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§1 Introduction

As is seen in many references or textbooks on analysis, the part concerning
functions of several independent variables has rather much rigour compared with
that concerning functions of a single independent variable. In the present note
the theorem on Jacobians and the theorem on the .transformation of integration
variables, both of which are fundamental in the analysis of several independent
variables, are proved by a new method. Throughout this note the mean value
theorem of integral form*) plays a principal role. So far the usual method is to
utilize the uniform differentiability of the transformation and, in the present note,
however, the fixed point theorem on a convex compact set is applied via the
mean value theorem of integral form. Anyhow the idea of uniformity is neces-
sarily indispensable to this theme, but our method seems to be preferable to the
usual one for its easier argument and less ambiguity. Especially proofs of Theorem
3.3 and Lemma (F) are very simple.

In writing this note we received effective suggestions from some references.
(C21, [50)

In this note there may be no original essentials but something instructive and
pedagogical.

§ 2 Notations and Preliminaries
Throughout the following the continuous differentiability of the transformation
will be assumed except in Lemma (F).
In this section we introduce some notations.
R” : the n-dimensional euclidean space
x or y : n-dimensional vector

*) We owe this to prof. M. Nagumo. As to the papers published it is seen in [1] and [8].
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n 1
|x| : euclidean norm of x i. e. (O] x.9?
=i

f : the transformation (or vector valued function) defined on some domain in R”
into R
|A] : euclidean norm of matrix A as a lineare operator or it is equal to

(3 et

i, =1

B, D, or @ :the domain of independent variables

R, S, or T :the range of dependent variables

0Q or OR : the boundary of @ or R

BA : the image of B by A

2% (or p) : n-dimensional Jordan outer (or inner) measure. For the measurable set
S its measure is denoted by g(S).

Remark. The transform of x by A is denoted by x4 and must not confused with

A(x). )

Here we shall introduce the mean value theorem of integral form without

proof.

f(x) — f(a) = (x — a) S: Ja+ 6(x — a))do (1),

0f;

where [ is the Jacobian matrix ( yand the integration represents the matrix of

componentwise integration.

Assuming a = f(a) =0, we get f(X) =x S: J(6x) do, the right side of which is
denoted briefly by xA(x).

The following inequalities are evident, then proofs are omitted.

IxA] < |x] |A],

1§, 4 o1 <) 140100

§ 8 Theorem on Jacobians

In this section the proof on the ontoness of the transformation (Theorem 3.2.)
will be given and next the proof on the continuity of the inverse transformation
(Theorem 8.3) will be given. Throughout the following let £ be defined on some
bounded open domain D into R”

Let us begin with the following theorem on the local schlichtness.

Theorem 3.1. Let acD. If the matrix J(a) is not singular i e. det J(a) does
not vanish, then there exists a neighborhood U of a such that f is schlicht in U.

Proof. Without loss of generality, we assume that J(a) is positive. Since the
determinant is cotinuous as function of its #2 components, there exists a positive
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| :
number 3, such that if l‘/}ij— gi? (a)]< ¢ Tor all (i, j), then
J

det(y;) >0 (3.1)
From the continuity of gj:’ we can find a positive number d such that
j
|8/ Of;
() — 5 3.2

is satisfied for |x —a| <a.

U:|x —a| <d is what we desire.

Indeed, if it took place that f(b) = f(c) for some pair b, ¢, {€ U and b 5~¢), then
by virtue of the mean value theorem

af;
0 0%

det(S (b -+ e — b)d6) =

where integran (3. 2) for all 6.

Therefore S: %i(b -+ (¢ — b)) df also satisfies (3. 2), which contradicts (3. 1), setting
J

115 = §1-Gotb -+ ffc — b

Theorem 3.2. U is homeomorphic to f(U), where U is the same above deter-
mined.

Before giving the proof we set the following

Lemma (A). Let a family of matrix A(x) be given, where every components
of A(x) is continuous with respect to x in some closed bhall B(:|x] <d,). And we
assume that det A(x) does not vanish.

Then there exists a solid sphere K with origin as its center such that

BA(x) D K for every x € B

Proof of Lemma (A).

Consider the image of the boundary 68 By A(x).

Let y;s be components of range space and «;;(x) be component of inverse
matrix of A(x).
Then

# 3 n H i

O = D af =] (Elaij(x)yj)z = 23 2 ai(x) au(x)y;y)

[ =1 i=1 j= i=1 j, k=1
n n
- (Z ,J(X)(l,k y;yk Z ij yjyk (3 3)-
i k=1 i=1 Jik=1
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The last side of the above equality is evidently a positive definite quadratic
form, therefore

4

20 B Xy < M(X)éyj?‘,

Ji k=1
where M(x) is the maximum value of the quadratic form on the unit sphere.
Since M(x) is continuons and positive, we get
0p*

M

g}lj v setting M = max M(x).
=1 xe B
From the above inequality we see that the image of the boundary 8B by
Jo
M
Since it is evident that the interior part of B is transformed into the interior
part of the ellipsoid (3.3), Lemma (A) is- completely proved.

A (x) lies outside of the sphere K with radius

Proof of Theorem 3.2 : We can assume a = f(a) = 0 without loss of generality.
To be easily seen, we shall have only to prove that for an arbitrary open set O
which contains 0 and is contained in U, f(0) is inner point of £(O).

Let B be a closed ball such that 0 € B < O. Then setting A(x) = S; J(0x)do,
we get a solid sphere K by the preceding lemma such that

BA(x) D K for every x € B.

Let y(eK) be arbitrary but fixed. For any x (€ B) there exists uniquely z(€B)
such that

ZA(x) = y.

Then from the fixed point theorem for the continuous transformation z=yA Y(x),
there exists point x such that x = yA~Yx) i. e. xA(x)=1y. Since y is arbitrary in
K, we see that f (O) contains K.

Later on we shall necessitate the quantitative estimate from below on the
measure of the range (Lemma (F)), where another application of the fixed point
theorem will be introduced.

From the preceding two theorems the local existence of the inverse transfor-
mation ! on f(U) is established.

We can see further the following

Theorem 3.3. The inverse transformation f-! is continuously differentiable.

Before giving the proof we set the following

Lemma (B). Let g(y) be defined on a convex domain 7.

If there exists a matrix A(y,, y:) which is continuous in 7 x T and

g(ys) — gy1) = (y: — y)AL, ¥2)
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then g(y) is continuously differentiable.
Proof of Lemma (B). Let the (i, j) component of A(y;, ys) be denoted by a;{y, ¥2).
Settlng yZ:(y1+ h, Yoy vy yn)y Y :(yl) Yoy vy yn)» we ge‘:

3] .1 .
L — lim —{gyo)— gy} = lim aulys, ¥9) = aulys, )

091 psoh h—0
where a; (y;, y:) is cotinuous in 7.

Proof of Theorem 3.3. To assert that f-! is continuously differentiable, it is
sufficient that we show in a small open (convex) sphere S.
Setting g = f~!, we get
1
8lva) — gy = (v2 — ¥1) [{J (5 + 0 — xi)ao ]
1
= (va — v0) [{ ety + oletys) — elyao].

In the right side of the above equality, the matrix [S:](g(yl) + 0(glys) — g(y))do]1

is evidently continuous in SxS. Thus we see that g=f"! satisfies the assumption
of Lemma (B).

§4 A little geometry

In this section we shall prepare something concerning the elementary geometry
in R”

Lemma (C). A set R of diameter / in a hyperplane is contained in some n—1
dimensional closed cube, the length of whose side is equal to 2.

Proof of Lemma (C).

In the following proof geometry only in the hyperplane is considered.

From the definition of diameter there exist two points A, B, in R such that

AB* > —¢

Denoting the middle point between A and B by M, we shall consider the sphere
Sy (M) with radius [ and with center M. If P€R, then

P — ____PAZgITBE _AM: < I

Therefore R c S/(M). What we desire is the smallest cube containing S,(M).
We can make Lemma (C) more precise, however it is sufficient in the appli-
cations.

Lemma (D). Let A be a singular matrix, € a cube and /, the length of its

¢ By AB we denote the euclidean metric between A and B,
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side. Then QA is contained in some n—1 dimensional set of diameter kI, where
the positive constant 2 depends only on A. ‘

Proof. It is well known that @A is at most n—1 dimensional set. Setting
y,=x, A(s=1, 2), we get easily

ly1 — ¥a| <naglx; — xq,

where a, = max |a;;|. nay, may be viewed as & in Lemma (D). Here we shall add
further notations and a lemma. Let R be an n-dimensional (non-degenerate)
parallelepiped.

R, : the smallest parallelepiped which contains the ¢-neighborhood of R.

R_, : the largest parallelepiped such that (R..), = R, if it exists.

A—B : the set of the elements belonging to A, but not belonging to B.

Lemma (E). Let R be a n-dimensional non-degenerate parallelepiped in £”
Then the following inequalities hold

(1) #(Rs - R)é E/'ln—l(aR) + Ke"
(2) HUR — R_) < epr,- (OR),

where p,.,(0K) is n—1 dimensional Jordan measure of &R and K is a positive
constant which depends only on the size and the form of R, and besides indep-
endent of e

Proof : For simplicity we shall prove in the case # = 2. Divide R, — R into
two parts; one is the part consisting of the parallerograms on each side of R
(we denote it by S), the other is the part consisting of the parallerograms situated
at each corner of R, (we denote them by @i, @, @ and Q.. It is evident that

HS) = ¢ ta-1(OR)

Let the length of two sides of @, be denoted by ¢, and ¢.. Then ¢, = ke and
q: = ko3, where k(i =1, 2) depend only on the size and the form of K. Setting
K = bk, we get

#@y) < Ket

It is easily seen that in the #n-dimensional case we get the inequality (1).
As to the inequality (2), we omitt the proof, because it is evident.
Remark. Later on we shall use the inequality (2) in the following form

)U(R—e) Z #(R) - e#n-—l(aR)7

where it should be noted that if R_, does not exist, then the right side is negative.

§ 5 Sard’s Theorem
Theorem (A. Sard) Let f be defined in a bounded domain D, into R*. We shall
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consider it on a compact part, say D (Dc D). Let C be the set of critical points
of £ in D. Then g(f(C)) = 0.

Proof : By the compactness of D, we can assume that C is contained in some
closed cube @, for C can be covered with a finite number of closed cubes which
are contained in D,.

To prove this theorem, we divide up & into a large number of small cubes
@, by a network of hyperplanes We consider a small €; which intersects with
C and estimate the outer measure of £(@;).

For an arbitrary positive ¢ we can determine a network of hyperplanes such
that in each @;

| J@; + o0x — )t — Jea)| <o

is satisfied, where x € Q; and a; € @; N C. This fact means the uniform conti-
nuity of the derivatives of f.

Let ¢ and m be respectively the length of a side of @ and the division number
of the network.

For a fixed j, translating a; to 0 and f(a;) to 0, we consider the following
decomposition of f(x)

f(x) = xA(x) = xA(0) + x(A(x) — A(0)),

where A(x) = S: J(0x)do and | A(x) — A0)] < e.
By Lemma (D) xA(0) is an element of #—1 dimensional set @;A(0) with diameter

k% and | x(A(x) — A0)] < j’—;

Then, using Lemma (C), we get

[
m"

O N LSV T
PHEQN) < 2L 4 21571 2T K,

where K = 27k + 2¢)*1(Q).

Here it should be noted that since A(x) is uniformly bounded in €, % can be
selected uniformly for all @;, and further K can be replaced by another positive
K, (K < K;) which is independent of small .

Therefore, Q) < %Kl

and

PHEC) < D0 Q) S m'— Ky = oK.

Since ¢ is arbitrary, we conclude the proof.
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§ 6 Theorem on Transformation of Integration Variables
Our object in this section is Theorem 6.3. We shall begin from the following
important theorem
Theorem 6.1 Let f be defined in a bounded domain D and @ be a closed cube
in D. If f is assumed to be one-to-one and det J(x) does not vanish in @, then

ME@) = | Idet Jx)|dx (6. ),
where the right side is meant by n-dimensional Riemann integral.
Proof : (I) /z*(f(Q))gSQldet Jx)| dx

The method of proof of this inequality is analogous to that of Sard’s Theorem.
Dividing up & into a large number of small cubes @; by a network of lines and
using the decomposition of f(x) into two parts as the same that appears in the

proof of Sard’s Theorem, we can assert that f(x) is belonging to the qi— neighb-

orhood of @; J(x;)x; is arbitrary in @)).
From the well known lemma

tQ; ] (x;)) = [det J(x;)| (@)

and the inequality (1) of the Lemma (E), we get
2@ < | det J(x;)| (@) + #n (6@, ] (x;)) + K(g)"-

Then, we get

Q)< 3 #H(E@) < T 1det Jx) Q)+ Spnacy (0@ + K@)

In the second sum of the right side, each g, (6(Q;/(x;))) is not greater than
L(—%)"‘l, where L is a posivive constant that is determined from the uniform

boundedness of J(x) on &.
Therefore the sum of the second term and the third term is not greater than
Q) (L + K) which can be arbitrarily small. Thus the inequality (I} is deduced.

() 1uff(@)= { | det ()] dx

The method of proof of this inequality is based on the fixed point theorem
as was noted in the § Introduction.

Lemma (F) Let f be a continuous transformation in a closed cube @ into R”
with the form
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f(x) = xA + B(x),
where A is a non-degenerate matrix and |B(x)| < e everywhere in . Then
Q) D (RA)-. (6. 2),

if the right side exists.

Proof of Lemma (F):

Let y be chosen arbitrarily from (QA)_,, but fixed.
For any x(€@) there exists uniquely z(€®) such that

y = zA + B(x).

This is possible since A is non-degenerate. Then from the fixed point theorem
for z = (y — B(x))A~! there exists a point x such that

x=(y— Bx)A-ti e. y=xA4+ B{x).

Remark : If we assume that f is continuously differentiable, then we may
consider both sides of (6. 2) as open sets for small . This is evident by Theorem
3.2 and so both sides of the following (6. 3) may be viewed as open sets.

In the proof of inequality (II}, we divide up @ by a network and consider
x(A(x) — J(x;) as B(x) in the Lemma (F) in each @;.

For an arbitrary positive number ¢, we can determine a network over & such
that in each Q;

TA(x) — J(x;)] <e for x € Q; and x; € Q;.

After x;(j=1, 2, ---, m") was chosen, we apply the preceding Lemma (F) to f(x) =
xJ(x;) + x(A(x) — J(x;)) in each Q;
Then, we get

Q) 2 (QJ(x;)_ae (6.3)

if the right side exists.
Therefore, using the inequality (2) in the lemma (E), we get

(f(@)) = Q) J(x)))- 22 = (] (x;))) ""%/’ln—l(a(Qj](xf)))

= [det J(x)| «{Q;) — eLp@)e— 5 (6. 4)

If the set (@;J(x;))_2: dose not exist, the right side is negative (see the remark

at the end of §4) and so the ahove inequality is trivial.
Using the fact that for a finite of sets E; which is mutually disjoint
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1l UE)=2  mE)), we get

Q) = 21 sl £(Q)0F = 21 det J(x))| Q) — <LedQ), -

from which the inequality (II) follows.
From both two inequalities (I} and (II), we get

[ ldet J@I dx= (@) = (@) = | det J(x)jdx,

which deduces the Jordan measurability of f(Q) and the identity (6. 1).

Commernits. There are several methods of proof of Theorem 6.1. But as far is
known from several references, every proof via the inequality (II) involves more
or les ambiguity This is the reason why we necessitate (6. 4) the estimate of x.(f(@;)
from below.

Next we shall attack the following generalized theorem on the basis of the
preceding Theorem 6. 1.

Theorem 6.2 Let f be defined in a bounded domain D;. We consider it in a
compact part D (D < D) and assume only that it is one-to-one in D. If D has
Jordan area y(D), then also (D) has Jordan area and

HED) = |det Jox)| dx

Proof : To prove this theorem, we start from the special case (i) and next
attack the general case (ii) on the basis of (i).

(i) In the case that det J(x) does not vanish in D. We set a network over D
and denote the small cubes inside D by Q,, Q., -+, Q,. By the preceding Theorem
6.1, we get

HEQ) = { 1det J(x)| dx

Qj
Further from the finite additiveness of Jordan measure and Riemann integral,

we get

#(Zf(Q;‘)) = S Idet J(x)| dx.

J uQj

Then,

# Strictly speaking, f(@;) is not mutually disjoint, but by excluding 8Q; from Q; we may
consider @; as open such that £(@;) is mutually disjoint, Then the remark relating to Lemma
(F) may be applied.
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1{f(D)) = #(f(Z,‘ Q) = u2JQ))

=
U

Idet Jx)| dx,

Dy

Py

where S |det J(x)|dx — SDIdet J(x)| dx can be arbitrarily small.
uQji

Therefore, /_z*(f(D))gSDldet Jx)| dx.
Noting that D is compact in D,, we may consider that for sufficiently large

division number of network all ; which intersects D are contained in D,. Then
through the calculation analogous to the preceding Theorem 6.1 (I), we get

D) < Jdet Jx)l dx,
which deduces Jordan measurability of (f(D)) and
HED) = |det J)I dx.

(ii) In the general case

Let C be the set of critical points of f in D. For an arbitrary positive num-
ber ¢ there exists an open neighborhood C, of C such that |det J(x)|<{e for x=C.,.
We may consider C, such as sum of a finite number of spheres and so C. has
Jordan area. Therefore D—C, has Jordan area and we get. from the preceding

special case (i)
‘u(f(D~Ce)):SD_Cs{det Jx)| dx = SD |det J(x)| dx — SCE |det J(x)| dx
> SDIdet J®)| dx — K,

where K is a positive constant that is independent of . On the other hand, since
v{f(D)) = (D — C.)), we see

1 8(D)) = SD |det J(x)| dx.

Before completion of our proof, we shall mention two propositions. One is the
following.
For an arbitrary positive number ¢ there exists an open neighborhood O of C
such that p(f(0)) <.

By Sard’s Theorem we can find a finite number of spheres R, such that

f(C)cUR; and g{UR;) <e.

If we put O ={fYUR,), then O is the desired one. Another proposition is that
for an arbitrary open neighborhood O of C, there exists Jordan measurable set O,



120 ZEN'ICHIRO KOSHIBA

such that C ¢ O, € O. For instance we may set O, as sum of a finite number of
spheres. This is possible since C is compact. Using the above given O and Oy,
we get

pNED — O) + p(£(0)
HED — O1)) + Hf(0))
o, det S| dx + p(fO))

<{ 1det Jl ax+,
D
which shows

D)< | Idet J()I ax.

Thus the proof of Theorem 6.2 is completed.

Theorem 6.3 Let f be defined in a bounded domain D,, D be its compact part
and g(y) be a real valued continuous function defined in £(D). If we assume that
D has Jordan area and f is one-to-one in D, then

L2 dy = | _g(tx) det Tl dx

Proof. By the preceding theorem, f(D) has Jordan area and
,u(f(D)):SD|det J(x)|dx. The right side of this equality can be approximated

bySUQj |det J(x)| dx, where @; is small cubes inside D. Then, we see that
#f(D)) can be approximated by #(U;£(@;). Therefore, we see that for an arbitrary
positive number ¢ there exists mutually disjoint cubes @;s inside D such that

1§ ewdy— { sty dyi<e "
(D) U@ ,
together with
| { g(f(e) et Jix)) dx— { gltx)] det Jix)|dx| < @)
D uQj

If we set M; =sup g(y) = sup g(f(x)) and m; = inf g(y) = inf g(f(x)),
yef@Q) xe€Q; yef@) xe@;

then we get

SImp@N = o, )l det J(x)] dx < 33 MpQ) ©
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and

Zm @) < S

viap EW dy g? M 1(£(Q))) ()

From the above four inequalities (1), (2), (3) and (4), we get

| § e) ay = | gttaidet 701 dxl <26+ 330, — my)lt(@))

L2

Since Z(Mj —m;) p(f(@;)) can be arbitrarily small, the equality in Theorem 6.3
J

follows.
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