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                             gl Introduction

   As is seen in many references or textbooks on analysis, the part concerning

functions of several independent variables has rather much rigour compared with

that concerning functions of a single independent variable. In the present note

the theorem on Jacobians and the theorem on the.transformation of integration

variables, both of which are fundamental in the analysis of several independent

variables, are proved by a new method. Throughout this note the mean value

theorem of integral form") plays a principal role. So far the usual method is to

utilize the uniform differentiability of the transformation and, in the present note,

however, the fixed point theorem on a convex compact set is applied via the

mean value theorem of integral form. Anyhow the idea of uniformity is neces-

sarily indispensable to this theme, but our method seems to be preferable to the

usual one for its easier argument and less ambiguity. Especiaily proofs of Theorem

3.3and Lemma (F) are very simple. '
   In writing this note we receivecl effective suggestions from some references.

([2],' [5])

   In this note there may be no original essentials but something instructive and

pedagogical.

      ･ g2 Notations and Preliminaries
   Throughout the following the continuous differentiability of the transformation

will be assumed except in Lemma (F).

   In this section we introduce some notations.

R":the n-dimensional euclidean space

x or y:n-dimensional veptor

'ts' ) We owe this to prof. M. Nagumo. As to the papers published it is seen in [1] ancl [8].
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                             nl]xl :euclidean norm of xi. e. (X xi2)T

                             i-=1 .
f:the transformation (or vector valued function) defined on some domain in R"

into Rn.

IA] : euclidean norm of matrix A as a lineare operator or it is equal to

  n         1( = aij2)7
 i, j' =1

B, D, or Q:the domain of independent variables

R, S, or T:the range of dependent variables

aQ or 61?:the boundary of Q or R

BA:the image of B byA .
pt'ts (or pt*) : n-dimensional Jordan outer (or inner) measure. For the measurable set

   S its measure is denoted by st(S).

Rerrtark. The transform of x by A is denoted by xA and must not confused with

    Here we shall introduce the mean value theorem of integral form without

proof.

             f(x)-f(a) == (x-a) S:1(a+e(x-a))dO (1),

                              6L                                 )and the integration represents the matrix ofwhere 1 is the Jacobian matrix (
                              6xj

componentwise integratlon.
    Assuming a=f(a) == O, we get f(x) :=: xS:1(ex) de, the right side of which is

denoted briefly by xA(x). .
    The following inequalities are evident, then proofs are omitted.

                              IxA] ;S; 1x] 1Al,

                         l!:A(0) de1 :SlS:1A(0)[dO.

                          g3 Theorem on Jacobians

    In this section the proof on the ontoness of the transformation(Theorem 3.2.)

will be given and next the proof on the continuity of the inverse transformation

(Theorem 3. 3) will be given. Throughout the following let f be defined on some

bounded open domain D into R'i.

    Let us begin with the following theorem on the local schlichtness.

    Theorem 3. 1. Let aED. If the matrix J(a) is not singular i. e. det 1(a) does

not vanish, then there exists a neighborhood U of a such that f is schlicht in U.

    Proof. Without loss of generality, we assume that Ka) is positive. Since the

determinant is cotinuous as function of its n2 components, there exists a positive
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number -"e such that if irpi,･-60iL,,(a)<eo for all (i, d), then

                               det(qi,･)>O (3. 1)

                     6L･
From the continuity of                         we can find a positive number (7 such that
                     6xj

                          igil?i. (x)- 66f.}j (a) <Eo (3. 2)

is satisfied for lx-al <6.

U: lx-al <b is what we desire.

Indeed, if it took place that f(b) == f(c) for some pair b, c, (E U and b :;･-c), then

by virtue of the mean value theorem

                    det(jl 66f.i. (b + o(c - b))do) = o,

               6L
                  satisfies (3. 2) for all e.where integrand

Therefore S: 66x/". (b + e(c - b)) dO also satisfies (3. 2), which contradicts (3. 1), setting

vi,･ -= Si 66.L,1 (b + o(, - b))d,.

   Theorem 3.2. U is homeomorphic to f(U), where U is the same above deter-

mined.

   Before giving the proof we set the following

   Lernma CA). Let a family of matrix A(x) be given, where every components

of A(x) is continuous with respect to x in some closed ball B(:lx] ;s!6o). And we

assume that det A(x) does not vanish.

   Then there exists a solid sphere K with origin as its center such that

                      BA(x)DK for everyxEB '
   Proof of Lemma (A).
                                                   '   Consider the image of the boundary 6B By A(x).

   Let yis be components of range space and ctij･(x) be component of inverse

matrix of A(x).

Then

                    it ･ien nn               bo? r- =xi2 =Z(llSil]ai,･(x)yj)2 -= 2 ( = aiJ･(x) aik(x)yjyk)

                    i-1 i--I V--1 i--l j',k-=1

                     ]t Jl. fl                  = l2III] (=aiJ･(x)cuik(x))yjyk =:] X Pjk(x)yjyk (3. 3).

                    i,k==l i=1 j;k-=1
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   The last side of the above equality is evidently a positive definite quadratic

form, therefore

                        n ll                       :) Bj,k(x)YjNk5M(x)]ll:)yj"",

                      j',k--･1 d--1
where M(x) is the maximum value of the quadratic form on the unit sphere.

   Since M(x) is continuons and positive, we get

                fii2 ;:gttt'i yj2 setting M=xmgxBM(x)･ .

   From the above jnequality we see that the image of the boundary 6B by

                                        (7e
A (x) lies outside of the sphere K with radius
                                       VM'
   Since it is evident that the interior part of B is transformed into the interior

part of the el!ipsoid (3. 3), Lemma (A) is- completely proved.

   Proof of Theorem 3. 2 : We can assume a =: f(a) == e without loss of generality.

To be easily seen, we shall have only to prove that for an arbitrary open set O

which contains O and is contained in U, f(O) is inner point of f(O).

  ･ Let B be a closed ball such that OEBc O. Then setting A(x) = i:1(0x)dO,

we get a solid sphere K by the preceding lemma such that

                       BA(x) D K for every x ff B.

   Let y(EK) be arbitrary but fixed. For any x(EB) there exists uniquely z(EB)

such that

                            '

                              zA(x) == y.

Then from the fixed point theorem for the continuous transformation z=yA-i(x),

there exists point x such that x = yA"i(x) i. e. xA(x) == y. Since y is arbitrary in

K, we see that f(O) contains K.

    Later on we shall necessitate the quantitative estimate from below on the

measure of the range (Lemma (F)), where another application of the fixed point

theorem will be introduced.

    From the preceding two theorems the local existence of the inverse transfor-

mation f"' on f(U) is established.

    We can see further the following

    Theorem 3.3. The inverse transformation f'i is continuously differentiable.

    Before giving the proof we set the following

    Lemma (B). Let g(y) be defined on a convex domain T.

    If there exists a matrix A(yi, y2) which is continuous in T × T and

                      g(y2) - g(yi) = (y2 - yi)A(yi, y2),
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then g(y) is continuously differentiable.

Proof of Lemrna (B). Let the (i, 1') component of A(yi, y2) be denoted by aij(yi, y2).

Setting y2 == (Yi+h, Y2, ･･･, Y.), yi=(Yb Y2, ･･･, N.), we get

           66gyi =Aimo-i;{gi(y2)-gi(yi)} = Etlltznoaii(yi, y2) == an(yi, yi),

where an(yi, yi) is cotinuous in T.

   Preof of Theorem 3. 3. To assert that f-' is continuously differentiable, it is

suflicient that we show in a small open (convex) sphere S.

Setting g == f-', we. get

             g(y2) - g(yi) == (y2 - yi) [S:J(x, + o(x, - x,))dei-i

           = (Y2 - Yi) [!i Kg(yi) + 0(g(y2) - g(yi)))de]-i.

In the right side of the above equality, the matrix [S:1(g(yi) + 0(g(y2) - g(yi))de]lli

is evidently continuous in SxS. Thus we see that g=f-i satisfies the assumption

                            g4 A little geometry

    In this section we shall prepare something concerning the elementary geometry

in Rn.

    Lemma (C). A set R of diameter lin a hyperplane is contained in some n-1

dimensional closed cube, the length of whose side is equal to 21.

    Proef of Lemma (C).

    In the following proof geometry only in the hyperplane is considerecl.

    From the definition of diameter there exist two points A, B, in R such that

                             AB" >l-e

Denoting the middle point between A and B by M, we shali consider the sphere

Si(M) with radius l and with center ML If PER, then

                      pM2 .. PA2+PB2 - A-M-z < l2
                                 2

Therefore R c St(M). What we desire is the smallest cube containing St(M).

    We can mal<e Lemma (C) more precise, however it is suflicient in the appli-

catlons.

 . Lemma (D). LetA bea singular matrix, Qa cube and l, the length of its

# By AB we denote the euclidean metric between A and B.
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                                                       '
side. Then QA is contained in some n-1 dimensional set of diameter lel, where

the positive constant le depends only on A. '
   Proof. It is well known that QA is at most n-1 dimensional set. Setting

y, == x, A (s == 1, 2), we get easily

                        1yi - y21 ;${ nao1xi - x2i,

where ae=max lai,･1. nae may be viewed as k in Lemma (D). Here we shall add

further notations and a lemrna. Let R be an n-dimensional (non-degenerate)

paralleiepiped.

   R, : the smallest parallelepiped which contains the E-neighborhood of R.

   R-, : the largest parallelepiped such that (R.,), = R, if it exists.

   A-B : the set of the elements belonging to A, but not belonging to B.

   Lernmaa (E). Let R be a n-dimensional non-degenerate parallelepiped in R".

Then the following inequalities hold

     (1) pt(RE - I?) ;:l{I Eptn- i(0R) + KS'i

     (2) Lt(R - R-E) ;iSI EEtn- i(6R),

where pt.-i(0R) is n-1 dimensional Jordan measure of 6R and K is a positive

constant which depends only on the size and the form of R, and besides indep-

endent of e.

   Proof :For simplicity we shall prove in the case n= 2. Divide R,-R into

two parts;one is the part consisting of the parallerograms on each slde of 6R

(we denote it by S), the other is the part consisting of the parallerograms situated

at each corner of R, (we denote them by Qi, Q2, Q3, and Q4). It is evident that

                          pt(S) = E ptn.i(6R)

   Let the Iength of two sides of Qi be denoted by qi and q2. Then qi = kie and

q2=k2y, where fei(i == 1, 2) depend only on the size and the form of R. Setting

K== kile2, we get

                             tt((?i) ;Sl! KE2

   It is easily seen that in the n-dimensiona! case we get the inequality (1).

   As to the inequality (2), we omitt the proof, because it is evident.

   Remark. Later on we shal! use the inequality (2) in the following form

                        pt(R-,) 2 pt(R) nd ept.".i(6R),

where it should be noted that if R., does not exist, then the right side is negative.

                           g 5 Sard's Theorem

   Theorem (A. Sard) Let f be defined in a bounded domain Di into R". We shall
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consider it on a compact part, say D- (IZJcDi). Let C be the set of critical points

of f in D. Then si(f(C)) := O.

   Proof:By the compactness of D, we can assume that C is contained in some

closed cube Q, for C can be covered with a finite number of closed cubes which

are gOontparionveed tihnisDtii eorem, we divide up Q inlo a iarge number of smaii cubes

Qj by a network of hyperplanes We consider a small Qj which intersects with

C and estimate the outer measure of f(Qj).

   For an arbitrary positive e we can determine a network of hyperplanes such

                    ISIf(a,･ + e(x - aj))dO - 1(aj)1 <e

is satisfied, where xEQ,･ and a, GQj n C. This fact means the uniform conti-

nuity of the derivatives of f.

   Let q and m be respectively the length of a side of Q and the division number

of the network. .
   For a fixed 7', translating aj to O and f(aj) to O, we consider the following

decomposition of f(x)
                                                            '
                   f(x) = xA(x) = xA(O) + x(A(x) - A(O)),

where A(x) = !:1(0x)de and 1A(x) - A(O)1 <E.

By Lemma (D) xA(O) is an element of n-1 dimensional set QjA(O) with diameter

le IL and 1x(A(x) - A(o))I :$l gL9

  m,                        m
   Then, using Lemma (C), we get

      ' ;t*(f(Qj)) ;g [2(le£.l + 21iS)]"-i 211El = iili.'K, '

where K = 2"(le + 2E)"-i"((?).

Here it should be noted that since A(x) is uniformly bounded in Q, kcan be

selected uniformly for all Qj, and further K can be replaced by another positive

Ki (K<Ki) which is independent of small e.

Therefore, pt"(f(Qj))::gl ,£.Ki

and

                 rt"((f(C)) ;:Sl : pt'ts(flQj)) ;S m" nt. Ki -= eKi.

                          J

Since s is arbitrary, we conclude the proof.
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           g6 Theorem eR Tramsformation of Integration Variables

   Our object in this section is Theorem 6. 3. We shall begin from the following

important theorem

   Theorem 6. 1 Let f be defined in a bounded domain D and Q be a closed cube

in D. Iffis assumed to be one-to-one and det f(x) does not vanish in Q, then

        '     . , it(f(Q))=!,Idet l(x)ldx (6. i),

where the right side is meant by n-dimensional Riemann integral.

Proof : (I)Ft"(f(Q))SS,ldet .1(x)1 dx

   The method of proof of this inequality is analogous to that of Sard's Theorem.

Dividing up Q into a large number of smal! cubes ei by a networl< of lines and

using the decomposition of f(x) into two parts as the same that appears in the

proof of Sard's Theorem, we can assert that f(x) is belonging to the ELe- neighb-

                                                            m
orhood of Qj .1(xj)(xj is arbitrary in Qj).

   From the well known lemma

                     tt((?jf(xj)) = 1det 1(xj)iLt((?j)

and the inequality (1) of the Lemma (E), we get

           ,{e"(f(Qj)) ;:$l; 1 det J(xj)l pt(Qj) + tim'y.-i(6(QjJ(xj))) -i- K< ;')".

  '

                            '

    tt;'(f((?)) ;:{l 21F. ) it"(f(Qj)) g :Ii.I] ] det 1(xj)I pt((?j) +Sie ¥. pt..i (6(Qjl(xj))) + Kpt(Q)En.

    In the second sum of the right side, each pt..-i (6(Qj"xj))) is not greater than

L(-El-)"-i, where L is a posivive constant that is determined from the uniform

  m
bOUnTdfigrneefSoSreOfthJe(X)suOk & the second term and the third term is not greater than

EFt(Q)(L + K) which can be arbitrarily small. Thus the inequaiity (I) is deduced.

   (II) /t*(f(Q)) ;Il; S,l detJ(x)i dx .

   The method of proof of this inequality is based on the fixed point theorem

as was noted in the ss Introduction.

   Lemma (F) Let f be a continuous transformation in a closed cube Q into R't

with the form
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                           f(x) - xA + B(x),

where A is a non-degenerate matrix and IB(x)1 <s everywhere in Q. Then

                             f(Q)D(QA)-e (6･ 2),
if the right side exists.

   Preof of Lemma (F):

   Let y be chosen arbitrarily from (QA)-,, but fixed.

For any x(EQ) there exists uniquely z(EQ) such that

                           y == zA + B(x).

This is possible since A is non-degenerate. Then from the fixed point theorem

for z := (y - B(x))A-i there exists a point x such that

  ' x=(y-B(x))A-'i i. e. y:= xA+B(x).

   Remark:If we assurne that f is continuously differentiable, then we may

consider both sides of (6. 2) as open sets for small Q. This is evident by Theorem

3.2 and so both sides of the following (6. 3) may be viewed as open sets.

   In the proof of inequality (II), we divide up Q by a network and consider

x(A(x) - J(xj)) as B(x) in the Lemma (F) in each Qj.

   For an arbitrary positive number e, we can determine a network over Q such

that in each Qj

                 lA(x) - .1(xj)1 <e for xE Qj and xj E Qj.

After xj(i=1, 2, ･･･, m") was chosen, we apply the preceding Lemma (F) to f(x) =

>of<xj) + x(A(x) - Kxj)) in each Qj

Then, we get

                           f(Qj)D(Qjl(xj))-iL, (6. 3)
                                         tJl

if the right side exists. ･ -
   Therefore, using the inequality (2) in the lemma (E), we get

       pt*(f((?j)) 211. ;t((Qj 1(xj))-g,,;-; -)-}- pt((Qjf(xj))) -:pt..-i(6(Qjl<xj)))

                        ;-lt ldet l(xj)Iept((?j) - sLpt((?)e-il.iJi,- (6･ 4)

   If the set (Qjl(x,･))ntIL, dose not exist, the right side is negative (see the remark
                    tJt
at the end of g4) and so the above inequality is trivial.

   Using the fact that for a finite of Sets Ej which is mutually disjoint
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lt.(uEj)-X->. .lllil] Ft.(Ej), we get

            tt*(f(Q)) 2iil X ft.･(f(Qj))if tuum. =1 det 1(xj)I est(Qj) - EL"(Q), ･

                     1' j'
from which the inequality (II) follows.

   From both two inequalities (l) and (II), we get

                                          :-- !,1 det 1(x)idx,            S, 1 det 1(x) i dx 2 st"(f((?)) ;}ii fe.(f((?)) >

which deduces the Jordan measurability of f(Q) and the identity (6. 1).

   Comments. There are several methods of proof of Theorern 6. 1. But as far is

known from several references, every proof via the inequality (II), involves more

or les ambiguity This is the reason why we necessitate (6. 4) the estimate of rt*(f(Qj))

from below.

   Next we shall attack the following generalized theorem on the basis of the

preceding Theorem 6. 1.

   Theorem 6.2 Let f be defined in a bounded domain Di. We consider it in a

compact part D (D cDi) and assume only that it is one-to-one in D. If D has

Jordan area pt(D), then also f(D) has Jordan area and

                       '                        lt(f(D)) == S. 1 det 1(x) 1 dx

   Proof:To prove this theorem, we start from the special case (i) and next

attack the general case (ii) on the basis of (i).

   (i) In the case that det J(x) does not vanish in D. We set a network over D

and denote the small cubes inside D by Qi, Q2, ･･･, Qi. By the preceding Theorem

6. 1, we get

                       tt(f(Q,･)) = S 1det 1(x)l dx

                               QJ' -
                                    '
   Further from the finite additiveness of Jordan measure and Riemann integral,

we get

                      Lt(]:li.[] f((?j)) =,2i 1 det 1(x)l dx.

Then,

# Strictly

  consider

  (F) may

speaking, f(QJ') is not mutually disjoint, but by

Qj as open such that f(QJ') is mutually clisjoint.

be applied.

excluding OQj from Qj we inay
Then the remark relating to Lemma
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                      pts:(f(D)) 211 pt(f(= (?j)) =:: Ft(]!i ] f(Qj))

                                 j' )'
                          l}l.S jdet 1(x)I dx,

                           uQj'

         S [det 1(x)ldx - S.1det J(x)I dx can be arbitrarily smalLwhere
         uQj-

Therefore, tt*(f(D))2.ll"S.1det 1(x)I dx･

   Noting that D is compact in Di, we may consider that for sufficiently large

division number of network all Qj which intersects D are contained in Di. Then

through the calculation analogous to the preceding Theorem 6. 1 (I),we get

       ' rt"(f(D)) ;S; S. Idet l(x)I dx,

which deduces Jordan measurability of (f(D)) and

                      tt(f(D)) == !.Idet 1(x)1 dx.

                             '   (ii) In the general case

   Let C be the set of critical points of f in D. For an arbitrary positive num-

ber s there exists an open neighborhood C, of C such that [det 1(x)i<E for xGC,.

We may consider C, such as sum of a finite number of spheres and so C, has

Jordan area. Therefore D-C, has Jordan area and we get from the preceding

                                                       '     Ft(f(D-Ce))=S...,Idet 1(X)i dX == S. Idet 1(x)I dx - S., [det "x)] dx

                                l}i !.idet 1(x)i dx - Kb,

where K is a positive constant that is independent of E. On the other hand, since

tt,,.,(f(D)) ;llL tt(f(D - C,)), we see

         ' It*(f(D)) }I S.Idet l<x)1 dx.

Before completion of our proof, we shail mention two propositions. One is the

following.

For an arbitrary positive number E there exists an open neighborhood O of C

such that pt(f(O))<s. .
   By Sard's Theorem we can find a finite number of spheres Ri such that

                        f(C)cURi and pt(URi)<e.

   If we put O = f"'(URi), then O is the desired one. Another proposition is that

for an arbitrary open neighborhood O of C, there exists Jordan measurable set Oi
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such that CcOicO. For instance we may set Oi as sum of a finite number of

spheres. This is possible since C is compact. Using the above given O and Oi,

we get

                   tt:k(f(D)) $ pt*(f(D - O)) + tt(f(O))

                          ;Sl rt(f(D - O,)) + pt(f(O))

                          il; SD-., l det 1(x)1 dx ÷ pt(f(o))

                          =<=-- S.Idet 1(x)1 dx + ,,

which shows

                       Ft;'(f(D)) ;:S !.1det Ji(x)1 dx-

   Thus the proof of Theorem 6. 2 is completed.

   Theorem 6. 3 Let f be defined in a bounded domain Di, D be its compact part

and g(y) be a real valued continuotts function defined in f(D). If we assume that

D has Jordan area and f is one-to-one in D, then

                   !f(D)g(y) dy = !.g(f(x))1det 1(x)1 d.

   Proof. By the preceding theorem, f(D) has Jordan area and
   p(f(D))=S.1det J(x)]dx. The right side of this equality can be approximated

 bySuQ"det 1(x)1 dx, where Qj is small cubes inside D. Then, .we see that

pt(f(D)) can be approximated by pt(Ujf(Oj)). Therefore, we see that for an arbitrary

positive number E there exists mutually disjoint cubes Qjs inside D such that

                      1S g(y) dy-! g(y) dyl<s (i)
                       f(D) Uf(Qj)

together with

I S g(f(x)) l det

 D

1(x)] dx- S

        uQj'

g(f(x)) l det "x)1dx1<E (2)

If we set M}･ = sup g(y) = sup g(f(x))

             yEf(Qj) xEQj

then we get

and mj = inf g(y) =
   y G f(Qj)

inf g(f(x)),

xEQj '

:I ]m,･pt (f(Q,･)) ;s{l

y

i u Qj g' (f(x)) 1 det
1(x)1 dx< 2 M, /.t(f(Q,))

j

(3)



            An Alternative Method in the Foundation of lnfinitesimal Analysis 121

and

                 =nZflt(f((?j)) SI S,,(Q,) g(y) dy ;s{]:i.il) MjLt(f((?j)) (4)

                                                                   '
From the above four inequalities (1), (2), (3) and (4), we get

           j S ba(Y) dy - S. g(f(x))ldet 1(x)( dxi<2E +:(Mj - mj)rt(f((?j))

           f(D) j
Since =(Mj - mj) pt(f(QD) can be arbitrarily small, the eqttality in Theorem 6.3

      j
follows.
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