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Abstract
A lattice Boltzmann method (LBM) for two-phase viscoelastic fluid flows is proposed.
The method is mainly an extension of the LBM for two-phase flows with large density
differences proposed by Inamuro et al. [Journal of Computational Physics Vol.198,
No.2 (2004), pp.628–644]. The viscoelastic effects are introduced by the constitutive
equation based on the Maxwell model, which has a spring and a dashpot connected
with each other in series. The method is applied to simulations of a drop under shear
flow in viscoelastic fluids and of a bubble rising in viscoelastic fluids. In the simulation
of drop deformation under shear flows, the effects of viscoelasticity on the deformation
and orientation angle are evaluated. In the simulation of bubble rising in viscoelastic
fluids, a cusp configuration at the trailing edge is investigated and compared with the
theoretical prediction and other numerical results.

Key words : Lattice Boltzmann Method (LBM), Two Phase Flow, Viscoelastic Fluid,
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1. Introduction

Recently, non-Newtonian fluid flows have attracted much attention in many scientific
fields and engineering applications. Non-Newtonian fluids have several properties which are
not observed in Newtonian fluids. In particular, viscoelasticity is one of them and regarded
as an important property. Viscoelastic fluids show not only a viscous flow response to an
imposed stress, as do Newtonian fluids, but also an elastic response. Viscoelastic fluid flows
can be found in polymer blending for coating process, oil-and-water mixture in petroleum
recovery, and so on.(1) In order to investigate dynamic behavior of the viscoelastic fluid flows,
a numerical simulation is considered a very effective approach. However, complexity of the
phenomena makes it difficult to develop numerical methods which incorporate nature of vis-
coelastic fluids.

Since the early 1990s, the lattice Boltzmann method (LBM) has been developed into an
alternative and promising numerical scheme for simulating Newtonian viscous fluid flows and
multiphase fluid flows.(2) – (5) In addition, the LBM has been also applied to non-Newtonian
fluid flows, such as fluids with shear-dependent viscosity.(6) – (10) The advantages of the LBM
are the simplicity of the algorithm, the accuracy of the mass and momentum conservations
and the suitability for parallel computing. Thus, it is expected that the LBM has possibility of
simulating the two-phase viscoelastic fluid flows. As for previous studies of viscoelastic fluid
flows using the LBM, Giraud et al.(11), (12) developed two- and three- dimensional LB models
of simple viscoelastic fluid flow. Ispolatov and Grant(13) proposed an LBM for viscoelastic
fluid based on the Maxwell model for viscoelastic media. While their studies are confined
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to one-component systems, Wagner et al.(14) extended the model by Giraud et al. to two-
component systems, and investigated a cusped bubble rising in a viscoelastic fluid. Also,
Onishi et al.(15) yielded an LB model for multi-component viscoelastic fluids using a discrete
equation for elastic dumbbells. Their model is originated with the existing Shan and Chen
model(16) for Newtonian fluids. In recent years, Inamuro et al.(17) have proposed a new LBM
for two-phase flows. The great advantage of this method is that incompressible two-phase
flows with large density ratio up to 1000 can be stably calculated using the method. Therefore,
the method has been successfully applied to flow simulations of capillary waves,(17) binary
droplet collisions(18) and bubble flows.(19)

In the present paper, an LBM for two-phase viscoelastic fluid flows is proposed, where
elastic effects are incorporated into the above-mentioned LBM for two-phase flows with large
density differences. The method is applied to simulations of a drop under shear flow in vis-
coelastic fluids and of a bubble rising in viscoelastic fluids. The results are compared with the
theoretical prediction and other numerical results.

2. Numerical Method

Hereafter, as shown in Appendix, we use non-dimensional variables which are defined
by a characteristic length L, a characteristic particle speed c, a characteristic time scale t0 =
L/U where U is a characteristic flow speed, a reference order parameter φ0 and a reference
density ρ0. In the LBM, a modeled fluid, composed of identical particles whose velocities are
restricted to a finite set of M vectors ci (i = 1, 2, . . . , M), is considered. The nine-velocity
model (M = 9) is used in the present paper. The velocity vectors of this model are c1 = 0,
ci = [cos(π(i−2)/2), sin(π(i−2)/2)] for i = 2, 3, 4, 5 and ci =

√
2[cos(π(i−11/2)/2), sin(π(i−

11/2)/2)] for i = 6, 7, 8, 9.

2.1. Elastic Stress Based on the Maxwell Model
In general, the Maxwell model, which has a spring and a dashpot connected with each

other in series, is commonly used to express viscoelastic property. The Maxwell model for
viscoelastic media links the elastic part of the stress tensor σel

αβ to the strain εαβ in non-
dimensional form as follows:(20)

∂εαβ

∂t
=

1
Gel

∂σel
αβ

∂t
+

1
Sh

σel
αβ

η
, (1)

where Gel is the shear modulus, η is the viscosity represented by a dashpot in the Maxwell
model, Sh (= U/c) is the strouhal number and α, β = x, y (subscripts α and β represent
Cartesian coordinates and the summation convention is used hereafter). The left-hand side of
Eq. (1) indicates the rate of strain ε̇ given by ∂uα/∂xβ+∂uβ/∂xα, where uα is the fluid velocity.
Thus, the evolution of the stress tensor reads

τel
∂σel

αβ

∂t
= −σel

αβ + η

(
∂uα
∂xβ
+
∂uβ
∂xα

)
, (2)

where τel = Shη/Gel is the dimensionless stress relaxation time. Considering that the value of
the stress is finite at t = −∞, the differential equation is solved by the variation of parameter.
Hence, the stress tensor at position x and at time t is given by

σel
αβ(x, t) =

η

τel

∫ t

−∞ exp

(
− t − t′

τel

)
ε̇(x, t′) dt′. (3)

Taking the gradient of Eq. (3), the Maxwell elastic stress as a body force Fα is obtained by

Fα(x, t) =
η

τel

∫ t

−∞ exp

(
− t − t′

τel

)
∇2uα(x, t′) dt′, (4)

where ∇2 = ∂2/∂x2
α is the Laplace operator. Accordingly, Eq. (4) can be discretized with time

step Δt as follows:(13)

Fα(x, t + Δt) =

(
1 − Δt

τel

)
Fα(x, t) +

ηΔt

τel
∇2uα(x, t). (5)
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As mentioned below, Eq. (5) representing the Maxwell viscoelastic effect is included into the
evolution equation of the velocity distribution function as a body force in the original LBM
for two-phase fluid flows.

2.2. Formulation
The present method is mainly based on the LBM for incompressible two-phase flows

with large density differences proposed by Inamuro et al.(17) In the following, we assume two
immiscible fluids composed of A- and B-phases where A-phase has a viscoelastic property
based on the Maxwell model and B-phase has no elasticity. The physical space is divided
into a square lattice, and the evolution of particle population at each lattice site is computed.
Two particle velocity distribution functions, fi and gi, are used. The function fi is used for the
calculation of an order parameter which distinguishes two phases, and the function gi is used
for the calculation of a predicted velocity of the two-phase fluid without a pressure gradient.
The evolution of the particle distribution functions fi(x, t) and gi(x, t) with velocity ci at the
point x and at time t is computed by the following equations:

fi (x + ciΔx, t + Δt) = fi(x, t) − 1
τ f

[
fi(x, t) − f eq

i (x, t)
]
, (6)

gi(x + ciΔx, t + Δt) = gi(x, t) − 1
τg

[
gi(x, t) − geq

i (x, t)
]

+ 3Eiciα
1
ρ

[
∂

∂xβ
μ

(
∂uβ
∂xα
+
∂uα
∂xβ

)]
Δx

+ 3Eiciα
1
ρ

(
ρ − ρB

ρA − ρB

) [(
1 − Δt

τel

)
Fα(x, t − Δt) +

ηΔt

τel
∇2uα(x, t − Δt)

]
Δx, (7)

where f eq
i and geq

i are equilibrium distribution functions, τ f and τg are dimensionless single
relaxation times, Δx is a spacing of the square lattice and the other variables, ρ, μ, u, and
constants Ei are defined below. The time step Δt is chosen as a time during which the parti-
cles travel the lattice spacing; it follows that Δt = ShΔx. The subscripts A and B represent
quantities of A- and B-phases, respectively (the same rule is adopted hereafter).

The order parameter φ distinguishing two phases and the predicted velocity u∗ of the two-
phase fluid are defined in terms of the two particle velocity distribution functions as follows:

φ =
9∑

i=1
fi, (8)

u∗ =
9∑

i=1
gici. (9)

The equilibrium distribution functions f eq
i and geq

i in Eqs. (6) and (7) are given by

f eq
i = Hiφ + Fi

[
p0 − κ fφ∇2φ

]
+ Eiφ

(
3uαciα − 3

2
uαuα +

9
2

uαuβciαciβ

)

+ Eiκ f Gαβ(φ)ciαciβ, (10)

g
eq
i = Ei

[
1 + 3uαciα − 3

2
uαuα +

9
2

uαuβciαciβ +
3
2

(
τg − 1

2

)
Δx

(
∂uβ
∂xα
+
∂uα
∂xβ

)
ciαciβ

]

+ Ei
κg

ρ
Gαβ(ρ)ciαciβ − 1

2
Fi
κg

ρ
|∇ρ|2 , (11)

where

E1 = 4/9, E2 = E3 = E4 = E5 = 1/9,

E6 = E7 = E8 = E9 = 1/36,

F1 = −5/3, Fi = 3Ei (i = 2, 3, . . . , 9),

H1 = 1, Hi = 0 (i = 2, 3, . . . , 9),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(12)
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and

Gαβ(φ) =
9
2
∂φ

∂xα

∂φ

∂xβ
− 9

4
∂φ

∂xγ

∂φ

∂xγ
δαβ. (13)

In the above equations, κ f and κg are constant parameters determining the width of the inter-
face and the strength of the surface tension, respectively, and δαβ is the Kronecker delta. In
Eq. (10), p0 is given by

p0 = φT
1

1 − bφ
− aφ2, (14)

where a, b and T are free parameters determining the maximum and minimum values of
φ. The following finite-difference approximations are used to calculate the gradient and the
divergence of the scalar variable ψ (= uβ, φ, ρ) in Eqs. (7), (10), (11) and (13):

∂ψ

∂xα
≈ 1

6Δx

9∑
i=2

ciαψ(x + ciΔx), (15)

∇2ψ ≈ 1
3(Δx)2

[
9∑

i=2
ψ(x + ciΔx) − 8ψ(x)

]
. (16)

The density in the interface is obtained using the cut-off values of the order parameter,
φ∗A and φ∗B, for A- and B-phases with the following relation:

ρ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρB, φ < φ∗B,
Δρ

2

[
sin

(
φ − φ∗
Δφ∗

π

)
+ 1

]
+ ρB, φ∗B ≤ φ ≤ φ∗A,

ρA, φ > φ∗A,

(17)

where Δρ = ρA − ρB, Δφ
∗ = φ∗A − φ∗B, φ∗ = (φ∗A + φ

∗
B)/2. The viscosity μ in the interface is

obtained by

μ =
ρ − ρB

ρA − ρB
(μA − μB) + μB, (18)

where μA implies the viscosity which derives from the collision process in the original LBM.
Hence, it is noted that the viscous part coming from the Maxwell model should be included
into the effective viscosity of the viscoelastic fluid (A-phase). Also, the surface tension σ is
given by

σ = κg
∫ ∞
−∞

(
∂ρ

∂ξ

)2

dξ, (19)

with ξ being the coordinate normal to the interface.(21), (22)

Since u∗ is not divergence free (∇ · u∗ � 0) in general, the correction of u∗ is required.
The current velocity u which satisfies the continuity equation (∇·u = 0) can be obtained using
the following equations:

Sh
u − u∗

Δt
= −∇p

ρ
, (20)

∇ ·
(∇p
ρ

)
= Sh

∇ · u∗
Δt

. (21)

In order to solve the Poisson equation (21), the following evolution equation of the velocity
distribution function hi is used for the calculation of the pressure p:

hn+1
i (x + ciΔx) = hn

i (x) − ρ

1 + ρ/2
[
hn

i (x) − Ei p
n(x)

] − 1
3

Ei
∂u∗α
∂xα
Δx, (22)

where n is the number of iterations. The pressure is obtained by

p =
9∑

i=1
hi. (23)

The iteration of Eq. (22) is repeated until
∣∣∣pn+1 − pn

∣∣∣ /ρ < ε is satisfied in the whole domain,
where ε means a convergence criterion.
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(a) (b)

Fig. 1 Deformation of a drop in shear flows: (a) geometry and coordinates; (b)
definition of RMAX,RMIN and θ.

3. Numerical Examples

3.1. Dynamics of a Drop under Shear Flow in Viscoelastic Fluids
Dynamic behavior of a drop under shear flow in viscoelastic fluids is simulated using the

present method. As shown in Fig. 1(a), a rectangular domain with Lx × Ly = 128Δx × 64Δx
is considered. The domain is filled with a viscoelastic matrix fluid (A-phase), and a single
Newtonian drop (B-phase) with initial radius R0 is placed at the center of the domain. At time
t = 0, the upper and lower walls are suddenly moved in opposite directions (± x-directions)
with a speed uw. The no-slip boundary condition is used on the moving walls, and the periodic
boundary condition is used on the sides of the domain.

As shown in Ref. (23), the main dimensionless parameters for this problem are the fol-
lowing two quantities. One is the capillary number Ca = μ∗AΓR0/σ, where μ∗A = μA + ηΔt/τel

is the effective viscosity and Γ = 2uw/Ly is the imposed shear rate, and the other is a parameter
representing the ratio of elastic to interfacial stresses, N = N1R0/(2σ), where N1 = 2ηΓΔt/τel

is the first normal stress difference in the matrix fluid. According to Ref. (24), effects of
fluid elasticity on drop shape can be observable when Ca2 ∼ N in order-of-magnitude sense.
Therefore, order of a non-dimensional ratio P = N/Ca2 is set to unity in the simulations. The
parameters in Eq. (14) are a = 1, b = 6.7 and T = 3.5 × 10−2; it follows that the maximum
and minimum values of the order parameter are φmax = 9.714× 10−2 and φmin = 1.134× 10−2.
The cut-off values of the order parameter are φ∗A = 9.20 × 10−2 and φ∗B = 1.50 × 10−2. The
other parameters are fixed at τel = 1 × 10−4, τ f = 1, τg = 1, ε = 10−6, R0 = 12Δx, ρA =

1.1, ρB = 1 (ρA/ρB = 1.1), μB = 0.1Δx and κ f = 0.5(Δx)2. Note that the parameter κg is
changed so as to give different values of the surface tension σ. Also, in all cases, the effective
viscosity μ∗A is fixed at 0.3Δx, though μA and η are changed separately. The deformation is
evaluated by the Taylor’s deformation parameter(25) D = (RMAX − RMIN)/(RMAX + RMIN) and
the orientation angle θ, where RMAX and RMIN are the major and minor axes of the deformed
ellipsoidal drop, respectively, as defined in Fig. 1(b). It should be noted that the orientation
angle θ has unit of degree.

First, unsteady behavior of the drop under shear flow is investigated for different P-values
at a constant capillary number. Figure 2 shows time evolution of the deformation parameter D
and orientation angle θ at Ca = 0.26. Note that the horizontal axis indicates the dimensionless
time t∗ = tuw/Ly. In all cases, the deformation parameter D, which initially increases rapidly
owing to the imposed shear flow, overshoots around t∗ = 1.3 ∼ 1.5 and then approaches the
equilibrium state. It is found that the equilibrium values of D are almost constant in spite
of different viscoelastic parameters, though a little larger value can be seen for P = 2.4. The
orientation angle θ, on the other hand, decreases with time at the early stage and then converges
to respective equilibrium values. Also, it is found that the equilibrium value becomes smaller
as the P-value increases. These tendencies are in qualitative agreement with the results by
Onishi et al.(15)
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(a) (b)

Fig. 2 Time variations of drop characteristics: (a) deformation parameter D; (b)
orientation angle θ: �, P = 0.6; 
, P = 1.2; �, P = 2.4. The capillary number is
0.26 (t∗ = tuw/Ly).

(a) (b)

Fig. 3 Velocity fields and deformation of a droplet: (a) in Newtonian fluid (P = 0);
(b) in viscoelastic fluid (P = 2.4). The capillary number is 0.26.

(a) (b)

Fig. 4 Plots of (a) deformation parameter D and (b) orientation angle θ obtained at
steady state against different capillary numbers: ◦, P = 0; �, P = 0.6; 
,
P = 1.2.

Next, viscoelastic effects of the matrix fluid on the drop deformation are examined. Fig-
ure 3 shows steady-state results of velocity vectors and drop shape in different matrices,
namely, (a) a Newtonian fluid and (b) a viscoelastic fluid for P = 2.4 at a constant capil-
lary number (Ca = 0.26). It can be seen that although the drops in both cases have almost
the same elliptic shape, the drop in the viscoelastic matrix is more oriented toward the flow
direction than that in the Newtonian matrix.

Finally, the effects of the capillary number on the drop deformation are investigated. Fig-
ure 4 demonstrates the relation of (a) deformation parameter D and (b) orientation angle θ to
the capillary number. The deformation parameter increases almost linearly and the orientation
angle slightly decreases with the capillary number.
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Fig. 5 Problem of a Newtonian bubble rising in viscoelastic fluid and initial state of
the bubble.

(a) (b)

Fig. 6 Time evolution of bubble shape for R0 = 20Δx and σ = 8.89 × 10−5Δx
[κg = 1 × 10−4(Δx)2]: (a) in Newtonian fluid at Ca = 4.48 and Re = 3.97;
(b) in viscoelastic fluid at Ca = 3.72 and Re = 3.29.

3.2. Dynamics of a Bubble Rising in Viscoelastic Fluids
Dynamic behavior of a bubble rising in viscoelastic fluids is simulated using the present

method. As shown in Fig. 5, a rectangular domain with Lx × Ly = 160Δx × 200Δx is consid-
ered. In the calculations, the gravitational force is assumed by adding the term −3Eiciy(1 −
(ρA/ρ))gΔx, where g is the gravitational acceleration, to the right-hand side of Eq. (7). The
domain is filled with a viscoelastic fluid (A-phase), and a single Newtonian bubble (B-phase)
with the center of an initial radius R0 is placed at (x/Lx, y/Ly) = (0.5, 0.3) and released at time
t = 0. The no-slip boundary condition is used on all the walls. The dimensionless parameters
are the capillary number Ca = Vμ∗A/σ and the Reynolds number Re = ρAVR0/μ

∗
A, where V is

the mass-averaged vertical velocity of the rising bubble defined by(26)

V =

∫
(ρA − ρ)uy dS∫
(ρA − ρ) dS

, (24)

where dS is the area element. The values of the parameters, a, b, T, ρmax, ρmin, φ
∗
A, φ

∗
B, τ f , τg

and ε are the same as in the previous problem. The other parameters are fixed at τel =

16.7, ρA = 5, ρB = 1 (ρA/ρB = 5), μB = 2 × 10−3Δx, κ f = 1.5(Δx)2 and gΔx = 2.83 × 10−6.
The parameter κg is changed so as to give different values of σ, and in all cases, μ∗A is fixed at
1.2 × 10−4Δx in spite of changing the values of μA and η separately.
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(a) (b)

Fig. 7 Velocity vectors and bubble shape for R0 = 20Δx and σ = 8.89 × 10−5Δx
[κg = 1 × 10−4(Δx)2]: (a) in Newtonian fluid at t∗ = 3.98; (b) in viscoelastic
fluid at t∗ = 4.30 (t∗ = tV/R0).

(a) (b) (c) (d)

Fig. 8 Deformation of bubble rising in viscoelastic fluid for different capillary
numbers: (a) Ca = 3.28 × 10−2; (b) Ca = 4.63 × 10−1; (c) Ca = 4.96;
(d) Ca = 49.5. The initial radius of the bubble is fixed at R0 = 20Δx.

We first compare differences in the behavior of rising bubbles in a Newtonian fluid and in
a viscoelastic fluid. Figure 6 shows time evolution of behavior of the bubble with R0 = 20Δx
and σ = 8.89 × 10−5Δx [κg = 1 × 10−4(Δx)2] in these cases. The values of the dimension-
less parameters are Ca = 4.48 and Re = 3.97 in the Newtonian fluid and Ca = 3.72 and
Re = 3.29 in the viscoelastic fluid. The bubbles go up due to the buoyancy force in both
cases, but the shapes of the bubbles are quite different from each other. In the Newtonian
case, the bubble is deformed into a concave shape on the lower side, and finally becomes an
umbrella-like shape. In the viscoelastic case, on the other hand, the bubble is elongated in
the vertical direction and forms a cusp at the trailing edge, as observed in experiments.(27)

Moreover, Fig. 7 shows results of velocity vectors and bubble shape in these cases. It is seen
that relatively large-scale circulatory flows are induced symmetrically around the bubble in
each case.

We next investigate the effects of the capillary number on bubble shapes rising in the
viscoelastic fluid. In the calculations, the parameter κg is changed so that the capillary number
becomes 3.28×10−2 ≤ Ca ≤ 49.5. The initial radius is fixed at R0 = 20Δx. Figure 8 shows the
calculated results of bubble shape for different capillary numbers. It is seen that for smaller
capillary numbers, the bubble rises while keeping the initial round shape. This feature is in
good agreement with other numerical results(26) by the finite element method. Moreover, it is
expected from the figures that the bubble can form a cusp when Ca is approximately of O(1).
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(a) (b)

(c) (d)

Fig. 9 Deformation of bubble rising in viscoelastic fluid for different initial sizes:
(a) R0 = 15Δx; (b) R0 = 20Δx; (c) R0 = 25Δx; (d) R0 = 30Δx. The capillary
numbers are Ca ≈ 3 in all cases. The curve to the predicted functional form of
| x |2/3 is also shown in (d).

We finally investigate the cusp configuration in the viscoelastic fluid. Figure 9 shows
the bubble behavior for different initial sizes, R0 = 15Δx, 20Δx, 25Δx and 30Δx, with the
capillary number being of O(1), in fact, Ca ≈ 3. As the initial size of the bubble increases, the
bottom edge becomes sharper and the cusp configuration is clearly observed. In particular, for
the case of (d) R0 = 30Δx, it is found that the cusp can be fitted to the functional form | x |2/3
predicted by Joseph et al.(28) for a two-dimensional cusp created by the flow induced in two
counter-rotating cylinders.

4. Concluding Remarks

A lattice Boltzmann method (LBM) for two-phase viscoelastic fluid flows has been pro-
posed. The method is applied to simulations of a drop under shear flow in viscoelastic fluids
and of a bubble rising in viscoelastic fluids. It is found that the present method is successful
in the two-dimensional simulations, but the extension to three-dimensions will enable us to
make quantitative comparison of our results with available experimental data as well as other
numerical results.

Finally, according to experimental studies by Liu et al.(27) and by Soto et al.,(29) velocity
jump and negative wake can be seen in the problem of a rising bubble in viscoelastic fluids,
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though they are not discussed in the present paper. Therefore, further investigation into these
peculiar phenomena is also required in future work.
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Appendix Non-dimensional variables

As in Ref. (17), we use the following non-dimensional variables which are defined by a
characteristic length L, a characteristic particle speed c, a characteristic time scale t0 = L/U
where U is a characteristic flow speed, a reference order parameter φ0 and a reference density
ρ0:

ĉi = ci/c, x̂ = x/L, t̂ = t/t0,

σ̂el = σel/(ρ0c2), Ĝel = Gel/(ρ0c2), η̂ = η/(ρ0cL),

ˆ̇ε = ε̇ t0, τ̂el = τel/t0, F̂ = F/(ρ0c2L2),

f̂i = fi/φ0, ĝi = gi/ρ0, ĥi = hi/(ρ0c2),

φ̂ = φ/φ0, ρ̂ = ρ/ρ0,

û = u/c, p̂ = p/(ρ0c2),

μ̂ = μ/(ρ0cL), σ̂ = σ/(ρ0c2L), ĝ = gL/c2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A.1)

Note that the circumflex representing ‘non-dimensional’ in Eq. (A.1) is omitted in the paper
for simplicity.
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