \cdots=\frac{\sin \theta_{n}}{\alpha_{n}} \tag{*}
\end{equation*}
$$

have only the trivial solution $\theta_{1} \equiv \cdots \cdots \equiv \theta_{n} \equiv 0(\bmod \pi)$.
Proof. We put $\alpha_{n}=1, \alpha_{n-1}=(n-1) \varepsilon, \cdots \cdots, \alpha_{1}=\varepsilon$, where $0<\varepsilon<1 /\left(n^{2}\right)$. If (*) has nontrivial solutions $\left(\theta_{1}, \cdots \cdots, \theta_{n}\right)$, then we can assume $\theta_{i} \in(0, \pi)$, (if not, we take $\left.-\theta_{i}\right)$. Moreover, we can assume $\theta_{i} \in(0, \pi / 2]$, because if $\theta_{i} \in(\pi / 2, \pi)$, then we may take $\theta_{i}^{\prime}=\pi-\theta_{i}$ in the place of θ_{i}, then we have

$$
\theta_{1} \pm \cdots \cdots \pm \theta_{i}^{\prime} \pm \cdots \cdots \equiv 0(\bmod \pi), \sin \theta_{i}=\sin \theta_{i}{ }^{\prime} .
$$

For $\varepsilon<1 /\left(n^{2}\right)$, we have

$$
1 \geqq \sin \theta_{n}=\frac{1}{i \varepsilon} \sin \theta_{i}>n \sin \theta_{i}:
$$

Then $\theta_{1}, \cdots \cdots, \theta_{n-1} \in(0, \pi / 2 n)$ and $\theta_{n} \in(0, \pi / 2]$. Thus

$$
\begin{aligned}
\sin \theta_{n}= & \sin \left(\pm \theta_{1} \pm \cdots \cdots \pm \theta_{n}\right) \\
& <\sin \left(\theta_{1}+\cdots \cdots+\theta_{n}\right) \\
& <\sin \theta_{1}+\cdots \cdots+\sin \theta_{n}=\frac{n(n-1)}{2} \varepsilon \sin \theta_{n} \\
& <\sin \theta_{n} .
\end{aligned}
$$

This is a cotradiction. Therefore, we have the Lemma.

Referenes.

[1]. Milnor, J.: Morse Theory, Ann. of Math. Studies, 51. Princeton, 1963.
[2]. Milnor, J.: Singular Points of Complex Hypersurfaces, Ann. of Math. Studies, 61. Priceton, 1968.

