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                              introduction.

   One of the most important notion in the differential geometry is connection.

It has the origin in the notion of parallel displacement of Levi-Civita. Then,

although connetion was defined only for manifolds at first, later it is defined for

differentiable fibre bundles (cf. [9], [16]). In its analytical form, if a vector bundle

6 is given by its transition function {guv}, a connection {0u} of g is a collection

of matrix valued 1 -forms eu such that

            (d + 0u)guv = guv(d + 0v)-

From the view point of differential geometry of fibre bundles, a connection of a

(smooth) manifold is defined to be a connection of its tangent bundle,

   Therefore, if we want to extend the notion of connection for topological

manifolds, we must extend the notion of tangent bundle to topological manifolds

in one hand, and on the other hand, to extend the notion of connection for

topological fibre bundles.

   The extension of the notion of tangent bundle has been done by Milnor ([17]).

It is the tangent microbundle and defined as follows: Let X=={(U, hu)} be a topolo-

gical manifold (hu: U->R" is the homeomorphism by which the manifold structure

of X is given), then the tangent microbundle r of X is the sequence

              db             X･X x X->X, "(x) == (x, x), P((x, y)) = x,

with commutative diagram

             Ux U

u
x  IX

   9u

x
U× Rn

    /U

/b
9u(X, y) = (x, hu(y) - hu(x)).



Moreover, rescent development of differential geometry of higher order (cf. [18])

regards that the usual tangent bundle is the tangent bundle of order 1 and there

constructed tangent bundles of higher orders by using higher jets, then from this

point of view, the tangent microbundle is the tangent bundle constructed by germ

([5]). In fact, using the same notations as above, we may define the transition

functions of T to be the germs of

            guv(x) == hu,.hv,.-i, hu,.(y) = hu(y) - hu(x),

if X is paracompact ([5]).

   0n the other hand, the notion of connection has been extended for topological

fibre bundles by the auehor ([2], [3]). If 6={guv} is a G -vector bundle and G is

contained in a topological ring ee as an open subset, then a (linear) connection

{0u} of e is defined to be a collection of the germs at the diagonal (of Ux U) of

M-valued functions Ou(xO, xi) such that '

            eu(x, x) == o, ,
            (5×0u)guv == guv(ti + 0v),

where 6 is the coboundary of Alexander-Spanier cohomology ([2]). Then since

su(xo, xD=1+0u(xo, xi) satisfies

            su(x･, x) = 1,

            guv(xo)sv(x'e, xi)gvu(xl) == su(xo, xi),

we define a connection {su} of a G -bundle g=={guv} to be a collection of germs

at the diagonal (of Ux U) of G -valued functions su(xe, xi) which satisfy the above

two formulas. Then, it has been proved ([2],[3],[4]) the analogies of Ambrose

-Singer -Nomizu's theorem ([1], [16]) and Chern's theorem ([8], [16]) are also true

for topological connection (and topologicai curvature which is defined by

            eu(xe, xi, x2) = 50u(xo, xi, x2) + 0u(xo, xDOu(xi, x2),

            6su(xo, xl, x2) = su(xl, x2)su(xo, x2)-lsu(xo, xl)

for {0u} and {su} respectively).

    Then we must define a connection of a topological rnanifold to be a connection

of the tangent microbundle. The purpose of this paper is to show the existence

of a connection for any topological manifold if it is paracompact.

    The outline of this paper is as follows: In g 1, we review the definition and

main properties of the connection of topological fibre bundles which has been

given in [2], [3], [4]. In g2, we give an example ofafibre bundle which has

no (topological) connection. The existence (or non existence) of such bundles
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remained as an open problem in our previous papers. In g3, we review the

definition of microbundle and state the representation of microbundles as the germ,

Then we define thq connection of micrbundles. But it is possible two kinds of

definitions of connection for microbundles because a micrgbundle is considered to

be a bundle constructed from the germ as was stated in the above (or [5]) in one

hand, on the other hand it is considered to be an Hb(n) -bundle ([12],[15]). Here

Hh(n) is the group of all homeomorphisms of R'i which fix the origin with compact

topology. But by virtue of the annulus theorem ([13],[21] cf. [7]), we can prove

the equivalence of the existence of connection in two definitions if the dimension

of the microbundle is at !east 5. In ss4, we prove the existence of aconnection

for the tangent microbundle of a paracompact topological manifold. Moreover, it

is shown that the existence of a connection on a topological manifold X is equi-

valent to the existence of local parallel displacement on X. In fact, if {su(xo, xi)}

is a connection of X then we can see
                  '

            su(xo, xi)(a) := huxoqu(xo, xi)hu-i(a + hu(xo) - hu(xi)),

                       a E U(hu(xi)), a neighborhood of hu(xi) in R",

where qu(xo, xi) is a homeomorphism from a neighborhood of xe to a neighborhood

of xo such that

            qu(xo,xi)(xo) = xo, qu(xo,xo) is the identity.

Or, equivalently, setting

            t(xo, xi)] V(A(U)) == hu, xo-isu(xe, xi)hu, xi,

where Y(ld(U)) is a neighborhood of the diagonal of UxU, t(xo,xi) is defined on

some neighborhood of the diagonal of X × X and locally we have

            (t(x,, xi)1 V(d(U)))(y)

             = qu(xo, xi)(hu-i(hu(y) + hu(xe) - hu(x))).

    Although we sho.w the existence of a connection for the tangent microbundle,

the genera! problem,'that whether a microbundle always has a (topological)

connection or not still remains open. The applications of connection of topological

manifolds will be treated in forthcoming papers.

    The outline of this paper is announced in Proc. Japan Acad., Vol. 46 (1970),

370-374 under the same title,
      '

                 g1. Connection of topological fibre bqndles.

    1, Let X be a topological space, then we set



                                    lts+1----N
            id,(x) == {(x, ･･････, x)lx ciE X} c X × ･･････ × X,

            do(x) == X.

Similarly, k,(U), etc. mean same sets (cf. [3]).

   Definition. Let fl and h are continuous maPs from V(id,(U)), a neigViborhood of

A, (U) in U× ･･-･･･ × Ul into G, a toPological grouP, then we call fl and h are

equivalent and denote A -- h ijC and only ijC there is a neig)Izborhood W(",(U)) of 4(U)

in V(ta,(U)) such that

            A I VV(ids( U)) =fLi l VV(ids(U))･

   We call the equivalence class of f to be a germ of f (at di,(U)) and denote the

equivalence class of f by f or simply by i We set

(1) CS(U, G)={flf<xo,････y,x,) =e, the unit of G,

                   if xi = xi,i .for some i, O ;$l i :.sl: s}.

   If {g = guv(x)} be a (topological) G -bundle over X, then we set

(2) S7'r(e): the sheof of germs of those maPs fb, fuECr(U; G),

                   guy(X")"1fo(Xg, 'i'''', X,)guv(X,) = .ICZv(Xfi, '''''', Xr)･

   Definition ([3]). An element {gu} of flO(XL EZ9i(gD is called a connection of e.

   Note. We often denote {su} instead of {Su}. Then we may consider suE{su}

is a continuous map from V("i(U)) into U such that

O)' su(x, x)=e,
(2)' guv(xo)sv(xo, xiigvu(xi) == su(xo, xi).

But in this definition, we must need fol!owing definition of equivalence.

   Definition. ILIC {su} and {s'u,} are connections of e, then we call {su} and {s'u,}

are equivalent if and only if there exists common rofnement {U"} of {U} and {U'}

            su(xe, xi)l V(idi(U"))=:hu,,(xo)s'ut(xo, xi)hu,,(xt)1 V(idi(U")),

where U" is contained in UnU' and the transition function {guv(x)} and (g'u,v,(x)}

of 6 satisflry

            g'u,v,(x)1U" n V" == hu,t(x)guv(x)h.,i(x)-i[U" n Vtt.

   We denote by Xk the associated principal bundle of 6. Its projection to X is

denoted by rr, the homeomorphism from rc"i(U) .onto U×G is denoted by gue
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Denoting gu-t(x,a), by gu-i(x)(a), we set

            Pa == opu-'(x)(aa), P == gu"'(x)(a) e Xe, a E G.

Then G operates.on Xe. If {su} is a connection of 6, we set

            s(P, q) =a-is.(x,y)P, P=gu(x)"i(a), q= ep.(y)"i(P).

Then s(P, q) is a continuous map from some neighborhood of 4(Xle) (in XexXe) into

G and satisfies

(3) s(P, P) =e,

(4) s(Pa, qP) == amis(P, q)P.
                                                    '
Conversely, if there exists a continuous map s from a neighborhood of tai(Xe) into

G which satisfies (3), (4), then setting

            Su(Xo, Xi) =: as(gu-i(xo)Ca), gu-i(xi)(P))P"i,

{su} becomes connection of e. Therefore we have

   Theorem 1. g has a connection of and only if there exists a continuous maP s

from a neiglzborhood of idi(Xi) in XExXe into G which satishes (3), (4) and there is

a 1 to 1 corresPondence between HO (X; fifi(6)) and Ci(Xe,G)e, where Ci(Xe,G)e is

gr'ven by

            C'(Xe, G)e = {-s [g E C'(Xe, G), s satisyfes (3), (4) (s Eii g)}.

   It {su} and {s'u} are the connections of e, then setting

S'u(Xo, xl)=tu(Xo, xl)su(xo, xl), we have -

(5) gtrv(xe)tv(xo, xi)g:vu(xe) = tu(xo, Xi),

            tu(x, x) = e.

   '

Conversely, if {tu} satisfies (5), {tusu} becomes a connection of e if {su} is a

connection of e. Similarly, setting

             Ti(Xe, G) = {t 1 t e Ci(Xe, G), t satishes

                       t(Xa, YP) = a" tt(X, N)a, t El t},

we get

(s)' Ci(Xe, G)e =: Ti(Xe, G)g, gG Ci(Xt, G)e,

if Ci(Xe, G)eiJL¢･

   2. If 6={guv(x)} is a trivial bundle, then setting guv(x)==hu(x)hv(x)-i and



            su(xo, xi) = hu(xe)hu(xi)-i,

{su} is a connection of e. Hence a fibre bundle g always hasa connection locally.

Or, in other word, for a suitable open covering {U} of X, there exists a conti-

nuous map su on V<idi(n-i)U)) which satisfies (3), (4). Then setting

             f(g):the sheaf of germs of elements of Ti(ffHi(U),G),

{tuv] :={s(u)s(v)Hi} defines a cocycle on X with coefficients in Y7g) and its class

in H'(X, Ls9t71ig)) does not depend on the choice of {s(u)}.

   Definitiom ([4], cf, [6]). The class of {tuv[}=={s(u)s(v)'i} in Hi(XL .s7-(g)) is

called the obstruction class (for the existence of connection) of e and denoted by

   Theotem 2. e has a connection illC and only if o(6) vanishes in Hi(X, .r/9(g)).

   Note. We may consider .Sfit e)=V9Tie)(G) to be the sheaf of germs of {tu}, tu

satisfies (5).

   As a consequence of this theorem, we show the existence of connection for

the bundles whose structure groups are locally compact abelian groups as follows:

We denote the sheaf of germs of the elements of Cr(U] G) by Yr. Then if G is

an abelian group, we get LS7r(g):= El7i, Hence we have

            Hi(X, Y'7(e)) == Hi(X, Se7i).

   If G is a locally compact, connected and locally connected abelian group,

then we know ([19])

            G:! R" × Tv

where ft" is the pt -direct product of Ri, the additive group of real numbers, Tv

is the v -direct product of Ti= Ri/Z. Then since we know

             sf'r ..= (Rit+p)", r llil 1,

we get Hi(X, fY')={O}, if X is normal paracompact. Hence we have

    Theorem 3. If G is a locally comPact, connected and locally connected abelian

grgup, then a G -bundle se over a normal ParacomPact sPace always has a connection.

   Coroilary. 1)C G is a locally connected, connected and locally connected solvable

group, then a G -bundle e over a normal ParacomPact sPace always has a connection.

    Nete. If G is a locally compact, connected and locally conneceed abelian

group, then we can define g2, OgR5;1, for any element g of G. Hence taking a

partition of unity {ew(x)} for the locally finite open covering {W} by which the

given G -bundle 6=={guv(x)} is defined, we can construct a connection {su} of e

by
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            SU(Xo, Xl)

             ;== ll gu"(xo)ew(xo)gwu(xi)em(xD.

             un ur#

We note that this su satisfies su(xo, xi):=su(xi, xe).

   3. Defintion ([3]). ILf {su} is a connection of e, then

(6) {6su(xo, xb x2)} = {su(xl, x2)su(xo, x2)-lsu(xo, xl)},

is called the curvature of {su}.

   Theorem 4 ([2], [3] cf. [1], [16]). ILIC the value of the curvature of a connection

of 8 is contained in H, a subgrouP of G, then the connected comPonent of the

identity of the structure grouP of 6 is reduced to H as a G -bundle.

   Proof. We take a set of points {a.} of X such that there existsa neighbo-

rhood U(a.) of a. for any a. which satisfies

(i) U.U(a.)=X,
(ii) some su is dofned on U(a.)x U(a.).

Since su(xi, x2)su(xo, I2)-isu(xo, xt) belongs in H we have

  '            su(xe, x2) = su(xe, xi)hu(xo, xi, x2)su(xi, xL),

                          '                    hu(xo, xl, x2) ff H.

Then setting xi=x2=x and Xo==a., we get

             Su(a., X)-tguv(a.)Sv(a., X)guu(X)

             == hu(a., x, x) E H.

Hence we have the theorem.

   Note. By definition, {6su} satisfies

(7) guv(xi)-ibsu(xo, xi, x2)guv(xi) = 6sv(xo, xi, x2).

Similarly, if the connection is given as an element s of Ci(Xe,G)", then we define

the curvature 6s ofsby '
(6)' as(Po, Pb P.2) = s(Pi, P2)s(Pe, P2)"is(Po, Pi)･

This tis also satisfies

(7)' o"'s(Pia, P2P, P3r)= P-'as(Pi, P2, P3)P, at, P,rff G.

It G is an abelian group, then by (7)', o"s defines an A!exander -Spanier 2 -cocycle

of X with coefficients in G, and its cohomology class does not depend on the



choice of s.

    Especially, if G is a locally compact, connected and locally connected abelian

group, then o"s defines an element of H2CXI RF'v).

     Theorern 5 ([4]). if G is a locally comPact, connected and locally cannected

abelian grouP and X is ParacomPact normal, then the following diagranz is commut-

ative.

                         k H2(X, Zv)                Hi(X, Gc)
                         N l2

                                H"2(X, R,t+r),

where Gc is the sheaf of germs of continuous maps from X to G, 6 is the
coboundary homomorphism induced from' the exact sequence

                   tl            o ->･ Zv -> Rp'v -> G, -> O,

r is the map induced from the inclusion and x is the map defined by the curvature

of the G -bundles (regarded as the elements of H`(XL Gc)(cf. [11])). .

   Corollary 1. if G==C", the multiPlicative grouP of complex numbers without 0,

then fbr a C" -bundle 4, x(4) is the 1 -st (comPlex) Chern class of g.

   Corollary 2. dnder the same assumPtions about G and X as Theorem 5, the

followingr sequence is exact.

                    ix            Hi(X, G) -->h fli(X, G, ) -> H2(X, RF"'),

whereiis the maP inauced from the inclusion by regarding G to be the sheaf of

germs of constant maPs .from X to G (which is a subsheaf of G, ).

    Note. For GL(n, C) -bundles, we can construct the analogy of Chern'stheory

of Characteristic classes ([4], cf. [8], [9]).

    4. If e is a vector bundle with structure group G, fibre L, a topological

vector space on which G acts as a linear transformation group, then we can give

another definition of connection which is a natural generalization of usual defini-

tion of connection ([2]).

    Definition. ILf the collection {fu}, fo E CS(q L), satishes

(8) guv(xo)fv(xo, ･i････, x,> = fu(xo, ････-･, x,), xo g Ufi V

then eve calg {fu} is an s -cross -section of g={guv<x)}, and denote the sPace of all

s -cross -sections of 8 by CS(X) e).

    We assume that there is a topological ring M of linear transformations of L
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such that GcM and some neighborhood of e in ee is contained in G.

   DefiRition. A collection {0u}, 0uEiCi(U, E}l), is called a (linear) connection of g if

{0u} satistlies

            ((6+0u) (fu) (Xo, '''''', Xs+i))

            =: guv(xe)((5+0v)fv)(xe, ･･････, x,.i), for all fb E CS(X, g), s ;l, o,

where 5fu(xo, ･･････, x,,i) and 0ufo(xo, ･･-･･･, x,,i) are given by

            6fb(Xo, '''''', Xs")

              s+1
            ==(-1)ith(xo, .....,, Xi-1, Xi+1, ,....., C,÷1),

              i=o

            eufu(xo, ･t.･･., x,+1) = 0u(xo, xi)fu(xl, ･,････, x,+1)･

   Definition. Ilf {0u} and {e'ut} are the connections of e, then we call {eu} and

{0'u,} are equivalent if and only if tlaere exists a common rofnement {U''} of {U}

and {U'} szach lhat

            etu,[V((di(Ut'))==hu,i(0u-hui,-iahu,,)hu,,-ilV(d,(Ut,)), U,tcUfiUi,

            g' u, v, l U" n V" : hu,,grurk vt ,-iI U' t n Vt t,

zvhere {guvl} and {g'u,v,} are the transition fttnctions of 8 by which {0u} and {0'u,}

are deijined.

   Definition. We set

(9) eu(xo, xb x2) == bOu(xo, xb x2) + 0u(xo, xi)0u(xb x2),

and call {eu} the curvature of {eu}.

   Then we can prove ([2], [3]),

(i). Ilf {eu} is a (linear) connection of e, then setting su(xo, xi) == e + eu(xe, xi), {su}

    is a con,nection of 6.

(i)'. ILIC {su} is a connection of e and 9℃ exists for G, then setting 0u =su-e, {0u}

    is a (linear) connection of e.

(ii). ILIC 8t exists for G, then a G -bundle always has a (linear) connection.

(iii). Il7C the value of 1+eu is contained in H; a subgrouP of G, then the connected

    comPonent of the iaentity of the structure grouP of g is recuced to H as a

    G-bundle.

                  g2, Bundles which have no conmectioms.

   5. For a normal paracompact space 8, we set

Z( g): the toPological grouP of all continuous maPs from aP into Z, the additive



       grouP of in.tegers, with comPact oPen toPology.

C( El7): the toPologl'cal grouP of all continuous maPs from 21S' into C, the complex

       number field, with comPact oPen toPology. '
C*( br'): the topological grouP of all continaous maPs from El7 into C", the multiPli-

       cativegrouP of comPlex numbers without 0, with comPact oPen topology.

   We denote the sheaves of germs of continuous maps from 2Y to Z, C and

C* by ,Z,, Cc, and C;lsc. Then we have the exact sequence

                   t)            O-> z, -> c, -> c;k, -> o,

where iis the inclusion, ]' is given by 7' (f) = exp(2z･vfJi f). Hence for the above

groups, we have the following exact sequence.

                     i* 1'* 6(10) O-> Z( 2'S')-> C( El5-')-> C:ts( Ec7)->･ Hi( 2's], Z) -> 0.

   In the sequence (10), we set

(11) i･i: (C( ES' )) =C*,( X).

Then by (10), we have the following exact sequences.

                               '                     i" i"
(lo)t o-> z( tJe)--> cr( tr.f. )-> c*,( (.g-))-> o,

                       o"T(10)'' 0-> C*,( SO)-> C*(Y) -> Hi( 2S7, Z) -> 0,

where T is the inclusion.

   On a normal paracompact space X, we denote the sheaves of germs of conti-

nuous maps from X to Z(Y), C( 217), C"( SM), C"e( 2f) and Hi(X, Z) by Z(g)c ,

C( g"), , C'( g7)c , C"o( g')c and Hi( g'7, Z)c . Then by (10)' and (10)", we have the

exact sequences of sheaves

                      AA                      tg(12)a 0-> Z( Elg')c '> C( 21S')c 'm> C"o( El7)c m>' O,

                        AA                        T6(12)b 0--> C*o( E}7)c +C*( Eg'), -> Hi( 2Y, Z), -> o,

      AAA Awhere z, y,T and 6 are the maps induced from i*, i T and 6. Moreover, we

know

(13). m(x, z( tg-7),)=- Hp(x, z(g)), p2- o,

(13), HP(X, Hi( ttfi,Z),)= Hi)(X, Hi( g, Z)), P21. 0,

because the topologies of Z( ES')c and Hi( [IS', Z)c are discrete.
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   By (12). and (13)., we get

(14) 6: Hi(X, C*,( [El7)) {l-i[ Hi+i(X, Z( E:7)), i>.= 1.

On the other hand, by (12)b and (13)b, we have the following exact sequence.

             ' ", *t :k                              O T '(15) ''' -)pt H'(X, C'e( El' )c ) m> lli(X, C"( EII7 )c ) -i'

                                                      '
              - Hi(X, Hi( 2g7 , Z)) -> H2(X, C*,( Eg ), ) -> ･･･.

By (14), (15) is rewritten as

                            i) *l A*t
(15)' ･･･ -> H2(X, Z( 24 )) -> Hi(X, C:ts( ES' ), )->

                               fit
              -> ffi(X] H2( EISP, Z)) + ll3(X Z( EY )) --> ･-･,

where e" and b' are the maps induced from (14) and e:' and a. We note that

Hi(X, C'( 2g)c ) is the group of equivalence classes of all C'( ES') -bundles over X

([11]).

   6. Lemma 1. Ilf Eg' is connected and H is a subgrouP of C"( g') such that tvhose

connected comPonent of 1 is C"o( g), then H is equal to C'o( ES').

   Theorem 6. Ilf each connected comPonent of tta is compact then a Chk(g･'7)

-bztndle over X, a normal ParacomPact sPace, has a connection if and only if it

belongs in e* -image.

   Proof. If a C"( 29) -bundle e over X has a connection, then its curvature

gives an Alexander -Spanier 2-cocycle of X with coeflicients in C"( 2S'). If El7 is

connected, then by assumption, 2e is compact. Hence some neighborhood of 1

in C"( El7) is contained in C"o(g) by the definition of C"o( 2Y). Hence we may

consider the value of the curvature of e is contained in C*e('Eg]), because the value

of the curvature belongs in (arbitrary) neighborhood of 1. Therefore we have the

nescessity by Theorem 4 and Lernma 1 if g is connected. If 5" is not connected,

then setting 2g'==U.2S'., each 2g'. is connected, a C"( eV) -bundle over X is a

direct sum of e*( 2S'.) -bundles over X. Hence we obtain the nescessity for the

non -connected case.

   On the other hand, if {6==guv(x)} is a C*o(g) -bundle, then we can define

guv(x)2, O:S;R;:Sll, and setting

            Su(to, xi)= II guw(xe)ew(Xo)gpvu(xi)eHr(Xi),
                     Un M4 ,,

                                        '
where {U} is a locally finite covering and {eu(x)} is a partition of unity corre-

sponding to {U}, {s'u} gives a connection of e. This shows the sufliciency,



   We take Si asXand 219. Then we get

           Hi(Si, C*O(Si)) = H2(Si, Z) == {O},

           H2(Si, C;i:,(Si)) :i! H3(Si, Z) =r {O},

           Hi(Si, Hi(Si, Z)) EII Hi(Si, Z) ::= Z.

Hence by the exact sequence (15)', we obtain

(16) Hi(Si, C*(Si), ){li{ Z,

and T"' -image in Hi(S', C"(Si)c)is equal to 0. Therefore there exists infinitely

many non -trivial C'"(Si) -bundles over Si and they have no (topological) connection

because Si is compact.

   Note, We set T( S")== {f1fEiE C"( Eg]), 1f1=:1}, then by the map

           C*( 21SP) × ID (L t) .i ffl, E C*( El7 ),

T( X) is a deformation retract of C"( e'). Hence a C'k( E5') -bundle over a normal

paracompact space is considered to be a T( Eg) -bundle ([14], [20]).

                    g3. Connectiofi of microbumdles.

   7. A microbundle ee over X, a topological space, is a sequence Xl,ESX

with open coverings {U} and {11} of X and i(X) in E such that the diagram

             /ii×

            ux 9/u U T(x) == x×O, P((x, a)) == x, xEi ()L aEi R",

                  U× Rn

is commutative (17), where gn is a homeomorphism.

   It is known ([12], [15]), that a microbundle over X is regarded to be an

H6(n) -bundle over X if X is norrnal paracompact. Here Hb(n) is the group of all

homeomorphisms of R" which fix the origin with compact open topology. There-

fore, a connection {su} of ee should be considered to be a collection of continuous

maps su(xo, x!) from a neighborhood of idi(U) to Hbin) such that

           su(x, x) =: e,

           guv(xe)sv(xo, xl)gvu(xl) = su(xo, xl),
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 where {guv(x)} is the transition function of ee regarded to be an Hb(n) -bundle.

    On the other hand, setting

(17) gugb -i(x, a) == (x, fouv(x)ra)), xE Ufi V, aE R'i,

 fouv(x) is a homeomorphism from a neighborhood of the origin in re" to a neighbo-

 rhood of the origin in R" such that

            fovu(x)(O) == o.

As in nO 1, we call two homeomorphisms g, ¢ from a neighborhood of the origin
 in R'i to a neighborhood of the origin of re" such that

            9(O) =- ¢(O) - O,

 are equivalent each other and denote g ･gv ip if and only if there exists a neighbo-

 rhood W of the origin in R" such that

             goiV7V-gb[W.

 Then the set of all those classes forms a group. We denote it by 4(n). Although

 Hlts(n) is not a topological group, we define a map from S, a topological space, to

 HLkrn) to be continuous as follows.

    Definition. VXe call f: S-4(n) to be continuous (f there exists an oPen, covering

                             AA{U} of S and continuous maPs fu: U.Ee(Qu, R") szach that the class of fu(x) is

f<x) for each xGU. Hbre Qu is a neigJzborhood of the origin in R'Z, Ee<Qu, R") is

 the toPologttcal sPace of all homeomorPhisnzs .from Qu into B" which fix the origin

 with comPact oPen toPology.

    By this definition, fouv(x) given by (17) defines a continuous map guv from

 UnV into ca(n). Moreover, it satisfies

             guv(X)gvur(x)gwu(x) == e, the identity of H.(n).

 Therefore, denoting the sheaf of germs of continuous maps from X to 4,(n) by

 ca(n)c , we can construct a 1 -cocycle over X with coethcients in ,E4k(n)c and we

 can show ([5]) its cohomo!ogy class does not depend on the choice of gn.

    Definitiom. VVe call {guv} the transition .fleenction of ee as an Hk(n) -bundle.

    On the other hand, if {U.} is a locally finite open covering of X, {g.p}=={gu.up}

 belongs in Zi(X, 4,(n)c ), then we can construct a microbtmdle over X such that

 whose transition function as an Hlk(n) -bundle is {g.p} as foilows: Take a repre-

-sentation ip.p of g.p for each a, P and assttme



14. ･ AI<IRA AsADA
     ¢.fi(x)fopr(x)for.(X)(a) = a, x E U. n Up n Ur,

                   a E Q., a neigJzborhood of the origin of R".

Then in UltxR"xa, we set

            Up. = (( Ult n Up) × Qp. n fo.p((U. n Up) × Q.p)) a,

and identify U.pgxxaxfi and xx¢.p(x)(a]xPEUp.. Then setting the quotient space
of U.UltxR"xa under this relation by E rthe points which are not contained in

U.p are not identified each other), and set

            i(x) = the class of x × O × cr in E,

            d({x ×a× a}) =:= x, {x ×a× a} is the class ofxxa× at,

we obtain a microbundle ee and its transition function (as an Hle(n) -bundleJ is

{9.p}･

   It is l<nown (5) that:

   Theorem 7. There is a 1 to 1 corresPondence between the set of all equivalence

classes of n -dimensional microbundles over X, a normal Paracompact sPace, and

Hi(X, Hk(n)c )･

   Regarding ee to be an Hg,(n) -bundle with transition function {guv(x)}, we can

define a connection {su} of ee as an q,(n) -bundle as follows: {su} is a collection

of continuous maps Su(xe, xi) from a neighborhood of di(U) to ca(n) such that

            su(x, x) = e,

            guv(xo)sv(xo, xl)gvu(xl) = su(xo, xl).

   8. In Hb(n), we set

            ag(n.) --{f1fE Hb(n), f(a) = a, if a belongs in some neig)J2borhood

                  of the origin of R"}.

By definition, HL(n) is an (algebraic) normal subgroup of llb(,n).

   Lemina 2. Ilf nl.li5, then

(18) Hl,(n) =: Hts(n)/H,(n).

        '

   Proof. Since an element of Llb(n)/H,(n) defines an element of Kk(f¢), we need

only to show if g is an element of H*(n), then there is an element f of Hb(n) such

that whose class mod. H,(n) gives pa.

   We set B,=={a [aER", i a i < p}and take a representation fo of g which is defined.



   .
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on B,+,, r>O, E>O. We take a positive number R to satisfy

            R>r, BR D fo(Br+e)･

Then by annulus theorem ([13], [21]), there exists a homeomorphism h from'

B2R - Br onto B2R - ip(B.) if nll 5. Since fo-ih is a homeomorphism of aB. and it

is extended to a homeomorphism ip-ih of B2R - B. by setting

            fo-ih(eb) == -il-fo-ih(b), b E OB., r;slp$2R,

                                           '
                                     impm-we may consider (if nescessary, taking h(fo-ih)"i instead of h), h is coincide to ¢

on OB..

   Using this h, we define a homeomorphism ¢ from B2R onto B2R by

                                                         '
            ¢(a) == fo(a), I a 1･< r,

            -ep(a)=h(a), r$Ia[<2R.

   On the other hand, we define a homeomorphism T from B2R onto R" by

            T(a) == a, 1a1<R,

            T(a) == 2R -R L.1 a, R ;gl laK 2R.

                                                    '
Then Tg-T-i is an element of Hb(n) and by definition, we get

            Tg-THi(a) == ¢(a), lal<r.

Hence the class mod. H}(n) of TipT"i is g. Therefore we have the lemma.

   Note. By annulus theorem, H,(n) is dense in SHb(n)=Hb"(n) (the connected

component of the identity of llb(n), or equivalently, the subgroup of Hb(n) consisted

by all orientation preserving homeomorphisms (cf. [7])). Hence we can not give

Hli,(n) any non -trivial topology.

   Lemma 3. H,(n) is a contractible groblp.

   9. Lernina 4. Let ee be an n -dimensional microbundle over a normal Paracnmpact

sPace and nk5, then ee has a connection as an Hb(n) -bundle if and only if ee has

aconnection as an ca(n) -bundle. ･
   Proof. If ee has a connection {su} as an Hb(n) -bundle, then denoting the class

mod. H,(n) of su(xo, xi) by su*(xe, xi), {su*} gives a connection of ee as an ll*(n)

-bundle. Hence we have the nescessity.

    To show the sucaciency, we set the transition function of ee as an Ho(n) -bundle

by {guv(x)}. Then denoting the class mod. H,(n) of guv(x) by guv"(x), {guv"(x)} is a



transition function of ee as an H*(n) -bundle. We set

 .sr/ ne,ffb(n): the sheaf of germs of those tu, tuECi(U, Hb(n)) and (some) tuEtu satisfies

          guv(xo)tv(xo, xl)gvu(xe) = tu(xo, xi).

' .sr/ he,llb(n): the sheaf of germs of those tu, 7uGCi(U, Hk(n)) and (some) tuEru satisy7es

          guv(xo) tv(xo, xl)guv(xe) == tu(xo, xl)･

 Yfee, Eik(n): the sheaf of germs of those tu, tuEC'(U, H"(n)) and (some) tucitu satishes

          guv*(xo)tv(xe, Xi)gvu"(xo) = tu(xe, xi)･

Here Ci(U, HLtr(n)) is defined similarly as Ci(U, G). Then by Lemma 2, we have

the exact sequence

                         zj(19) O- Yd7-nt, H.(n)e Y-ne, Ho(n) -u'F LSr/ nt, lill,(n) --" O,

where i is the inclusion, 7' is the canonical map, By (l9), we obtain the following

exact sequence.

                                              tt                                   '                               i* d*'(20) '''-Hi(X, Yk,Hle(n))-Hi(X, .Sfet ,Hb(n))'Hi(X, Ybe,Hla(n))･

In this sequence, by the definition of the obstruction class for the existence of

connection, denoting the obstruction classes for the existence of connection in

Hi(X, Yar,H,(n)) and in Hi(X, -ar,Hla(n)) by o(ce) and o*(ee), we get

(21) 7'*(o(ee))=o*(ee),

    On the other hand, taking t-uvEZi(X, Y/11k,Hle(n)), we can construct a fibre

bundle W over Q(ai(X)), a neighborhood of idi(X) in XxX, with fibre 4(n) as

follows: Take the representations tuv E tuv and assume that they satisfy

             tuv(xe, xl)guv(xo)tvur(xo, xi)gvu(xo)guur(xo)twu(xo, xl)gpvu(xo) == e,

             (xo, xi) E Q(lii(Un Vn VV)).

            '
Then we define an equivalence relation ptw between the elements of Q(tii(U))xHe(n)

 and the elernents of Q(tii(V))xH,(n) by

             Q(ai(U)) × 4(n) i ((xe, xi), g)

             'w ((xe, xi), guv(xe)tuv(xe, xi)gvu(xo)p) E Q("i(V)) × 4(n),

 and construct the total space of V as the quotient space UuQ(Ai(U)) × H,(n)/tw.

Then, since 4(n) is contractible, ep has a cross-section f([14], [20]). Since we

may consider f is a collection of ll.(n) -valued function fu on Q(ldi(U)) such that

            fu(xe, xi) == guv(xo)tuv(xo, xi)guv(xo)k(xo, xi),
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{tuv} belongs in B'(X, .97rbl,H,(n)). Hence Hi(X, .97ree,iib(n)) vanishes. Therefore by

(20), ]'" is 1 to 1. Then by (21), if o"(ee) vanishes, then o(ee) must vanish. This

proves the lemma.

   Note. It is known that if n= 1 or 2, then Hb(n) is contractible to O(n). Then

since GL(n, R) is contained in Hh(n) and a GL(n, R) -bundle always has a conne-

ction by n04, (li), an n -dimensional microbundle over a normal paracompact

space always has a conneetion as an Hb(n) -bundle if n$2. Hence LemMa 4 is

also true for n<2.

                g4. Connectien of tangent microbumdles.

   IO. The tangent microbund!e T of a (paracompact) manifold is given by (17),

              dP
            X-X×X-X, d(x) == (x, x), P((x, y)) =x,

with the commntative diagram

                   Ux U
              7/ ""<.

             U 9u U gu(x, y)=(x, hu(y)-hu(x)),
              X/p'

                  U× Rn
                                               '
where hu is the homeomorphism from U onto R" by which the manifold structure

                                                       '

   If we consider r to be an H)k(n) -bundle, then the transition function fguv(x)}

of T is given by

(22) guv(x) == hu, .hv, ii,

where hu,. is given by

(22)' hu, .(y) == hu(y)-hu(x)･

   Note. In (22), guv(x) is a homeomorphism from hv,.(UnV) onto hu,.(UnV).

We use guv(x) to denote such homeomorphism in one hand, and on the other hand,

by' guv(x) we mean the element of HLk(n) defined by such homeomorphism.

   Lei"ma 5. T has a connection as an Hle(n) -bundle if and only if there exists a

continuous function t(xo, xi) on some neigJzborhood of di(X) in X × X such that

("). t(xo, xi) is a homeomorPhism from a neighborhood of xi to a neighborhood of x,

   such that



            t(xo, xt)(xi) =xo, t(x, x) is the identity.

   Proof. If {su} is a connection of T as an 4(n) -bundle, then since

            guv(xo)sv(xo, xl)gvu(xt) = su(xo, xl),

                                '
we obtain by (22),

(23) hv,xo-isv(xo, Xi)hv,xi =hu,xo-iSu(Xo, Xi)hu,xi,

on some neighborhood of idi(Ufi V).

   By (23), setting

(24) t(xe, xi)i V(idi(U)) == hu,xo"isu(Xo, Xi)hu,xi,

t(xe, xi) satisfies (").

   On the other hand, if t exists, then setting

            Su(Xo, Xi) = hu`xo t(Xe, xi)hu,xi-i,

su(xe, xD is a homeomorphism from a neighborhood of the origin of R't to a

neighborhood of the origin of R" such that su(xe, xi)(O) = 0 and satisfies

            su(x, x) = e)

            guv(xo)sv(xo, x!)gvu(xl) == su(xo, xi).

Hence {su} gives a connection of T.

   11. 0n eL a coordinate neighborhood of X with homeomorphism hu from U

onto R'i, we can construct tu, which satisfies (*) on some neighborhood of Ai(U),

by

(25) tu(xo, xi)(y) == hu-i(hu(y) + hu(xo) - hu(xi)),

                       (xo, xi) E W(ai(U)).

Then setting

            ruv(X, Y) = tu(x, y)tv(x, y)-i,

                     (x, y) E VV(d,(U)) fi Wt(d,(V)),

ruv(x, y) is a homeomorphism from a neighborhood of x onto a neighborhood of x

and satisfies
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(26) ruv(x, x) == the identity maP,

            ruv(x, N)(x) = x.

For this ruv, we set

(27) (r..(x)(b))(a)

            == hu, .(ruv(x, hu, .-i(b))(hv, .-i(a)).

   As usual, we call to continuous maps A and fli from some neighborhood of x

to JHLk(n) are equivalent if A i U<x) = h l U(x) for some neighborhood U(x> of x and

call the equivalence class of f the germ f Then we set

            F.(R", Hl,(n)) == {f1f is the germ at the origin of the continuous maPs

                         from R" into Iik(n) such that f(O) = e, fE f},

Then F*(R", 4,(n)) is a group and ruv(x) given by (27) can be regard to be a conti-

nuous map from UnV into F*(R", H*(n)). Here the continuous map from a

topological space to F*(R", Hlts(n)) is defined similarly as the continuous map to

Hlk(n) (cf. n07).

   If f is an element of F*(R'i, HL,(n)) and ip is an element of H)k(n), then we

define the operation f9 of ip to f by

            fP is the class of fg, where .flo is gr'ven by

            .flp(a) == f<g(a)), a G R", fE f; g E ¢.

Then by (27) and the definition of ruv(x, y), we get

(28) ruv(x)rvw(x)guv(X)rwu(x)gurv(X)

            == e, the identity of F.(R", ca(n)).

Here, for the simplicity, we denote the classes of rvw(x)gvu(X) etc. also by

   We note that if X is paracompact, then taking a locally finite coverng {UL,}

and denote r.p(x) == ru.up(x), etc. , we may assume

(28)' r.p(x)rp,(x)gPa(X)r,.(x)grev(")(a)(b) == b, if(a, b) E! Q. × Q.,

where Q. is an open ball of R" with center the origin.

   12. We set

Eo(n): the sPace of all homeomorPhisms from B'i into R" which fix the origin with



                                     '
      comPact oPen toPology.

Q-O(n): iigIlziiiaPcatCeopX taoiioihoOgyMeOMorPhisms from t" into re" which fix the origin with

Here Q" rneans an open ball'  of ve" with center the origin.

   For these spaces, we set

            F.(R", Ee(n)) = {flf: R'i - Eo(n), .IC<O) = e, the identity},

            F.(Q", Qo(n)) = {flf: Q'i -Qe(n), .f<O) = e, the identity},

where the topologies are given by the compact open topology.'Then we get

Lemma g. (i). F,(R'i, Eo(n)) and F.(Q'i, Qo(n)) are both contractible.

(ii). To dofne an equivalence relation thv of the elements of F,(R'i, Eo(n)) by

            .11 ･- h ijC and only if fl(a)(b) = fle(a)(b), (a, b) G Q × Q,

   we have

            Fe(R", Eo(n))/tkbe･ := F,(Q'i, Qe(n)).

                                                      '
   Using these spaces and {r.fi(x)} given by (27), we construct an F.(R'i, H,(n))

-bundle over X as follows: To define the equivalence between Ult ×F,(R", Eo(n))xa

and UpxF,(R'i, Eo(n))xP by

(29) (x, ]1 a) G U. × JF,(R'i, Eo(n)) × ev and (x, g; P) E Up × F,(it", E,(n)) ×P

            are equivalant if and only if

                                                                     '
            g(a)(b) = r.p(x)f(gl,p(x)a)(b), (a, b) E Q. × Q.,

and set the quotient space of U.U. × F.(R", Ee(n)) × cr under this relation by &.

Then & is the total space of a fibre bundle over X and its fibre at x, xE U., is

F,(Q", Qo(n)) by (29) and Lemma 6. Then, since F,(Q'i, Eo(n)) is contractible by

Lemma 6, & has a cross -section p: X-"& ([14], [17], 20). Then, using local

coordinate, we get

(3o)r r.v(x) == pu(xxp.(x)guv(x))-i.

Here we denote the covering by {U} instead of {q} and pu means p1U.

    By (30)', setting

             qu(x, y) = hu, .u(x, hu, .Hi(y))hu, .'i,

we get

(30) -ruv(x, y) :== qu(x, y)qv(x, y)-i,
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 . On the other hand, by the defifiition of qu(x, y), qu(x, y)is a homeomorphism

fromaneighborhood ofxsuch that . '                                                   '

            qu(x, x) is the identity,

            qu(x, N)(x) = x.

Hence setting

(31) t(x, y)I VV(Ai(U))=qU(x, y)-ir.(x, y),

t(x, y) is defined on some neighborhood of Ai(X) and satisfies ("). Therefore we

   Theorem 8. Lf' X is a paracompact (topological) man5fold, then the tangent mi-

crobzandle T of X has always a connection as an Hlk(n) -bundle.

   By Lemma 4, we also have ･
   Theorem 8'. lf X is a ParacomPact (topological) mqnifold, and dim. Xl5,

then the tangent microbundle r of X has a connection as an Hb(n) bundle.

   Note. It is known that if dim. X$3, then we may consider X to be smooth.

Since a smooth manifold always has a connection regarding its tangent microbundle

to be an Hh(n) -bundle, because the tangent microbundle of a smooth manifold is

reduced to a CL(n, B) -bundle. Hence we can rewrite Theorem 8' as

   Theorem 8". if X is a Paracompact (topolog2'cal) manijbld, and dim. X; 4, then

the tangent microbundle T of X has a connection as an He(n) -bundle.

   13. If ti(x, y) and t2(x, N) both satisfies (*), then setting

            r(x, y) = ti(x, y)t2(x, y)Hi, x, y E V(tii(X)),

where V<Ai(X)) is a neighborhood of idi(X) in Xx X, we have ,

(*"). r(x, y) is a homeomorphism from a neighborhood of x to a neighborhood of x

            r(x, y)(x) = v, r(`v, x) is the identitN.

   On the other hand, if a continuous function r(x, y) on some neighborhood of

ai(X) satisfies ("'), then r(x, y)t(x, y) satisfies (") if t(x, y) satisfies ('"). Hence we

have

   [Vheoreffn 9. There is a 1 to 1 corresPondence between the set of all connections

of T (as an IL,(n) -bundle) and the set of germs of r(x, y) at tii(X) which satishes ("").

   Nete. If r<x, N) satisfies ("*), then we set

            ru(x, a)(b) = hu, .r(x, hu, ."i(a))hu, .-i(b),

                       a, b G Q, a neighborhood of the origin in R'!.



                                                                     '
By definition, ru(x, a) is a local homeomorphism of R" near the origin which fix

the origin and it satisfies

(32> guv(x)rv(x, gvu(x)a)gvu(x) == ru(x, a).

Conversely, if there exists a collectlon {ru(x, a)} which satisfies (32), then we can

construct r(x, y) which satisfies ('*).

   By Theorem 9, if t(xe, xi) is obtained from a connection of T (as an Hle(n)

-bundle), then we can write

(33) (t(x,, x,)lvpr(a,(u)))(y)

            == ru(xo, xi)(hu-irhu(y) + hu(xo) - hu(xi))).

Hence we may consider a connection of X (regarding T to be an ILk(n) -bundle) to

be a (local) parallel displacement of X.

   We note that if ru is given by (33) for given t, then we get

(34) ru(xo, xD-irv(xo, xi)(y)

            = hu"i(hu(hv-i(hv(y) + hv(xo) - hv(xi)) + hu(xi) - hu(xo))･

                          '
Hence ru-irv does not depend on t.

   Note. If M is a paracompact infinite dimensional manifold modeled on L, a

topological linear space, then we can define the tangent microbundle of M and it

is regarded to be an H*(L)-bundle, where a,(L) is the group of gerrRs of homeo-

morphisms of L which fix the origin. Then by the same method, we can show

that the tangent microbundle of M has a connection if we consider it to be an

4,(L)-bundle. But by a recent result of Henderson ([10]), this is trivia! at least

L is an infinite dimensional separabie Frechet space. Because of [10], such

manifold is homeomorphic to an open subset of Hilbert space.
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