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Introduction.

From the point of view of the geometry of microbundles, the corresponding
notion of the differential forms in the geometry of vector bundles, is the Alexander-
Spanier cochains (cf. [37], [4]). For a differential form ¢, one of the most impor-
tant fact is to able consider the integration of ¢ on an (arbitrary) differentiable
singular chain. Therefore, it is natural to ask whether we may consider the
integration of Alexander-Spanier cochains on singular chains or not.

The purpose of this paper is to give a definition of the integral of Alexander-
Spanier cochains on singular chains and prove some of its properties such as
Stokes’ theorem.

In fact, if flx, ») is a function on I2={(x, M0 <Lx <1, 0=<<y<1} such that

fx, x)=0, flx, ) is smoath in y,

then we may set
Sx, ) = filx, )y — %)+ O(ly — x).

Hence we obtain

1 n
| £, wdy= " iim. fla, a:),
0

0 laisi—ail =0 j=

O:a0<a1<"'<an<an+1:1'

This shows that for an Alexander-Spanier I-cochain f(x,, %) on X, a topological
Sxo, xy)

space, and a singular I-simplex ¢, ¢ : I—X, it is natural to define S
@
by

[€)]

Flro wm)=  lim. ijof(sa(a», 0 (@)

SV’(I) |aie1— ail— 0f

Similarly, for an Alexander-Spanier s-cochain f*= flx,, %, -+, %) on X and a
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(qubical) singular s-simplex ¢, ¢ : I'-X, we define S o by
14

S

S«)(I")
Jr=n1, e, ds=ns

= lim, Z f(@(al,j“ ) a-\‘,js)y
| ﬂi,jl.+1—ai,jl.l~>0 F1=0, -, js=0

ﬁﬂ(al,jl—i—l, Az, jz, vy Qs,isy **°s Sa(al.fl): sty As—1,551, asij+1))v

0= aj0<a;1< <n <n+1=1

The integration S fof f on a singular s-chain 7 is defined as usual. Of course,
.
S f° may not be exist in general. For example, on I', give f! by flx, ») =
.

4/x — y| and take ¢ to be the identity map, then we have

S&p(ll) f(x; y) = [im. 2/\/|ai+1 _ ail = oo,

On the other hand, on I3, give f! by f(x, 3 =|x — | =4 (x1—3)F+(xs—¥y9)* and
o(x) = (x, xsin(l/x)), x+#0, ¢(0)=(0, 0), we get

S a flx, ) = the length of the curve o(I') = co,

4
But there are examples that show the existence of S f* for non -smooth f° and 7.

T
The outline of this paper is as follows: In §0, we review the definition and

properties of Alexander-Spanier cochains (cf. [1], [27, [15], [16]). The definition
of the integral is given in §1. Some elementary properties of the integral are
also proved in §1. §2 is devoted examples and show some classical integrals such
as Stieltjes integral (cf. [7]) and Helinger integral are written asS flx,

e(I1)
with suitable choice of f{x, ¥. Then we prove the Stokes’ theorem

for s = §orym

for this integral in § 3 under suitable assumptions about f and 7. Here 4 it the
coboundary homomorphism in the Alexander-Spanier cohomology (cf. [1], [2],
[15], [167]). We note that, if s=1, then this is trivial, because df{x, »)=S(y)—f(x)
and

{, o =tim. 33(figlasn)) — figlag) = Fle() — figlo),

in this case. In §4, we treat the volume element v=uv(xy, %y, -+, x,) with respect
to a metric # on X. Here, v is given by
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U(xﬂy X1y ey xn) = T(x(), xl)r(xﬂx xZ) r(x()r xn)7

and X is assumed to be a CW-complex. The existence of the volume element
shows that if X is a topological manifold and dim. X >6, then the structure
group of the tangent microbundle of X is reduced to the group of germs of
Lebesgue measure preserving homeomorphisms of R* as an Hy#) -bundle if X
has a metric which is invariant under the operation of the connection of X (The-
orem 5). Another application of the volume element is the definition of (singular)
integral operators on a (compact) CW-complexX. For example, if k(x, ») is a
continuous function on Xx X—4(X), 4(X) is the diagonal of Xx X, such that

[k(x, ¥)| =or(x, ¥}, n=dim. X,

then I(R) f] = S xk(x, yw(x, %, -+, x,) is defined for any continuous function f on
X and () f] is continuous on X. Since I(k) is a compact operator on C(X), the
Banach space of continuous functions on X with uniform convergence topology,
if % is continuous on X xX, we may define the symbol o({(k)) of I(k) by

o(I(R)) is the class of k mod. C(Xx X).
Similarly, we can define integral operator I(k) as the map
IR): M &)= T(5),

where ¢7and & are the vector bundles over X, ['(¥°) and I'(% ) are the spaces
of their (continuous) cross -sections. These shows us the possibility of the exten-
sion of the theory of elliptic complexes for CW-complexes. In fact, if X is a
topological manifold, then we can define the symbol ¢({(k) as the bundle map

oI(R) : P ) — pH(57),

where p*(25) and p*( 5 ) are the induced bundles on the tatal space of the tan-
gent microbundle of X of ¢ and & . These are stated in §5.

I would like to thank Prof. Uchiyama who teach me examples of the classi-
cal integrals which reduces to the form of S¢(11) Sx, ).

The outline of this paper is announced in Proc. Japan Acad., Vol. 47 (1971),

59-63, under the same title,

§ 0. Alexander-Spanier cochains,
1. For a topological space X, we set

51T

1) 4(X)=(x, x,--, ¥)|reXcXx.-xX.
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We often denote 4(X) instead of 44(X). We denote by R a topological vector
space (over R or C).

Definition. Two R-valued functions f and g om Uld, (X)), a neighborhood of
4(X), are called equivalent if

F V(X)) = g | Vd(X)),

Jor some neighborhood V(4(X)) of 4(X) and the equivalence class of f by this velation
is called the germ of f (at 4,(X)) and denoted by f or simply, f.

Definition. A germ of f at 4,(X) is called an (R-valued) Alexander-S panier
s-cochain.

By definition, the set of all Alexander-Spanier s-cochains of X forms an R
(or C) vector space. If i is a ring, then it is also an R-modul. It is denoted by
CH(X) or C(X, R).

We call an Alexander-Spanier s-cochain f is continuous, regular or alternative
if a representation f of f is continuous or satisfies

f(x()y X1, oty x:): O’ lf X = xj for some iy ](17&])1
or

SWoy, Xow, vy Xoo) = sgn (0) f (%o, %1, vy K

g e &

Similarly, if X is a Lipschitz manifold (cf. [13]), smooth manifold or an
analytic space (may have singularities), we can define a Lipschitz continuous,
smooth or analytic Alexander-Spanier cochain as above.

It is known, that to define the coboundary homomorphism d: C(X)— C*{(X}
by

5f(x0, Xy, vy xs+1)
s+1

:2(—1)’f(x0, Xy, oy Xic1y Xis v xs+1);
=0

we obtain
(@) H(X, ®)= B(X, %)/ Z(X, N),
B(X, R)=ker. [6: C(X, M—-C*HX, R)], 29X, R)=C"YX, %),

if X is a normal paracompact space ({27, [15], [16]). Here H(X, %) is the Cech
cohomology group. We note that (2) is true although we restrict C(X, R) to the
group of continuous, regular (regular and continuous), alternative (alternative,
regular and continuous) s-cochains on X. Similarly, (2) is true for the group of
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Lipschitz continuous or smooth s-cochains on X if X is a Lipschitz manifold or
a smooth manifold.

2. If N is a ring, then we can define the product for ffe C(X, R) and g°*
C(X, ®) by

(fs.gs) (xﬁy X1, vy xr+s)

:f(x()r EITIRAAN xr)g(xry Xrsly *7% xr+s)'

If 7 and g° are both alternative, then we use the alternative product f" A g°
given by

(fr VAN gs) (xO’ Xy, o0y xr+s>
=A((f7-8") (o, %1, vy %pu))

Here A(%') is the alternation of k' € C{X, R) defined by
AR xg, %y, -, XY

T e Sgn(o‘)h(xa(O), Xo(1)y xﬂ(lf))'
GEEVPPA

By definition, if % is alternative, then A% = h. Hence we get
CY{X, )= ACHX, R)+ ker. A,

and ACHX, M) is the space of all alternative #-cochains of X. We note that, if 4
is symmetric, that is, % satisfies

WXoy, Toh), *, Xer)) = WXy, %1, 0, %), 6ESH

then % belongs in ker. A.
Definition. If N is a (semi) normed vector space, then we denote by ||f°|| the
(R-valued) s-cochain with representation |||, f°e f°, where ||f*|| is given by

LT xo, %1, oy %) =11 (%o, %1, <+, %),

and ||a|| is the norm of a in K.

By definition, if f° is alternative, then ||f°|| is a symmetric (R-valued) s-
cochain of X.

Note. If =R or C, then we denote |f°| the s-cochain with representation
Ifel, fref.

Definition. We call an R-valued s-cochain F* to be positive if some P f° satisfies

f(x()’ Xy vy xs)209 (xO) X1, oy xs)e U(AS(X))r
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Jor some Ud{X)).
By definition, ||f*|| (or |f*]) is a positive s-cochain.

§ 1. Definition of the integral.
8. We use the following notations.

=@, -, 0561,

J=1{, vy I i, o, Js are O or natural numbers,
J+ L= (4, - Jeen BFL dwd e )

ay = (a5, - as,j5), 0=<a,; <1, -, 05455, < 1.

Definition. If f° = flx,, %1, ---, %,) is defined on some neighborhood U(4(X)) of
A4(X) and ¢ I°' —~ X is a (qubical) singular s-simplex of X (cf. [12]). then we set

J=(ny, -y 0s)

) [, o = lim. >3 flplan, plarsn), - elarn),
AT agppy—agi-0 J=(6,0)

if the limit exists. Here {a; ;;} is a series of veal numbers such that
0 = ao,i< ai,1 <+ < @i,n; < Gi,ni+1 = 1.

Lemma 1. The existence and non-existence and the viaue of SW(IS) SE(if it exists)
are depends on the germ of f°.

Proof. If f* are equivalent, then f°|V(4(X)) = g°|V(4(X)) for some V(4(X)).
Then taking |a;, j;+1 — a;, ;| sufficiently small for each ¢ and j, (e(as), ¢l@rii),

-, olars,)) belongs in V(4(X)) and we get

f(gD(CZJ), (,D(KZJ+11), Tty ¢(aJ+11))
= glplar), olarry), -, olari).

This shows the lemma.
Definition. We define the integral S . P of an Alexander-S panier s-cochain f*
]
on a (cubical) singular simplex ¢ : I° — X by :

) Sw(l’) fi= Smmfs’

where f° is a representation of f°.

Definition. If Swus) S* exists, then we call f° is integrable on o(I°).

Similarly, we call f* is integrable on o(I°) if Sw(IS) f? exists, where f°is a func-
tion on U(4(X)).
Definition. If N is a (semi) normed vector space and f° and ||f°|| are both in-
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tegrable on o(I°), then we call f° is absolutely integrable on o(I°).
Similarly, we define the absolute integrahility of f°, a function on U(4 (X))
Note. If = R or C, then the absolute integrability of f* follows from the
integrability of |f*].
By definition, we get
) @ +pg)=af 58 . e

Sw(ls) o(I%)

and if f° is absolutely integrable on ¢(I°) and ¢(I°), then

(6) Sw(lf)-H’J(ls)fx - Sw(l‘) f‘ + SVJ(F) fs‘

By (6), we define
Definition. If y = Eaign,-(l Y is a (qubical) singular s-chain on X and f* is abso-

lutely integrable on each ¢; (I°), then we define the integral ST F° of an Alexander-
Spanier s-cochain f° on 7y by

@ Srfs - Zdi Sw,-(mfs'

For the integration on 7, we define the integrability and the absolute integra-
bility of f* on 7 as above. Then we get

(5) | @retpgy=al £+ 6 2,
T ¥ ¥
and if f° is absoclutely integrable on y; and 7, then

r={ r+l r

<6) ST1+7‘2
4. Theorem 1. If ¢ does not depend on t; and f° satisfies

f(xO) Xy 00y xs):() 1f Xo = Xy

then S o f°is equal to 0.
14
Proof. By the assumption about ¢, we have ¢las) = o(as+1;) for all J. Then

by the assumption about f°, we have

Slolas), olarei), - olariy) =0,

for all J. Hence we have the theorem.
Covollary. If f° is regular and o(I*) is degeneraled (cf. [127), then
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® S«z(mf =0
Note. To get this corollary, it issufficient f° to satisfy
fxo, <, x)=0, if x, = x; for some i.

Theorem 2. If f* is alternative and absolutely integrable on o(I°), then

() Sw(a(m)fs = sgn(ﬂ)gw(m fi, o e .

Here o operates on I’ by
(th "ty ts): (t”(n, Yy t”(s))'

Proof. To show the theorem, it is sufficient to show

! S — . 5 ; y
©) S,/,(,,-j(p»f N chmf’ ekl

Tij(tly T tiv Yy tj7 ) ts):(tl:"'y tjr Yy ti: "ty ts)'

But since we have

Gy ooy s)
Ho(zifan), o(zifarin)), - olei @),
J=(0,,0)
* 7@(71'1'(“-]4‘1]'))7 Tty go(fij(a-]+1s)))
[T )]
= 2 f(@(a-’); (/J(aJ—}-]‘), "y ¢(aJ+1j7 )
J= (0,0

W(a.l—kl,'), Tty (ﬁ(aJ'H-s))’

we get by the alternativity of f,
;f (pleifan), olrifaren)), -, oleifariiy)

:*; Helas), plarrn), -, plari)).

Hence we obtain (9)'.

Note. To get (9), it is sufficient to assume f° being alternative only in xy, .-

%, That is, f* to satisfy only

f(xfh Xa(1)y "7 x")S)): Sgn(o)f(x()r Xy, xs)) c €&’

’
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Similarly, if f° is symmetric in %;, -+, ¥, and absolutely integrable on o(I°),
then
chu(m)f :Swas)f'
§ 2. Examples.
5. As stated in introduction, if s =1, f is regular and fle(s), ¢(t)) is smooth in
t, then

1 9= et ol

Sw(ll)

In general, we get
Theorem 3. If f is regular and selting

f(go(tl’ "y ts)) @(l‘lly Ty tls), Ty go(tsli "ty t:s))
:g(tly tty tsy tll) Ty tls’ ) tslr Yy tss)y
0<t; <1, i=1, -, 5 j=1, =, s,

g is smooth in each t;;, lhen

(10) Sw(p)fs
_(t.(__ 08
So So Bt11--- 01, \t,-,- =t dty---dt,.

Proof. By assumption, we get

g(tlv T t:y tll’ tE) R t.n Tty tl: Y ts—li t:s)

63
:6711--—‘-:%:(1}1’ TS S TRRTI JNPYPRNS RRTOINE N (ZPRF 2) (2 0

+ o[t — &) [Es — &)

Hence we have

A
Sw(ls)f

= lim DV flelan), elarn), - elary)
l@yi1;—as|—0J

= lim. Dlglas, ary, o, are)
|ay+1,—ag| =077

= lim. o

g
= 2IGi g @ s s @ s Gsiy
IaJ+1i_aJ|_->OJ 11 55
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y 0ty Q1,51 Yy as,js)(al,jl-i—l*“al,jl)‘"(as,js—i-l“aa,js)’l“

D00l a, jir1—an, gy |+ | s, o1 — s, 5 |)
J

oL,

Corollary. If X is a smooth manifold, f* is a vegular swooth cochain and ¢ is
a smooth singular chain, then S . f* exists.
14

b g

6. In this n°, we assume X=I' and ¢ is the identity map and denote SII S,

x4) instead of Sw(Il) Slxe, x40

We give some examples of classical integrals which are written in the form
SII S(xy, %1). 1 owe these examples to Prof. Uchiyama.

(i) Taking f(xo, %:)= g(xo)x1 — x,), we get

Vo 5= etwar,

where the right hand side is the usual Riemannian integral of g(x).
(ii). Taking f(xqe, x1) = glxo)l(xy) — h(xy), we get

(o s x9={ gan,

where the right hand side is the Young-Stieltjes integral (cf. [7]). It is known
that setting

oft, g)= sup. |gx) — g, olt, h)=sup. |(x)—h()],

fa—y| =t ja—y| £

. 1
if So(m(t, Qlw(t, h)/t2)dt exists, then S: gdh exists.
(ii)’. If we use alternative I-cochain f{x, x;) given by

S, )= (glon) + glrli(x) — hixo),
instead of g(x,)(h(x,) — h(x,), then
S0, w0 =L gan.

1
Here LSO gdh is the Lane-Stieltjes integral ([9], [147).
(iii). Setting

_ (&gilx1) — &ulxo))ge(x1) — gelx0))
A e
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where if h(e) = h(b), then gia) = g(b), i =1 or 2 and set fla, b)= 0, we get

, o dfix)dfAx)
Sn S ”"So dnix)

where the right hand side is the Hellinger integral. It is known that to set
df(x) = flx 4 6) — flx), 0 >0,

if h(x) and k(x) are bounded decreasing continuous functions on I and for any
d >0, we get

(dg )2 < dhedk, (g < dg-dk,

then S:(d Fix)dfolx)/dh(x)) exists.

Note. For X=1I’, taking ¢ to be the identity map and denote SIS f* instead of

S . f*, we obtain
¢
(i)l' Setting Xo :(tlr T tn)! X :(tiylr ) tim); i= 1: vy S and
f(xO) Xyy ooy xs)
= g(xo)(x1 — Xo) D%, — Xo)y Dilx: — Xo) =t — 1,
we have

S,sfsz Si S:g(tl, o, t)dE - dt

Here the right hand side is the Riemannian integral of g

7. In this n°, we assume that X is a metric space and denote its metric by
¥ =r(x, 3.

By definition, #(v, #,) defines a positive I-cochain of X. We also denote it
by ». Then S 7 is the length of the curve ¢(I'') by the metric . For example,

w(Il)
if X = R", r is the usual euclid metric, then setting

gD(t) :(fl(t)) Ty fn(t))’ Ogt_—g_l)

7 is integrable on ¢(I') if and only if each f; is the function of hounded variation.
Similarly, using », to define a positive s-cochain v* = u(#)y’ of X by

(11) V(xg, Xy, e, X = #(%g, K1) ¥ (Ko, Xa) e #(Xy, %),

we may consider »* to be the s-dimensional volume element of X with respect to

the metric ». In fact, if ¢(I°) is non-degenerated, then S v’ 540, and S

¢ (I o (I5)
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v* =0 if (I°') is degenerated. But Sﬂp)vs may be equal to « for non-degenerated
0.

Definition. If dim. X =mn, then we denote v" by v or v(¥) and call the volume
element of X with respect to the metric v.

We note that A =0 and Av° =0 for all s. On the other hand, on R”, we
may take

Vixo, x1, oy %a) = Doy — xo)Del&2 — Xo) -+ Dyl%, — %o)
to be the volume element and for this V, AV 0.
§ 3. Stokes’ theorem.

8. Lemma 2. If f° is absolutely integrable on o(I°), then for any é > 0, there
exist ¢ > 0 and N = N(6) > 0 such that

(12) || felas), elari), -+, plartil|
SN lay i1 — il o |81 — as,54],
if are It x - x Iy and \ai,5; — @i j;| <e, i =1, -, s,

where I is given by

0k

(12)/ Iak :&:JO [bkm'; bk2i+1],
Oébko < bkl < < bk2mk < bl‘2mk+1 é 1, Z(bk2[+1 — bkg,-) > 1—a.

Proof. If f* does not satisfy (12), then we can take ¢, k=1, -, s and i=
1, 2 such that 0<Cck < ¢k <1 and

|| flolar), ol@sin), -, ol )|
>Nlayji+1 — @y, | 0 @01 — @s,5,],

Jor some ay = K, K ={(c;, %) x -+ X (¢*}, €°9),

and the set of such @y is dense in K for any N. Hence we have

S¢(K) [1F°1] > Nety — ¢4y — al |’y — ¢y — af,

for any N and «. Then since S 115°]| should be

_ ince § (171200 117711,
equal to co. This contradicts to the assumption.
Definition. We call f* is uniformly integrable on o(I*) if for any It x - X I

we have

eI
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(13) S«»(I‘)f = lim. S«:(lalx-nxl,ﬁf'

For example, if f° is regular and flo(t;, -, t,), oty - L)y o @, - L)
is Lipschitz continuous in #;;, i =1, ---, s, then f° is uniformly integrable on ¢(I°)
if S ol f° exists.

By lemma 2, we have

Lemma 2'. If f° 1s absolutely and uniformly integrable on o(I°), then for any
e > 0, there exists 6 =d() > 0, N=N¢) > 0 and a = ofs) > 0 such that

(14) f((ﬂ(d]), (ﬂ(a.f—%—h)r ] ¢(aJ'l’1s))| | L,

I IS("(IS) _(IJEIalX"-XI,;g
|1 flolas), olariy), -, olag+i)l|
< N|a,ji41 — ay,j,| - {8s, i1 — @551,

if aye I X - x I and |a;,j;4+1 — a;,5;} < a.

9. Theorem 4. Let f°~1 be a continuous alternative regular (s — I1)-cochain and
7 = Za,- o; (I} is a singular s-chain such that
(d). (Of) is absolutely and uniformly integrable on each ¢(I°).
(). f°lis absolutely and uniformly integrable on each singular simplex of 8¢ (I°).
Then we have

(15) {rr=\, r
Proof. By definition, to show (15), it is sufficient to show

(15) Gy =,

SW(I‘) e (I%)

To calculate this right hand side, we set

@ry
(1, 0y 1)
= [lim. 2 {Apl@arsyy, -, ol@rs)) —
lags—ayl =0 J=(6,",0
—flolar), plarvis), -+, plarssy) + - +
+ (‘1)kf(¢(a-f); QD(dJ+11)y ) Qﬂ(a.]-klk,l), gﬂ(aJ-"lkﬂ)’
s Y Qo(a.,—l—]s)) + (#1)sf(§0(a-])r @(aJ+11)y Sty

olartisa))k

S o(I5)

Then, since the limit exists for any partition of I, we may set #; = - =#n;, =n
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in this right hand side. Then we get

(G D)

{f(ﬂﬂ(al—}—ll), Tty @(aJ-Hs)) _f(go(a'])’ w(a-’-l»lz), ttty
J=(0,-,0)

plars)+ - H=1 folar), plar+n), - olari-))}

(k1) (k+1)
s (=1, -, n~1,n, «, n)

:E{ Z} Slelagenlk=n)s -, @l@rsis|k=n)} +
k=1 JR)=(0, -, 0)
Gty ooy 1)

+Z{ >V (=1f(elar|k=0), el@rile=0), =, O(@rtig]r=0)
k=1 J(R)=(0, «, 0)

P(@rstpnl k=0 =, @l@ri1sle=0)} +
(-1, -, n—1)

+ E f(@(aJ—I-h)y ) gﬁ((l]+1s))+
J=({0,", 0)

s (1, =ney 2
+21{
k=1 J=(,- 0,1,0,--, O)
D]

(=D fplas), elar), -, ol@reip),

ga(a-”‘lkﬂ)’ "ty @(aJ'Hs))}-

Here Jp and ag|r—m mean

Jk:(jly Y jk-—l) jk-l—l) RRRE) js);

aJ|k:’":(a1,hy oty Ap—1,5p-1y Qkyny Gl4-1,5p01y "0y as,]‘;).

We note that in this notation, aji1,|r=m means (ay,;,, =+, Gh—1,i4-1, @,m+1, Qhtl,ipn
, ', Gs,i;). Hence we have

aJ+1k|k=n = aJ]le=n+1,
and therefore we get by the alternativity

f(SD(aJ-Hl{k:n)y Tty GD(aJ+1k}/e:n) y Y ‘/’(aJ+1si/e=n))

= (=1 plar| k=n+1), O@ritlr=n), *+*, Q@415 k=n),

go(a-]‘l‘lk-*l =)y ‘,D(a-]+15|/\’=n))-

Hence we have

) 5 (=1, n—=1,0,, 1)
(16) lim. [Z { Z Helariule=n), - ol@rii|e=n)}-+
leyii;—agl—0 }=1 Jh=(0, -, 0)
s Gy ey 1)

230 2 (—1Eflplarle=0), @l@siy|r=0), +, @l@ri1e,]r=0),
k=1 Jk=(0,-,0
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@I+ 14 | =0}y =, @(@I115] k=0))

— S-1
SW (1’)f )

On the other hand, we get

=1, -, n—1)

f(gﬂ(aJ’Fll)r tty @(ﬂ]—}-ls))—{—
J=(0,:, )

s (IR D)

+23¢ > (— 1 flgla), plarsn), -, olariy..),
k=1 J=(0,--,0,1,0, -, 0)

w(aJ-HkH)v Ty fﬂ(aJ'f‘ls))}

(n—1, -, n-1

= >V  {flelarsv), - elasii)— flolarsn), o@rii+1,),
J=(0, -, 0)

y ooy sty + o (DR flelar ),
plariin), - Q@I e, 9@ i),
y oy Oa@rege)t+ o H (=1 Aolary),
plariian), - O(@ri11, )

U-1){U+D)
s (=1, - =1, -, 22)

+230 201 > (— LAl 14] =)
k=1 <k J(l):(o,...,o,%}()),...,o)
R

ol@rig+1yfi=n)y o Q@I+ 154101 | 120),
AT+ 141800 | 1=0)s o5 pl@rs1+15 | 1=0))}+

BU-DU+D)
=1, n—1,m,0=1, -, n—11, 1)

+234 2] (=1} flol@r+ie] 1=n),

i< JD=0,-55,1,0, -, 0)
€3]
plarsig+1, | 1=n), -, O@r+1416] =) ¥

Here aji1;+1,, means (assuming k < m)

AJ+1p+1p
= (@LI0 S QR ey, Al jpt-1y, ARl jpers 7ty Qmi—1,im-1y @, i +1s

am+1,]'m—1) cery s, JA)
Then we set

s Gr-=1, -, n—=1,0, -, )

(17 L2 2 (—Vf f(pl@riz)1=n),
k=1 1<k JU)=(0,-0,1,0,,0)
‘/1(014-1k+11 [1=n), ¢(aJ+lk+1s [ 1=n))}+

=1, oy t=T,00,00 =1, -+, 5t~=1,00, -, )

+ 21 2 (— Ve fp(@as1x) =),
k< Jy=(0,-+,0,1,0,,0)

93
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o@r+ip+1; [ 1=n), -, Ol@rsig+is] =)}

s (=1, -, =1, 1, -, )

B 1 21 EIT_’ E (=1 flplar] 1=n, k=ip+1)s
Jh=

k= <k JU, R)=0,-,0)

@11, | 1=n k=ja+1), - Q(@T415] 1=n, k=ip+1)) b+

(=1, -, n—=1,9,, 1)

’*‘E { (—1)kf(§0(aJ|l=n,/e=jk+1)7
k<l I, =0, -+, 0)

O@r+1, | 1=, kemipt 1)y o0y @l@I41) (= k=i +1)) 1)
Here ag|i=pr=2 and J¢,rn mean

ayli=phk=a

=(a1,j;, **+ Al—1,5;.10 QlLpy AUAL,5p0p 5 k=1, jp-10 Qk,a,
Ap4-1, 5415 *** Gs,is),

Ja,m

=(J1, = Ji=1 Ji+t, n Jh=1, Jet1, vy Js)
On the other hand, since f°~! is continuous and integrable, we have

s 7 (=1, -, n—1, 1, -, 1)
(18) lim. DI (—Lrfe(@r]i=n,k=ji+1),
lage;—ag)|—=0 k=1 j3=1 <k JU, =0, -, 0)
Sﬂ(aJ+11]1=n,/e=jk+l), very Qﬂ(a.]—i-lsll=n,la=jk+l)):| +

Gr=Ly oy H—_y 3, =y 1)

+>3{ > (=Dt f(plar | i=n k=jp+1),
k<1 JUe, D=0, -, O

@yt | 1=mk=jp+1)y oy G@T+1s| 1=r, k=g +1)) T
s s (n—1, -, n—1)
= lim. 20200 20 (OS] e k=,
lagi1;—ag|=0k=1 jp=1 1>k  JU,D=0 0
A@F11; | 1=m k=jp+1)y =ty QAT 1=, o= dp+1)) 3+

(=1, -+, n=1)
+>11 D1 (VS 0ar] r=nkmipr)), Q@I 1= k=g 1))
5= 50,550, 0

y o @@rrisli=n k=) 3
Then we obtain by the alternativity

t—1, -, n—1)

s n €
23200200 20 (1fle@r i k=int),
k=1 jp=1 I<k JU, k)=, ,0)

@(a-f'l-hil:n.k:jk—l-l): Tty @(CZJ»Hs'lzn,kzjk—l-l))}+

(n—1, -, n—1)

+214 ) (—DEf@@a] 1=n,k=jp+1), @@I11,|1=n k=ip+1),
ST a0 D=0, 0
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s oy olarig ] i=n k=jeri) 3]

s 1 (=1, -, n~—1)

= L2301 21 (DEf(elar)i=n k=),
[ s G P B (N Dt A )

O@ri1y | 1=n,k=ip1)y +y O@IF1 1= k=g t1), =
(@I, t=m, he=gpt1)) — SO(@T ] 1=, omjp11)s

O@T+11 | 1=n, k=gt 1)y s Y@T+141 | 1=n, k=ip+1),
olaru|t=n k=ip+1h @Il i=nk=jp+1), =
o@rivy-1li=n k=ipr1)y O@I1s1 1= ke=jpr), ooy

@I 1} 1=, k=jpr1)) e

Then by (14) and the continuity of f, we have

s 7 (=1, n—1)

2323 020¢ ) )(_1)kf(§0(aJ[l=n,/z=jk+1):

k=1 jp=1 1<k J{U,l>=(, -+, 0

O@r+1: 1=, k=g 1), o Q@T+15)1=n, k=g ) +

(n—1, -, n—1)
+331 > (— 1) fl@(@ | 1=, k=p+1) G(@T41y | 1=, ko=t 1),
k<l Jy 1y=(0, -, 0)

s oy Oa@riagli=n k=) 11 |
< ¢+ 2Na,

where N depends on ¢ but « is independent to N. Hence we get

5 mn Gr=1, oy n—=1,, -y 1)

(19) lim. 2201 2 (=1fflplas|i=n k=ip+1);

laga;—arl=>04=] =1 1<k JU, =00, -+, 0)
Plarin | 1=nk=ip+1)y o0 O@T+15 1=n, k=jp+1)} +

(=1, <, n—=1,3,, 1)
+>3{ > (— 1 flpl@s) i=n, k=jg1),
= 30,0

O(@a+11 | 1=n, k=jgr1)y o W@T+15| 1=n,k=5p+1))}]
= 0.

On the other hand, since

=1, n—1)
{ flolayin), - olaris) — folars), el@ri +1s),
J,: {0, -, 0)
y oy glaring) o (1 Aelaraay),

Plarsig+1,), o, @@rei0)}

(=2, -, n—2)
= 21 {Sflelasen), - plar) — flelari), elarinw),
J=(0,,0)
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y oy olarii)) 4 oo+ (=1 felarsy),

olariign), -, el@rria)} -+

=D (k+D
s =2,y n—2,n—1, -+, nn—1)

‘*‘Z L Z {f(¢(aJ+11 |/¢=n-1), Sty
k=1 J()=0,--,0
O(@r11s| h=n—1)) — fl@l@re1, | =n—1), @@I+1,41:]k=n—1), -+
(@I, 415 k=n—1)) + - + (—1) flolar+is| =n—1),

¢(a1+1s+11 llﬁ:ﬂ—l)’ ‘et ¢(a1+13+1s—1 |/e=n—-1))}]»
we get

-1, -, n~-1)
(20) J~Z‘/J-o> S (plarsn), - @lars) — flplarin), plarii+i),
v oo @larinsg) + o (1) flplar),

plagri+tn), v, O@I+1+151))}

(=1 (+D
n—1 s =11, n—1=1,2—1, -, n-10)

:Z L E [ Z} Lfelar+1le=n=1), =,
/= TG0, ony 0)
olaris| r=n—1)) — Splart1, {p=n—1), Ql@r+1,4+1;| p=n—1),
sy oy @I 15 k=n=0) + o (=1 Fpl@riig | =n—i),

Par+1o41 | k=n—t), 5 YAT+14150 | ==} 1]
Then, since f°~! is continuous and integrable, we have

) n—1 s Gi—I—1, -, n—=1=Y, n—1, -, n—=0)
(18)’ lim. 2 [ Z [ Z} {f(SD(aJ—i-h l/c=n—l),
feyay—ag (=0 1=1 k=1 JUDEWD, -y O
y 't QD(aJ+1s|k=n—l)) - f(§0(61‘1+11|k=n_/),
Plarit+1g | p=n—t), +++r Q@T+1415 | k=n—1)) +
+ o+ (1S larrig | k=n—1), Pl@riisit|r=n—1),

y "y go(a"‘f‘ls—'—lrl'k:"—/))}]:l
. n—1 s (n—I[-1, -, n—~I1-1)
= lim. DIC > L flplarstslk=n=1), *+,
legp1;—eri—0 7=1 f=1 J () =0, -, 0)
§0(al+ls|k=n—l)) — flplart, | h=n—1),
O@T+11 412 | h=n—t)y vy WBT+1,+15 | pe=n—1)) +
+ o (Y fplarsi k=a-n), @@rst1 | h=n—1),

k=n—1))}1].

y T §0(aJ+15-1-1_;_1

Then, since f°°! is alternative, we obtain
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n—1 s (n—1I-1, -, n~{—1)

2200 p {flelarsty | k=n=—1), =, Gl@F+15| p=n—1))—

=1 k=1 JFR)=(0, -, 0
— Aplari ) e=n—1)y Q@r+1i41:]p=n~1), =+, @@I+1,41, | h=n—1)) +
A+ s (Al k=n—t), Pl@T+141: | h=nmi)y -0,

AT+ 154151 | E=n—2))} 1]

n=l  (—I=1,-, n—-I-1)

=230 2 Sfarlimand, o elar |- -

=g 00
— flplarsi | 1=n—1), Q@r+1,41511=n—0), =, Q@F+1,415]1=0—1)) +
o b (=W fpl@r 1, | 1=n—i)y Q@T415411 =0t} -+,
Yagitstte | 1=n—-1) — [pl@rs1s1=n-1), @l@rs1,l1=0—1), ++,
Pariis|1=n—0)— Fl@@riiz|1=n—1), Pl@rtiosili=n=1), -,
Part1pi1s|1=n—1)) + - + (=1 flpl@rsisl1=n—1),
@rtterii | 1=n—1)y + Q@IF141 [1=n=t)} + 0 +
H(=DH flelarrizli=n—1), Pl@r+tsli=n—1), =+ Q@rr14o1|1=0=1),
‘plarsi1=n-1), P@Itpali=n—1) -, Q@i+t 1=n-1)) + - +
+ (=1 fparss, | 1mn-1)y P@rrigstglimn=i) -,
CT+154 15 | 1=0=0))F + o + (=1L fplagis, | 1=n-1),
lariteli=n—1), =, P@rr1e1=0=1), P@r+1,l1=n9)) + -+ +

+ (=D Aplarril1=n=1), -, @l@r+ti+1,[1=n=)}11
Hence we get by (14), the uniform integrability and the continuity of f

711 s (n—I~1, -, n—{~1) )
l [E [ Z L E {f(¢(0J+11 |k=ﬂ—l)y Yy Sﬂ(aJ+15|k=n—Z))—
=R Jw=w ., 0
— flplagrilk=n—1), Gl@y+11415]k=n--1), ***,
AT 1416 k=n—-1)) + -+ + (—1) flol@rsis|b=n-1),
@r+1,41, | h=n—1), *+*, QI L1405-1 | k=n—0)) 1] |

<e+ s(s + 1)Na + B,
where N depends on ¢ but « and B are independent to N. Hence we get by (18)

n—1 s n—I—1,,n—I—1,u-1,~,n=-0)
(19)y lim, E L 2 L Z { flolar+1, | k=n—1),
agtli—ag-07=1  j=1 JUD=(0, -+, 0)
s oty W@ras | k=n—1)) — Slpl@ria | k=n-1),
AT +1,+12 | h=r—t)y o+, Ql@T+1141 | o=n—1)) +

o (LY (Qlariig h=n—t), Pl@Tt1s41 | k=n—1),
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y oy ATt 1  e=n—0)) 3 1]
= 0.

By (16), (19) and (19), weobtain (15). There fore we have the theorem.
Note. In this proof, we use the alternativity of f*~! only in %, :--, %,.;. Hence
we have the Stokes’ theorem for those f°~! that are alternative in xy, -+, x,_..
10. If s =1, then we have for any f

af = lim. Z SFlpla; ) — flela)

Sg" ay lajsr—a; |0

= f{p(1)) — fA(0).

Hence if s =1, we have

(21) { wrr={ r,

for any f.
Example. If X = I! and ¢ is the identity, then for a (Riemannian integrable)
function f, taking F(x) such that

dF(x)
dx

@),
we have
(0P 5) = F)— FoO.
On the other hand, since we obtain
(OF)x, 3)=F0) = F) = f@ly—) + oly — 1),

we have

1

{noFxe, 9= s,

0

where the right hand side is the Riemannian integral of f{x).

§4. Volume element with respect to a metric.
11. If X is an »n-dimensional CW-complex, then to fix its CW-complex structure,
we may consider S xJS" for any n-cochain f* of X. Especially, if the topology of X

is given by a metric #, then we may consider SXv”, where v" is the volume ele-
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ment of X with respect to the metric # given by (11).

Note. To define v, it is sufficient that # is defined only on some neighborhood
UAX)) of AX)in X x X. We call such # to be a local metric of X.

Lemma 3. If X is a pavacompact topological manifold with manifold structurve
{(U, hy)}, hy is the homeomorphism from U onto R" by which the manifold structure
of X is given, then X has a local metric v such that

(22) V" £ 00

S by, aam

Jor all U and 2>0. Here v" is the volume element with vespect to v, and hy,, s
given by

hU, /I(E) = k(l(z_lé)’ E S In.

Proof. We may assume {U 7} is a locally finite covering of X and take a par-
tition of unity {ey(x)} corresponding to {U}. Then setting

(23) rx, J’)ZZU] ev(®)ey()] | ho(%) — hu()], %, y €U,

7 is the local metric which satisfies (22). Here ||¢|| is the (euclidean) norm of
&e R
Note. Similarly, setting

(24) Vn(xﬂy X1y, 0y xn)
= ZU} ep{xoley(xy) -+ eg(x,)Pi(hy(x1) — hyl(xo)) -+ Plhy(x,) — hylxo)),
Pz(f) = Ei’ E = (Els ) én)y

we obtain an alternative (non-trivial) volume element on X, a paracompact manifold.
12. Lemma 4. If X ={U, hy} is a paracompact orviented manifold, then there
exstis a measure m on X such that

(25) hy*(m) and the Lebesgue measure of R* are biabsolutely continuous
each other for any U.

Proof. We denote the Lebesgue measure of R* by .. Then we define a measure
my on X by

my(M) = plho(U N M),

and to define m by
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(M) = 33 fueo aims,

where {ey(x)} is the partition of unity corresponding to {U3}. Then m satisfies (25).
Lemma 5. [f X = {(U, hy)} is an n-dimensional oriented paracompact mani fold
with a comnection t (cf. [4]), then X has a measure m such that

(1) m is invariant under the operation of t,

(11) m satisfies (25),

if and only if the connected component of the identity of the structure group of the
tangent micrvobundle of X is reduced to the group of the germs of those homeomor -
phisms of R" which preserve the Lebesgue measure of R" as an H,(n)-bundle.
Proof. If there exists a measure m on X which satisfy (i) and (ii), then setting
My, o = hU; _r*(m)r
we have
SU(xy y)*n/lU) y = My, 2
Where hU: x(y) = hU(y) - hU(x) and SU(x; y) = hU! xt(xy .y)hUr y_l-

Then denoting the Lebesgue measure of R” by x4, we get by the theorem of
Radon-Nykodim ([8]),

(26) di(sol®, 3)sulx, dumy, , = dymy, .
v (26), we obtain by (ii),

d#mUy £
SU(xy y)*d!‘mU:y

(26) du(su(®, ¥) =
By (26), we have

(27) d#(sU(y’ Z)SU(x? z)—lsU(x, y)):

This shows the connected component of the identity of the structure group of the
tangent microbundle of X is reduced to the group of the germs of the Lebesgue
measure preserving homeomorphisms of R”.

On the other hand, since the sheaf of germs of (Lebesgﬁe) measurable positive
Alexander-Spanier cochains with the operation of #x, ) is fine, if (27) is hold for
sy(x, ), then we may set

(28) dsu(¥, ¥)) = fu, {sulx, ¥)"fu, )%
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Since there are measurable transformation ¢y, . of R” such that

dSDU;z :fU; s

we construct m as follows : Take a measure m; on X which satisfies (ii). Then
setting

My, vy z = Qul®, Y, g, 4

we have gy(x, y) = ry(x)"ry(y). Then to define a measure my on U by
my = hy, 2Py, " Fu(®)Ms, y,

my is invariant under the operation of {. Moreover, to set
my = kyyiy,

{kyy} is the orientation class of X (regarding its (Cech) cohomology class to be an
element of HY{X, Z,). Hence we may consider my=my, because X is orientable.
Note. In the first part of this proof, we need not the orientability of X.

13. Theorem 5. Let X be an n-dimensional topological manifold with connection t.
Then if n#4, 5, the connected component of the identity of the stvucture group of
the tangent microbundle of X is reduced to the group of the gersm of the Lebesgue

measure preserving homeomorphisms of R" if X has a local metric v such that

(i) 1y, 2z)=r(t(xo, x1)y, Uxo, ¥1)2),

(ii) S'PU, wam v'stoo for some non-degenerated ¢y for any U and 2 > 0.
Here v* means the volume element of X with respect to v and ¢y, , is given by
oy, (s, <5 L) = oul(Aty, -+, AL,)).
Proof. By (ii), v" defines a measure on X which satisfies (25) because X allows
the structure of CW-complex if dim. X 44, 5. Since this measure is invariant
under the operation of ¢ by (i), we have the theorem by lemma 4.

Note. Since a connection #(x,, x,) is written as

(t(xo, x0)] WA(U )
= ry(xo, X1 o ho(y) + hy(xg) — hy(x.),

rulxy, x1) is a local homeomorphism of X which fix es x,

locally (cf. 4), we obtain the invariant local metric of X if there is a local metric
oY, , of R* such that
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pUsr t(éy 7/) - pUsy t(gaU(Sr t)(E + C)r @U(sy t)(77 + E))’
ouls, 1) = hyry(xe, 20)hy™, &= hy(s) — hylt),

for any U and s, £

§ 5. Singular integrai operators on CW-complexes.
14. We assume that X is an #z-dimensional CW-complex and we fix the CW-
complex structure of X.

We denote by % and % vector bundles over X with fibres E and F. Then
since a CW-complex is paracompact ([107]), we may assume g and _< both
defined by a locally finite open covering {U} of X. The transition functions of
¢ and % by this covering are denotedby {gyy} and {kyy}. For the convenience,
we assume that the transition functions of % and & both operate from the right.

We denote the space of (continuous) linear homomorphisms from E into F by
L(E, F) and take a collection of continuous maps {ky}, kullx, ), x, -, %,):

(Ux U—4U) x Wd,.(U))— L(E, F)such that

(29) gUV(x)kV((xy y), X1y oy xn):kU«x: .y), X1, vy xn)hUV(y)-
Difinition. We call {ky} and {ky'} are equivalent if for some V(d,(U)),

kyl(U x U — 4U)) x V4,-(U))
=ky' (U x U— AU)) x V(d,.{(U)), for all U,

and denote this equivalence class by {ky} or simply, {ky}.
By (29), if { fu{x)} is a cross-section of &, then

{fu(®ky((x, 3), %1, -, x,)} satisfies
(29)I fU(x)kU((x) y), Xy, xn)
:fV(x)kV((xr y): X1, xn)hVU(y)'

Definition. If o(I"} is contained in U, then we define the integral of fuky on
oI") by

(30) fU(x)kU((xy y)y Xy oy xn)

bocon

= lim. 2 ulelanky((plan), ¥), elartn), -, ¢lari).
legiy,—agl—0"F

Since X is a CW-complex, we may set

X=20dI"), o{INNoI"Ce01"Ne,O") if i+ j.
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Then we define

(31) SXeU<x)fU(x)kU«x’ y)» Xy v xn)
= i o ol So@kolE 9), 5 s ),

car. ey(x) c U.

If {V} is a locally finite refinement of {U/} and {ey(x)} and {ey{x)} are the
partition of unities subordinated to {U} and {V'3}, then we have

(32) Sxeuwu Feol(x, ) w1y -, %)

:ES eV kv((x y) X1y oy xn):
v Y X

Jvlx) = fux)|V, VU,

((xr y)’ Xy, ooy xn)
‘“kU((x y); xly‘ ) xn)'(VX V'_A( )) X W( n—( ))
By (32), setting f(x) = { fy(x)} and
Ei(x, ¥), %1, -, x)={kullx, »), %, -+, %,), we define the integral of fk on X by
(33) [, Fekx, ) =, o x)
ZS kU((x y) X1, vy xn),
]

where {ey(x)} is a partition of unity subordineted to {U}.
By definition, we have
Theorem 6. If SX SFk(x, »), xy,+-, %,) exists, then it isa cross-section of .
We denote the spaces of cross-sections of & and & by I'(&) and ' (&%),
then by theorem 6, we can define the map I(k), I(k): I' (&)~ (< ) by

(34) 180 = sz, ), x, - x)

By definiton, if I(k)(f) and I{k)Xg) both exist, then I{(k} (af + Pg) exists for any
scalar a, B and we have

(35) L(R)af 4 Bg) = al(k) f) + BI(kNg).

Note. Similarly, we define I (k) : I(& )—~I'(F ) b

(34) LR F) = {AS@H(x, 3) 31, - 3
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where A, means the alternation in x4, -+, %,.
15. On X, we fix a (real or complex valued) n-cochain ¢(x;;, -, %,) and set

(36) kU((x, y)’ Xy oy xn):kU(xy y)q(xly "ty xn)-
Here {ky(x, »)} satisfies
(29)" Suv(Xky(x, )= ky(x, Nhyv(y).

(29)" shows
Lemma 6. Setting k= {ky(x, ¥)} and define p,: X x XX, i=1, 2 by

.pl((x; y)) = X, pZ((x) y)) - y’

k is a bundle map from p*( 8 WX XX — AX)) into p*(F (X x X — HX)).
On the other hand, to define [(k),: I'(&)—~I( ) by

(34)" 18,() = _F@ktz, St -, ),

we have

Lemma 6'. I(k), is defined for any bunydle map
ki pf(E MMX X X — HX) = pM(F )X x X — HX)).

By definition, we obtain

Theorem 7. If X is compact, q is absolutely and uniformly integrable on X
and k is a bundle map from p,¥( &) into p.*( 7 ) (defined on X x X), then I(k), is
defined for any continuous section f of & and it is a compact operator rvegarding
I'(% ) and I'(7) to be the Banach spaces by the uniform convergence topology.

By theorem 7, to treat I{k), it should be useful to treat % mod. Hom(p (&),
b*( ). Here Hom(p,*( %), p.*( ) is the space of bundle maps from p*( &)
into p,*(# ) defined on X x X and it is considered to be a subspace of the bundle
maps from p 8 )[(X x X — 4(X)) into " 7 )|(X x X — 4(X)).

Lemma 7. There is a (cannonical) isomor phism
tar ¢ P NUNX) — p( F) UAX), where UMX)) is a suitable neighborhood of
AX)in X x X.

Since we know

k mod. Hom(p;( &), pX(F )= ek mod. Hom (p;( &), b5 ),
where e is a continuous function on X X X such that

0=elx, <1, elx, y)=0, (x, )& U4X)),
ex, 9) =1, (x, y)e VX)), VX)) c U4X),
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and for ek, we can multiply ry for any
k mod. -Hom(p:*( &), pX(# ). We denote it by (& mod. Hom(p,*( &), ps*(F rar.
Then we have

Lemma 8. We can take as the representation of
(k mod. Hom(p*( &), pe(F )yras a bundle map k' : po* (& WX XX — A X)—ps(5)
(X x X — AX)) and the class of k' mod. Hom(p,*( 5 ), NS )is unique. Here Hom
(P55 ), PN F ) means the spuce of bundle maps from p* & ) into p*( % ) om
X x X.

Definition. We set

(37) olk) = k' mod. Hom(ps( 5 ), ps*(.7),

and call o(k) the symbol of k. Here k' is determined for k by lemma 8.
Definition. For Ik),, we set

(38) o{l(k),) = o(k)

and call the symbol of I(k), (cf. [6], [11]).

16. We take v as ¢ in (36), where v is the volume element of X with respect
to a (local) metric 7 of X.

By the definitions of v and integral, we obtain

Theorem 7. If X is compact and v is absolutely and uniformly integrable on X
and k(x, y) satisfies for some M > 0 and (x, y) € UA(X))

(39) [ k(x, 9)] | < Mr(x, y)",

then I(k), is defined on I'(&” ). Here ||&|| means the norm of x in L(E, F).
Similarly, we have
Theorem 7'. If X is a compact (topological) manifold and allow the structure of
CW-complex and V is given by (24), then I(k)y is defined on I'( &5 ) if k(x, y) satisfies

(39) VEx, || <M max. (|hy(x) — hy(¥))1),
(x,»nelxU :

Jor some M > 0 and (x, y) e U4 X)).

Note. Theorem 7' is true although we use 4, (V) instead of V.

If X is a (topological) manifold, then U(4(X)) allow the structure (of the tatal
space) of (the tangent) microbundle =, and denoting the projection of = by p, we
get

(40) PHE ) = DM &) UAX)), p(57) = p*(F ) UX)).

Moreover, Ud(X)) — 4X) is regarded to be the associated Thom complex of =
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Hence we obtain
Theorem 8. If X is a manifold, then o(k) is the bundle map from p* (&) into
¥ 97) on the associated Thom complex of the tangent microbundle of X (cf. [5]).
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