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Introduction.

One of the most important notion in the differential geometry is connection.
It has the origin in the notion of parallel displacement of Levi-Civita. Then,
although connetion was defined only for manifolds at first, later it is defined for
. differentiable fibre bundles (cf.[97], [167). In its analytical form, if a vector bundle
& is given by its transition function {gyv}, a connection {0y} of & is a collection
of matrix valued I —forms 6y such that

{d + 0v)guv = guvld + Oy).

From the view point of differential geometry of fibre bundles, a connection of a
(smooth) manifold is defined to be a connection of its tangent bundle.

Therefore, if we want to extend the notion of connection for topological
manifolds, we must extend the notion of tangent bundle to topological manifolds
in one hand, and on the other hand, to extend the notion of connection for
topological fibre bundles.

The extension of the notion of tangent bundle has been done by Milnor ([17]).
It is the tangent microbundle and defined as follows: Let X={(U, &;)} be a topolo-
gical manifold (hy: U—R" is the homeomorphism by which the manifold structure
of X is given), then the tangent microbundle ¢ of X is the sequence

XiXxXiX, Adix) = (x, %), plx,y)=x,

with commutative diagram

Ux U
4h
U\. Py /U eul%, 3) = (%, hy(y) — hy(x)).
7:\\ b
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Moreover, rescent development of differential geometry of higher order (cf. [187)
regards that the usual tangent bundle is the tangent bundle of order I and there
constructed tangent bundles of higher orders by using higher jets, then from this
point of view, the tangent microbundle is the tangent bundle constructed by germ
((57). In fact, using the same notations as above, we may define the transition
functions of = to be the germs of

gUV(x) = hUmchV,:c—I: hU,z(y) = hU(y) - hU(x):

if X is paracompact ([5]).

On the other hand, the notion of connection has been extended for topological
fibre bundles by the author (27, [8]). If é={gyv} is a G -vector bundle and G is
contained in a topological ring % as an open subset, then a (linear) connection
{8y} of £ is defined to be a collection of the germs at the diagonal (of UxU) of
R-valued functions ,(x° %;) such that

0U(x; x) = Oy
(0X0y)guy = Guv(d + Oy),

where ¢ is the coboundary of Alexander-Spanier cohomology ((2]). Then since
Sy(%o, 1)=1-0py(%, x1) satisfies

sU(x‘, x) = 17
uv(%o) Sy(%o, ¥1) Gvu(Xr) = Sp{%g, %1),

we define a connection {sy} of a G -bundle é={gyy} to be a collection of germs
at the diagonal (of Ux U) of G -valued functions sy(x,, ¥:) which satisfy the above
two formulas. Then, it has been proved ((2],[37,[4]) the analogies of Ambrose
-Singer -Nomizu’s theorem ([1],[167]) and Chern’s theorem ([8],[16]) are also true
for topological connection (and topological curvature which is defined by

Oulxo, X1, %a) = 00y(%y, X1, Xo) -+ Oy(Ko, 1)0y (%1, %),
Osy(%g, X1, %a) = Sp(%1, Xe)Sy(%o, Xa)™ 'Sey(%o, %1)

for {6,} and {sy} respectively).

Then we must define a connection of a topological manifold to be a connection
of the tangent microbundle. The purpose of this paper is to show the existence
of a connection for any topological manifold if it is péracompact.

The outline of this paper is as follows: In § 1, we review the definition and
main properties of the connection of topological fibre bundles which has been
given in [2], [3], [4]. In §2, we give an example of a fibre bundle which has
no (topological) connection. The existence (or non existence) of such bundles
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remained as an open problem in our previous papers. In §3, we review the
definition of microbundle and state the representation of microbundles as the germ.
Then we define the connection of micrbundles. But it is possible two kinds of
definitions of connection for microbundles because a microbundle is considered to
be a bundle constructed from the germ as was stated in the above (or [57]) in one
hand, on the other hand it is considered to be an Hy#x) -bundle (127, [157). Here
Hyn) is the group of all homeomorphisms of R” which fix the origin with corﬁpact
topology. But by virtue of the annulus theorem ([137,[217 ¢f. [7]), we can prove
the equivalence of the existence of connection in two definitions if the dimension
of the microbundle is at least 5. In §4, we prove the existence of a connection
for the tangent microbundle of a paracompact topological manifold. Moreover, it
is shown that the existence of a connection on a topological manifold X is equi-
valent to the existence of local parallel displacement on X. In fact, if {sy{x,, 21}
is a connection of X, then we can set

sp(%e, 21(@) = hyxequ(Fe, X)hy~Ya + hylxe) — hy(x1),

a & Ulhy(x1), a neighborhood of hy(x,) in R",

where qy(%,, %) is a homeomorphism from a neighborhood of x, to a neighborhood
of x, such that

qu(%o, %1)(%0) = %o, qu(%o, %) 1S the identity.
Or, equivalently, setting
o, )| VIAU)) = hy, 2" su(%0, )y, 21,

where V(4(U)) is a neighborhood of the diagonal of UxU, #x,, x1) is defined on
some neighborhood of the diagonal of X X X and locally we have

(#(x0, 20)| VAU )MNy)
= qy(%o, )y~ {hy(y) '}“ hy(e) — hy(x).

Although we show the existence of a connection for the tangent microbundle,
the general p1'oblem, that whether a microbundle always has a (topological)
connection or not still remains open. The applications of connection of topological
manifolds will be treated in forthcoming papers.

The outline of this paper is announced in Proc. Japan Acad., Vol. 46 (1970),
370-374, under the same title,

§ 1. Connection of topological fibre bundles.

1. Let X be a topological space, then we set
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5

As(x) = {_(x, """ , x)lx (&) X} C X X seneen X X’
4y(x) = X.

Similarly, 44U), etc. mean same sets (cf. [3).

Definition. Let fi and f. are continuwous maps from V(4(U)), a neighborhood of
4, (U) in U X --on x U, into G, a topological group, them we call f, and f, are
equivalent and denote fi ~ fo if and only if there is a neighborhood W4 (U)) of 4,U)
in V(4(U)) such that

SiIIWELU)= 1o W(ALU)).
We call the equivalence class of f to be a germ of f (at 4(U)) and denote the
equivalence class of f by f or simply by f. We set
1) CYU, G) = {f| (%o, -+, &) = e, the umit of G,
if %;= %, for some i, 0 <Li<s%.

If {&€ = gyv(x)} be a (topological) G -bundle over X, then we set

(2) Z(E): the sheaf of germs of those maps fy, fu < C'(U,G),
Euvixe) Uulxg, - s X)Guv(%,) = fy(%g, v y %),

Definition ([37). An element {5y} of HY(X, & 1(&) is called a connection of &.
Note. We often denote {sy} instead of {35} Then we may consider sy={sy}
is a continuous map from V{4y(U)) into U such that

(1)1 SU(x, x) =€,
@ Zuv(®a)Sy(%o, X08vu(*1) = Sy{te, X1).

But in this definition, we must need following definition of equivalence.
Definition. If {sy} and {s'y'} are connections of &, then we call {sy} and {s'y}

are equivalent if and only if there exists common refinement {U"} of {U} and {U'}

such that :

Sulxo, X)) VAU N=hyy o (x0)s" (%o, Xy ()| V(A(U')),

where U'' is contained in UNU' and the transition function {gyv(x)} and (g'y (%)}
of & satisfy

&'y @)U 0 V" = by (x)guv(X)hy (x) U NV

We denote by X: the associated principal bundle of & Its projection to X is
denoted by =, the homeomorphism from = {U) onto U x G is denoted by ¢y °
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Denoting ¢y Yx,a), by ¢y YxYa), we set
pa = oy H#)aa), p= gy Hxfa)E X;, a€G.
Then G operates on X:. If {sy} is a connection of § we set
(b, @) = a'sy(x, 3)B, b = eulx) @), g = pu(y)(B)

Then s(p, q) is a continuous map from some neighborhood of 4:(X) (in X¢x X¢) into
G and satisfies

(3) s(p,p)=¢,
(4) S(per, gB) = a7 *s(p, @B.
Conversely, if there exists a continuous map s from a neighborhood of 4;(X:) into
G which satisfies (3), (4), then setting
sp%o, %1) = as(py™ Y xoa), @u {1 (B)BY

{sy} becomes connection of £&. Therefore we have
Theorem 1. & has a connection if and only if there exists a continuous map s
from a neighborhood of A(X:) in X:x X into G which satisfies (3), (4) and there is
a 1 to 1 correspondence between H® (X, & YE) and CYX,, G), where C{X., G); is
given by
CiXe, G)e = {s|s € CY{X,, G), s satisfies (3), (4) (s =5}
It {sy} and {s'y} are the connections of & then setting
8" y(xo, 21)=E7 (%, %1)Sy(%q, 1), We have
(5) v Xo)ty(Xo, £1)8vu(%e) = ty(%e, %),
tylx, x) = e.

Conversely, if {ty} satisfies (5), {{ysy} becomes a connection of & if {sy} isa
connection of & Similarly, setting

TYX,, G)={t|t € CY{X,, G), t satisfies
Hxa, ¥B) = o 't(x, Yo, t &1},

6y CYXe, G)e = TYX:, G)S, 5 & CUX, G),

if CYXe, Gles£o.
2. If é={gyy(x)} is a trivial bundle, then setting gyy(x)=hy(*)h,(x)"! and
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G

Sp(%o, %1) = hy(xe)hy(xl)

{sy} is a connection of £&. Hence a fibre bundle £ always has a connection locally.
Or, in other word, for a suitable open covering {U} of X, there exists a conti-
nuous map Sy on V{di(w~)U)) which satisfies (3), (4). Then setting

T(¢):the sheaf of germs of elements of Tz YU),G),

{tovi={sansw) '} defines a cocycle on X with coefficients in F7 and its class
in HY{X, () does not depend on the choice of {s()}

Definition (4], cf. [6]). The class of {tuv}={sw)so) 1} in H(X, T(&) is
called the obstruction class (for the exislence of connection) of & and denoted by
o&).

Theorem 2. & has a connection if and only if o(&) vanishes in HYX, F(&)).

Note. We may consider Z()=.7()(G) to be the sheaf of germs of {{y}, fy
satisfies (5).

As a consequence of this theorem, we show the existence of connection for
the bundles whose structure groups are locally compact abelian groups as follows:
We denote the sheaf of germs of the elements of C"(U,G) by %7. Then if G is
an abelian group, we get .7(,)= &' Hence we have

X, T@)=H{(X, <)

If G is a locally compact, connected and locally connected abelian group,
then we know ([197)

G=Rrx T

where R» is the p -direct product of R', the additive group of real numbers, 7~
is the v -direct product of T'=R'/Z. Then since we know

&r =Ry, rz21,

we get HY(X, &1)={03}, if X is normal paracompact. Hence we have

Theorem 3. If G is a locally compact, connected and locally connected abelian
group, then a G -bundle & over a normal paracompact space always has a connection.

Corollary. [f G is a locally connected, connected and locally conmnected solvable
group, then a G -bundle & over a normal paracompact space always has a connection.

Note. If G is a locally compact, connected and locally connected abelian
group, then we can define g, 0<{2A<1, for any element g of G. Hence taking a
partition of unity {ew(x)} for the locally finite open covering {W?} by which the
given G -bundle é={gyy(x)} is defined, we can construct a connection {sy} of &
by



Connection of Topological Manifolds 7

Syy(o, X1)

= (I EUw (X)W o) gy {1 )oW ),
UnW#y

We note that this sy satisfies sy(%g, %1)=5y(%1, %o).
3. Defintion ((37). If {sy} is a conmection of &, then

(6) {05p{(%0, %1, X2) } = {Su{X1, Xa)St{%o, X2)™ 1Sp(%o, X1,

is called the curvature of {sy}.

Theorem 4 (2], [3] cf. {1, [167)). If the value of the curvature of a connection
of & is contained in H, a subgroup of G, then the connected component of the
identity of the structure group of & is rveduced to H as a G -bundle.

Proof. We take a set of points {@,} of X such that there exists a neighbo-
rhood Ula,) of a, for any a, which satisfies

(i) u.Ua,) = X,
(ii) some sy is defined on Ula,) x Ula,).
Since Syl ¥o)Su{%a, %) 15y{%e, 41) belongs in H, we have
Su(%o, %2) = Su(%o, X1)hy(%o, X1, X2)S (%1, xé),
hy(xo, %1, %) € H.
Then setting x;=x,=x and X,=a,, we get

S, %) '8y v(a.)Sv(aa, %)8y (%)

= hyla,, %, x) = H.

Hence we have the theorem.
Note. By definition, {ds;} satisfies

@ Suv(%1) 105 y(%o, X1, X2)&uv(X1) = 05y (X, X1, Xa).

Similarly, if the connection is given as an element s of C{X;, G);, then we define
the curvature ds of s by

6y 08 po, D1, Do) = S(P1, D2)S( Do, Do) (o, D1)-
This ds also satisfies

(7)’ 53(1’1“» pZﬁ) psT) - ‘8_1(33(1)1, 1)2, 1)3)185 «, ‘8) TE G.

It G is an abelian group, then by (7)', ds defines an Alexander -Spanier 2 -cocycle
of X with coefficients in G, and its cohomology class does not depend on the
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choice of s.
Especially, if G is a locally compact, connected and locally connected abelian
group, then ds defines an element of H¥X, R+*»),
Theorem 5 ((4]). If G is a locally compact, comnected and locally connected
abelian group and X is pavacompact normal, then the following diagram is commut-
ative.

H(X, Go) — H(X, 7v)
Nk
HYX, R**),

where G, is the sheaf of germs of continuous maps from X to G, § is the
coboundary homomorphism induced from the exact sequence

i i
0> 2" Rrt» > G, >0,

= is the map induced from the inclusion and y is the map defined by the curvature
of the G -bundles (regarded as the elements of H{X, G, ) (cf. [117]).

Covollary 1. [f G=C% the wmultiplicative group of complex numbers without 0,
then for a C* -bundle &, (&) is the 1 -st (complex) Chern class of &.

Corollary 2. Under the same assumptions about G and X as Theovem 5, the
JSollowing sequence is exact.

HYX, G) > H\(X, G, ) > HY(X, Re**),

where i is the map induced from the inclusion by regarding G to be the sheaf of
germs of constant maps from X to G (which is a subsheaf of G, ).

Note. For GL{n, C) -bundles, we can construct the analogy of Chern’s theory
of Characteristic classes ([47, cf. [8], [9).

4. If & is a vector bundle with structure group G, fibre L, a topological
vector space on which G acts as a linear transformation group, then we can give
another definition of connection which is a natural generalization of usual defini-
tion of connection ((2]).

Definition. If the collection { fy}, fu e C(U, L), satisfies

(8) gUV(xO)fV(xO, """ ’ xs) = fU(xOJ """ ’ xs>, Xy € Uﬂ V:

then we call { fy} is an s -cross -section of E={g,y(x)}, and denote the space of all
s -cross -sections of & by CY(X, ¢&).
We assume that there is a topological ring R of linear transformations of L
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such that G and some neighborhood of e in % is contained in G.
Definition. A collection {0y}, 0,<CYU,R), is called a (linear) connection of & if
{0y} satisfies

((0+0v) (Su) (0, -+ s Xsit))
= ng(xo)((5+0V)fV)(x0, """ 3 xs+1): fOT all fU S Cs(Xb S)» N :>: O:
where 5fy(xq, ++- s ¥s11) and Oy fy(xg, -+ s ¥511) are given by
OfU(xO) """ 3 x5+1)
s+1
= (_1)1fU(x01 """ y Kicty Xipty treeee ) xs+1)y
i=0
Oy fu(xo, - » Xsat) = OulXo, Xg) fy®s, =ooenr s Xo41)

Definition. If {0y} and {0't7} arve the conmections of &, then we call {0y} and
{0'u-} are equivalent if and only if there exists a common refinement {U"} of {U?}
and LU} such that

0' o | V(AU )= hpr (Qu—hor = 8hy e~ VAU, U < UNT',
g' v U NV = hy guvhy U N V",

where {guv} and { gy} are the transition functions of & by which {01} and {6'y'}
are defined.
Definition. We set

9 Oy{x, X1, X2) = 80y{Xo, %1, Xa) - Op(%y, ¥1)0u{x1, %2),

and call {Oy} the curvature of {0y}.
Then we can prove (2], [3]),

(). If {0y} is a (linear) connection of & then setting sy(x,, %) = e + Oy(%y, x1), {Su}
is a conmection of E.

(). If {su} is a connection of & and N exists for G, then setting 0y = sy — e, {6y}
is a (linear) connection of &.

(ii). If RN exists for G, then a G -bundle always has a (linear) connection.

(iii). If the value of 1+0y is contained in H, a subgroup of G, then the connected
component of the identity of the structure group of & is recuced to H as a
G-bundle.

§ 2. Bundles which have no connections.

5. For a normal paracompact space &, we set
Z( ). the topological group of all comtinuous maps from & into Z, the additive
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group of integers, with compact open topology.
C(&): the topological group of all comtinuous maps from % into C, the complex
number field, with compact open topology.
CH( 25): the topological group of all continuous maps from & into C*, the multipli-
cativegroup of complex numbers without 0, with compact open topology.
We denote the sheaves of germs of continuous maps from & to Z, C and
C* by Z,, C,, and C*,. Then we have the exact sequence

0= Z. —Z>CC i>C*C -0,

where i is the inclusion, j is given by j(f) = exp(2zv/~1 f). Hence for the above
groups, we have the following exact sequence.

¥ 1% r
(10) 0> Z(55) > CL67) > CH 59) > HY 52, Z) > 0.
In the sequence (10), we set
(11) JHO(EE ) = CFo( &)

Then by (10), we have the following exact sequences.

(10y 0> Z(5) > CL55) > Oy ) > 0,
(10" 0> C*(58) > CH( ) > H( 5, Z)->0,

where ¢ is the inclusion.

On a normal paracompact space X, we denote the sheaves of germs of conti-
nuous maps from X to Z(¥), C(%), CHE), C*(¥) and H (¥, Z) by Z( L),
C(E ), CHE ), C*( &) and HYV &, Z) . Then by (10) and (10)"’, we have the

exact sequences of sheaves

A A

7
(12), 0> Z(5) »>C(5) > CH %) >0,
. 3
(12), 0>C* &) >CHE ) —»>H %, Z) —0,

A A ~ A . L '
where ¢, 7, = and 0 are the maps induced from ¢* j* < and J. Moreover, we

know
(13)11 HP(X, Z( %I’j)c ) = HP(X; Z( g’))y Pz 0’
(13), HYX, H( &, Z).)=HXX, H(&, Z)), p=0,

because the topologies of Z(%) and HY{ &, Z), are discrete.
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By (12), and (13),, we get
(14) o Hi(X, C*( &)= H*\ (X, Z(Z), i=1

On the other hand, by (12), and (13),, we have the following exact sequence.

Aokt *

(15) o> HYX, C*( ) ) > HY(X, CH(50) ) >
> HAX, HY 8, Z)> HYX, C*( ) ) > -
By (14}, (15) is rewritten as

=1 X7

(15)' - H3(X, Z(g))»Hl(X CH&E ) )~

> H\(X, H{ %, Z))6—>H3(X, Z(E N>,

A

where % and &’ are the maps induced from (14) and #* and 6. We note that
HY(X,C* %) ) is the group of equivalence classes of all C* &) -bundles over X
(C11]).

6. Lemma 1. If 2 is connected and H is a subgroup of CY &) such that whose
connected component of 1 is C*( &), then H is equal to C¥ & ).

Theorem 6. I[If each connected component of 2 1is compact then a C* %)
-bundle over X, a wnormal paracompact space, has a conmnection if and only if it
belongs in t* -image.

Proof. If a C¥ &) -bundle & over X has a connection, then its curvature
gives an Alexander -Spanier 2-cocycle of X with coefficients in C¥ ). If & is
connected, then by assumption, & is compact. Hence some neighborhood of I
in Cg) is contained in C*¥( %) by the definition of C*( ). Hence we may
consider the value of the curvature of € is contained in C*{ &), because the value
of the curvature belongs in (arbitrary) neighborhood of 1. Therefore we have the
nescessity by Theorem 4 and Lemma 1if 2 is connected. If & is not connected,
then setting & =U, % ., each £, is connected, a C¥ &) -bundle over X is a
direct sum of C* & ,) -bundles over X. Hence we obtain the nescessity for the
non -connected case.

On the other hand, if {é=gyp(x)} is a C¥*( &) -bundle, then we can define
Guv(x)y, 0<2<1, and setting

Sy(%o, %) = nlgV ¢ GuwlEe)ew (%0) gz, )ew (%),

where {U?} is a locally finite covering and {ey{x)} is a partition of unity corre-
sponding to {U}, {sy} gives a connection of & This shows the sufficiency.
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We take S* as X and & . Then we get

HYS?, C*(SY) = H¥S*, Z) = {03,
HXS?, C*(SY) = H¥S?, Z) = {03,
HY\SY, HY(SY, Z)y= H\SY, Z)=Z.

Hence by the exact sequence (15, we obtain
(16) HYS!, CX(SY). )= Z,

and ¢* -image in HYS!, C*S') ) is equal to 0. Therefore there exists infinitely
many non -trivial C*S?) -bundles over St and they have no (topological) connection

because S! is compact.
Note. We set 7( & )={f|fCH& ), |f|= 1}, then by the map

CH ey x I3 (f, t)»%; e CH %),

T(%) is a deformation retract of C* ). Hence a C* &) -bundle over a normal
paracompact space is considered to be a 7( %) -bundle ([147, [207).

§ 8. Connection of microbundles.

7. A microbundle ¥ over X, a topological space, is a sequence X —:Ei»X
with open coverings {U3} and {U} of X and X) in E such that the diagram

AR

U 1 U 2x)= xx0, P&, a) =x, xc U, ac R"

UxR"

is commutative (17), where ¢ is a homeomorphism.

It is known ([12], [15]), that a microbundle over X is regarded to be an
Hyn) -bundle over X if X is normal paracompact. Here Hyn) is the group of all
homeomorphisms of R" which fix the origin with compact open topology. There-
fore, a connection {sy} of X should be considered to be a collection of continuous
maps Sp(¥,, %;) from a neighborhood of 4,(U) to Hyn) such that

SU(xy x) = ¢,

Zuv(Xo)sv(%e, %1)8yul%1) = Syl 1),
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where {gyy{#)} is the transition function of ¥ regarded to be an Hy#n) -bundle.
On the other hand, setting

(17) puey %, @)= (%, pyyv(afa), x€UNV, ac R,

dyv(x) is a homeomorphism from a neighhorhood of the origin in R” to a neighbo-
rhood of the origin in R” such that

Pro(eX0) = 0.

As in n° 1, we call two homeomorphisms ¢, ¢ from a neighhorhood of the origin
in R" to a neighborhood of the origin of R” such that

are equivalent each other and denote ¢ ~ ¢ if and only if there exists a neighbo-
rhood W of the origin in R* such that

plW=¢[W.

Then the set of all those classes forms a group. We denote it by H,(n). Although
H,n) is not a topological group, we define a map from S, a topological space, to
H,n) to be continuous as follows.

Definition. We call . S—H,(n) to be coniinuous if there exists an open covering
{U} of S and continuous maps }U: U— EyfQyu, R") such that the class of fU(x) is
fx) for each xU. Here Qy is a neighborhood of the origin in R", E{Qy, R") is
the topological space of all homeomorphisms from Qy into R" which fix the origin
with compact open topology.

By this definition, &yy(x) given by (17) defines a continuous map ¢yy from
UNV into Hy(n). Moreover, it satisfies

puviX)ovw(X)lewu(x) = e, the identity of H(n).

Therefore, denoting the sheaf of germs of continuous maps from X to Hun) by
H,(n). , we can construct a 1 -cocycle over X with coefficients in Hy(n) and we
can show ([5]) its cohomology class does not depend on the choice of oy.

Definition. We call {¢yy} the transition function of ¥ as an H,(n) -bundle.

On the other hand, if {U,} is a locally finite open covering of X, {¢.s3={0v.vs}
belongs in Z{X, Hyn). ), then we can construct a microbundle over X such that
whose transition function as an H.#) -bundle is {¢.s} as follows: Take a repre-

- sentation $,s of ¢,p for each a, 8 and assume
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Put@ps(X)0ra2N@) = @, x € U,nUsN U,

a s Q,, aneighborhood of the origin of R".
Then in U, xR"xX«a, we set
Weo = (Ua NUs) X Qpua N Pos((U. N Us) X Q) ,

and identify U,s2xxax B and xx da(x)a)x f€lls,. Then setting the quotient space
of U, U,xR"Xa under this relation by E fthe points which are not contained in
U,s are not identified each other), and set ‘

i(x) = the class of x x 0 X a in E,

J{x xaxal)=x {¥ xaXa}is the class of x X a X a,

we obtain a microbundle ¥ and its transition function fas an H,) -bundle) is

{@as}

It is known (5) that:

Theorem 7. There is a 1 to 1 corvespondence between the set of all equivalence
classes of n -dimensional microbundles over X, a normal paracompact space, and
HYX, Hy(n) ).

Regarding X to be an H,(n) -bundle with transition function {gyy(*)}, we can
define a connection sy} of ¥ as an H,.(n) -bundle as follows: {sy} is a collection
of continuous maps Su(x,, x;) from a neighborhood of 4;(U) to H.(n) such that

SU(x; x) = ¢,
Buv(%o)Sv(%e, %1)8vul#1) = sy(%o, %1).
8. In Hyn), we set
Hn)={ f|fe Hfn), fla)=a, if a belongs in some neighborhood
of the origin of R"}.

By definition, H,(n) is an (algebraic) normal subgroup of Hyn).
Lemma 2. If n=5, then

(18) Hy(n) = Hyn)/H(n).

Proof. Since an element of Hyn)/H,(n) defines an element of H.(n), we need
only to show if ¢ is an element of Hy(n), then there is an element f of Hy#n) such
that whose class mod. H,(n) gives o.

We set B,={a|acsR" |a|<pl}and take a representation ¢ of ¢ which is defined .
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on B,,,, ¥ >0, ¢e>0. We take a positive number R to satisfy

R>r7r, Br 2 §(B,,.).

Then by annulus theorem ([13], [21]), there exists a homeomorphism % from -
Byz — B, onto By — &(B,) if nz= 5. Since $~4 is a homeomorphism of 2B, and it
is extended to a homeomorphism &% of Byr — B, by setting

5 (Lo) = Lo, 2B, r<p<2R,

we may consider (if nescessary, taking A(G~h)! instead of 4), % is coincide to ¢
on 4B,.

Using this #, we define a homeomorphism ¢ from By, onto B:p by

pla) = ¢la), |al<r,

ola) = hla), r <|a|<2R.
On the other hand, we define a homeomorphism 7 from B,r onto R" by
T@)=a, |a|<R,

T(a):ﬂ%ma, R<|a|<2R.

Then TeT ! is an element of Hyn) and by definition, we get

TeT Ya)= ¢pla), |al 7.

Hence the class mod. H(n) of TeT ! is ¢. Therefore we have the lemma.

Note. By annulus theorem, H,(n) is dense in SHyn)=H,*(n) (the connected
component of the identity of Hyn), or equivalently, the subgroup of Hy#) consisted
by all orientation preserving homeomorphisms {(cf. {7]). Hence we can not give
H,(n) any non -trivial topology.

Lemma 3. H/n) is a contractible group.

9. Lemma 4. Let ¥ be an n -dimensional microbundle over a normal paracompact
space and n =5, then X has a connection as an Hyn) -bundle if and only if X has
a connection as an Hy(n) -bundle.

Proof. If ¥ has a connection {sy} as an Hy#n) -bundle, then denoting the class
mod., H,n) of sy(xy, %) by sy*(%e %), {sy™} gives a connection of ¥ as an H,(n)
-bundle. Hence we have the nescessity.

To show the sufficiency, we set the transition function of X as an Hyn) -bundle
by {gyv(%)}. Then denoting the class mod. H,n) of gyv(®) by guv*(%), {guv*®)} is a



16 AKIRA ASADA

transition function of ¥ as an Hy(n) -bundle. We set

T Ho): the sheaf of germs of those ty, ty&CYU, Hyn) and (some) ty <ty satisfies
Zuv(xg)ty(%e, X1)gvu(%e) = fy(xo, X1).

T m, Heny: the sheaf of germs of those ty, tyeCYU, H(n) and (some) ty ety satisfies
Guv(xa) ty(%o, %1) uv(%e) = Ly(%e, %1)r

T x, Hany: the sheaf of germs of those ty, tyeCYU, H¥n)) and (some) tycty satisfies
8uv* (%) Ey(%e, %1) 8yu™ (%) = Ly(%o, %1).

Here CYU, H,(n)) is defined similarly as CYU, G). Then by Lemma 2, we have

the exact sequence

i _ J
(19) 0— Ty, Hoy = TR, Hotw) — T & Hyw) = 0, -

where i is the inclusion, j is the canonical map. By (19), we obtain the following
exact sequence.

_ i ” ;
(20) v HYX, g, H.00) — H(X, Tg, Hotm) = H{X, Tz, m.on).

In this sequence, by the definition of the obstruction class for the existence of
connection, denoting the obstruction classes for the existence of connection in
HYX, % m,mw) and in HYX, T, g.m) by oX) and o%(X), we get

(21) 7¥0(X)) = 0™(X).

On the other hand, taking f{yy = ZYX, F% H.), We can construct a fibre
bundle 9 over Q(4y(X)), a neighborhood of 4,(X) in Xx X, with fibre H,(n) as
follows: Take the representations fyy € fyy and assume that they satisfy

tuv(%o, %1) Guv(®o) bvw(®e, %1) vvl®o) Suw o) bwulFe, X1) Bwul®e) = e,

(%, x3) € QUALUNVNW)).

Then we define an equivalence relation ~ between the elements of Q(4,(U))x H (n)
and the elements of Q(4,(V)x H,(n) by

QUL x H,n) D ((x0, x1), 0)
~ (%9, %1), Euv(xo)tuvixs, 1) grulxalp) € QU(V)) X H(n),

and construct the total space of % as the quotient space U Q4 (U)) x H,(n)/~.
Then, since H,(n) is contractible, ¥) has a cross-section f ([14], [20]). Since we
may consider f is a collection of H,(n) -valued function fy on Q(4y(U)) such that

Jul%e, %1) = Suw(%o)tuv{Xe, %1) Guv(Xo) f{%e, %1),
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{tyv} belongs in BYX, 7% m.mn). Hence HYX, T m,) vanishes. Therefore by
(20), s* is 1 to 1. Then by (21), if 0*(X) vanishes, then o(X) must vanish. This
proves the lemma.

Note. It is known that if » = 1 or 2, then Hyx) is contractible to O(n). Then
since GL{(n, R) is contained in Hy#) and a GL(n, R) -bundle always has a conne-
ction by #°4, (ii), an # -dimensional microbundle over a normal paracompact
space always has a connection as an Hy#n) -bundle if #n<<2. Hence Lemma 4 is
also true for n << 2.

§ 4. Connection of tangent microbundles.

10. The tangent microbundle = of a (paracompact) manifold is given by (17),
4 »
X—>XxX— Xy A(x) = (x7 x); p((x’ y)) = X,
with the commntative diagram

UxU

UxR"

where Ay is the homeomorphism from U onto R” by which the manifold structure
of X is given.

If we consider = to be an H,n) -bundle, then the transition function {gyv(x)}
of = is given by '

(22) gUV(x) = hU’ thr x—i!

where Ay, . is given by
(22) hy, 3) = hy(y) — hy(x).

Note. In (22), gyy(x) is a homeomorphism from kv, (UNV) onto Ay, (UNV).
We use gyy(¥) to denote such homeomorphism in one hand, and on the other hand,
by gyv(x) we mean the element of H,(n) defined by such homeomorphism.

Lemma B. © has a connection as an H,(n) -bundle if and only if there exists a
continuous function t(x,, x,) on some neighborhood of 4,(X) in X x X such that
(*). Hxo, %1) 1S a homeomorphism from a neighborhood of xy to a neighborhood of x,

such that
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Hxo, X1)(%1) = %o, Hx, X) is the identity.
Proof. If {sy} is a connection of r as an H,u) -bundle, then since
Euv(®o) Sy(%o, %1) &vul*1) = sy(xo, 1),
we obtain by (22),
(23) hy, x”tsv(%o, X0y, 50 = Ry, x”'Sul%e, X1)hy,x1,

on some neighborhood of 4(UNV).
By (23), setting

(24) Hxo, %) | VIAU) = hyy, o™ S, X0)legs, 21,

Hx,, x1) satisfies (¥).
On the other hand, if ¢ exists, then setting

Sy(xo, X1) = hy e Uxe, XAy, m ™Y

sy(%e, %1) is a homeomorphism from a neighborhood of the origin of R* to a
neighborhood of the origin of R” such that sy(x,, %:)(0) = 0 and satisfies

sylx, x) = e,

uv(¥e) sy(%o, %1) Gyo(*) = Sylxe, x1).
Hence {sy} gives a connection of .

11. On U, a coordinate neighborhood of X with homeomorphism A4y from U
onto R*, we can construct f;;, which satisfies (¥) on some neighborhood of 4(U),
by
(25) ty(®e, 20)(¥) = by~ Hhy(y) + hy(xe) — hy(xy),

(%0, %1) € W(A(U)).

Then setting

7’UV(x, y) - tU(x: y)tV(x: y)_l,
(x, y) € WA(U)) n W(d(V)),

ryv(%x, ¥) is a homeomorphism from a neighborhood of x onto a neighborhood of x
and satisfies
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(26) ruvlx, %) = the identity map,

ruvl%, J)x) = £

For this ryy, we set

(27) (ryv(x)b))a)
= hU’ :c(rUV(x’ hU’ x_l(b))(hV: x_l(a))'

As usual, we call to continuous maps f; and f, from some neighborhood of x
to H.(n) are equivalent if f,]Ux)= f; ! Ulx) for some neighborhood U(x) of x and
call the equivalence class of f the germ f. Then we set

FR", Hyn)={F|f is the germ at the origin of the continuous maps
from R" into Hyn) such that fl0)=e, f= f}

Then F.(R", H,(n)) is a group and 7ryy(x) given by (27) can be regard to be a conti-
nuous map from U N V into Fu(R", H.n). Here the continuous map from a
topological space to F.(R", H,n) is defined similarly as the continuous map to
H,(n) (cf. n°7).

If fis an element of F.(R", Hy(n) and % is an element of H,(#), then we

define the operation f° of @ to f by

“f* is the class of fe, where fv is given by
fHa)=flgla), ac R", f€f, pb.

Then by (27) and the definition of 7yp(x, ¥), we get

(x) (x)

(28) Pu(X) Py w(B)F UV r g y(x)fuw

= e, the identity of I (R", H.(n).

@ ete. also by

Here, for the simplicity, we denote the classes of 7, u(x)fvU
TVW(x)gVU(x)

We note that if X is paracompact, then taking a locally finite coverng {U,}

etc.

and denote 7,4(x) = ry.pe(x), etc., we may assume

(28)' 7 @) 812 P () T a)B) = 0, if(a, B) € Q, X Q.

where @, is an open ball of R" with center the origin.
12. We set
Eyn): the space of all homeomorphisms from R into R* which fix the origin with
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compact open topology.
Qon): the space of all homeomorphisms from Q" into R" which fix the origin with
compact open topology.
Here Q" means an open ball of R* with center the origin.
For these spaces, we set
F(R", E\n) ={f|f: R"— En), f0)=¢, the identity},
F Q" Qn) ={f|f: Q"— Qun), f0)=e, the identity},
where the topologies are given by the compact open topology. Then we get
Lemma 9. (i). F R" Eyn) and F, Q" Q)n) are both contractible.
(ii). To define an equivalence relation ~ of the elements of F(R", E\n)) by
Ji~ fo if and only if fila)b) = fula)b), (a, b) e Q X Q,

we have
Fe(R", Eyn))/~ = F Q" Qyn)).

Using these spaces and {7.(x)} given by (27), we construct an F,(R", H(n)
-bundle over X as follows: To define the equivalence between U, X F (R", E¢n)x«a
and Upx F(R", Efn))x 8 by

(29) (x, f, @) € U, x F(R", Em)) x a and (%, g, B) € Us x F(R", Eon) x B
are equivalant if and only if
8(a)b) = 7 .5(%) f(es(2)a)b), (@, b) € Qo X Qg

and set the quotient space of U,U, x F{R", En)) x a under this relation by &.
Then § is the total space of a fibre bundle over X and its fibre at %, x = U,, is
F(Q", Q\n) by (29) and Lemma 6. Then, since F,(Q" Eqn) is contractible by
Lemma 6, § has a cross -section p: X — & ([14], [17], 20).  Then, using local
coordinate, we get

(30) Fuv(a) = pole)pv(x)Tor @)L

Here we denote the covering by {U} instead of {U,} and gy means p | U.
By (30), setting

qU(x) y) - hU’ J:U(x: hU: :c_l(y))hUy a:_ly

we get

(30) ruv(®, ¥) = qulx, Y)gvix, y) L
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On the other hand, by the definition of ¢y(x, ¥), qulx, y)is a homeomorphism
from a neighborhood of x such that

quix, x) is the identity,
qu(x, y)x) = .

Hence setting
(31) Uz, Y| W(U)) = qU(x, y)'rulx, 3),

Hx, y) is defined on some neighborhood of 4(X) and satisfies (*).  Therefore we
obtain

Theorem 8. If X is a paracompact (topological) mani‘fold, then the tangent mi-
crobundle v of X has always a connection as an Hyn) -bundle.

By Lemma 4, we also have

Theorem 8. If X is a paracompact (topological) manifold, and dim. X =5,
then the tangent microbundle « of X has a connection as an Hyn) bundle. '

Note. It is known that if dim. X <3, then we may consider X to be smooth.
Since a smooth manifold always has a connection regarding its tangent microbundle
to be an Hyn) -bundle, because the tangent microbundle of a smooth manifold is
reduced to a GL(n, R) -bundle. Hence we can rewrite Theorem 8 as

Theorem 8''. If X is a paracompact (topo?ogz’cal) mMifold, and dim. X +# 4, then
the tangent microbundle v of X has a connection as an Hyn) -bundle,

18, If #4(x, y) and f3(x, ¥) both satisfies (*), then setting

r(x, ¥) = tx, bz, )71, %, ¥y & Vd(X)),

where V(4,(X)) is a neighborhood of 4(X) in X x X, we have ,
(*¥). #(x, ¥) is a homeomorphism from a neighborhood of x to a neighborhood of x
such that

r(x, ¥(x) = x, #(x, x) {s the identity.

On the other hand, if a continuous function #(x, ¥) on some neighborhood of
A(X) satisfies (*¥), then r(x, y)tx, y) satisfies (*) if #(x, y) satisfies (*). Hence we
have

Theorem 9. There is a 1 to 1 correspondence between the set of all comnections
of v (as an Hy(n) -bundle) and the set of germs of ¥(x, ¥) at 4,(X) which satisfies (**).

Note. If »x, ¥) satisfies (*¥), then we set

TU(xr a)(b) = hUy xr(x; hUy x—l(a))hU, ;c_ 1(b)>
a, b e Q, a neighborhood of the origin in R
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By definition, #y(x, a) is a local homeomorphism of R” near the origin which fix
the origin and it satisfies

(32) Guv(xrv(x, gyulx)a)gvylx) = ry(x, a).

Conversely, if there exists a collection {ry{x, @)} which satisfies (32), then we can
construct #(x, ¥) which satisfies (¥*).

By Theorem 9, if #(x,, ) is obtained from a connection of v (as an Hy(n)
-bundle), then we can write

(33) (H(xo, x1) | W{ALUMW()
= ry(xe, X1y Hhg(y) + hylxe) — hy(xy).

Hence we may consider a connection of X (regarding « to be an H,(n) -bundle) to
be a (local) parallel displacement of X.
We note that if 7y is given by (33) for given ¢, then we get

(34) rylXo, %1)" 7 y(xy, %))
= hy W hy(hy ™ Yhy(y) + Aylxy) — By(xn) + glxe) — hylx).

Hence 7, '7y does not depend on £

Note. If M is a paracompact infinite dimensional manifold modeled on L, a
topological linear space, then we can define the tangent microbundle of M and it
is regarded to be an H.(L)-bundle, where H,(L) is the group of germs of homeo-
morphisms of L which fix the origin. Then by the same method, we can show
that the tangent microbundle of M has a connection if we consider it to be an
H,(L)-bundle. But by a recent result of Henderson ([10]), this is trivial at least
L is an infinite dimensional separable Frechet space. Because of [10], such
manifold is homeomorphic to an open subset of Hilbert space.
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