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Scale-dependence of seismic energy-to-moment ratio for strike­
slip earthquakes in Japan 
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Abstract. We analyzed four pairs of a large (Mw "" 6) and a 
small (Mw "" 3.5 to 4) shallow strike-slip earthquakes to 
investigate the scale-dependence of the seismic energy-to­
moment ratio, an important macroscopic parameter which 
reflects the basic physical process of seismic slip. These 
earthquakes occurred in the south-western part of Japan, and 
high-quality close-in records (epicentral distance < 50 km) are 
available for both the small and large earthquakes. The paired 
events have almost the same focal mechanism and hypocenter 
location. We used the spectral ratio of the paired events in 
order to remove the effects of attenuation along the wave 
propagation path and the station site response. We then 
estimated the seismic energy from the source spectra 
estimated from the spectral ratio. The energy-to-moment ratio 
increases with the earthquake size. This scale-dependence is 
very similar to that found earlier for earthquakes in Southern 
California. 

Introduction 

The seismic moment, M 0 ' and the radiated seismic energy, 
ER , are among the most fundamental macroscopic parameters 

for understanding the physical process of earthquake source. 
The seismic energy reflects the dynamic characteristics of 
earthquake source while the seismic moment does the static 
ones. The ratio of seismic energy to seismic moment, 
e = E R / M 0 ,can be interpreted as the radiated energy per unit 
area and per unit slip on the fault plane. This ratio, multiplied 
by rigidity J.l, has long been used in seismology as apparent 
stress [Aki, 1966; Wyss and Brune, 1970]. This ratio was 
recently used for interpretation of dynamic source processes 
of earthquakes [Kanamori and Heaton, 2000]. 

The energy-to-moment ratio, e = ER / Mo, estimated for 
earthquakes in Southern California increases with the 
earthquake size [Thatcher and Hanks, 1973; Kanamori et al., 
1993; Mayeda and Walter, 1994; Abercrombie, 1995]. 
Similar scale-dependence in energy-to-moment ratio was also 
found for earthquakes in the eastern Mediterranean region 
[Hofstetter and Shapira, 2000] and in Japan [Kobayashi et al., 
2000]. The scale-dependence suggests that the dynamic 
source process is different between small and large 
earthquakes. 

In practice, correction for attenuation along the path poses 
a severe difficulty in estimating seismic energy accurately, 
especially for small earthquakes. In order to overcome this 
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difficulty Venkataraman et al. [2001] estimated the seismic 
energy for the 1999 Hector Mine, California, earthquake 
using its foreshock and aftershock records as empirical 
Green's functions (EGF). They removed the effects of 
attenuation along the path and local site condition at regional 
stations by taking the spectral ratio of the main shock record 

to EGF. The estimate using EGF is probably more accurate 
than those estimated with other methods. 

Recently Ide and Beroza [2001] pointed out that the 
seismic energy currently estimated for small earthquakes tend 
to be underestimated because of the limited frequency band of 
instruments and unreliable corrections for attenuation along 
the wave propagation path. They evaluated the missed energy 
using the 0/ source spectral model and concluded that the 
energy to moment ratio is essentially constant over a 17 
orders of magnitude range of seismic moment. 

Thus, whether the energy-to-moment ratio is scale 
dependent or not is still in question because of the large 
scatter in the available data set. It is important to accumulate 
more accurate measurements to address this question. To this 
end, we used the high-quality close-in records which have 
only recently become available in Japan to accurately estimate 
seismic energy for 4 earthquakes in Japan; we specifically 
investigate whether the energy-to-moment ratio is scale­
dependent or not. 

Data and Analysis 

We analyzed four pairs of a large and a small shallow 
strike-slip earthquakes which occurred in the south-western 
part of Japan. Table 1 lists all the earthquakes studied. The 
source mechanisms and the seismic moments of these events 
have been determined by the National Research Institute for 
Earthquake Science and Disaster Prevention, Japan (NIED) 
[Fukuyama et al., 2000, 2001]. The epicenters of the 

Table 1. List of earthquakes 

Event Date Mw Strike Dip Rake N 
(deg) (deg) (deg) 

AI 19970326 6.1 103 88 -9 10 
A2 19970601 3.7 290 90 7 10 

BI 199705 13 6.0 101 85 -2 8 

B2 199706 11 3.6 281 82 11 8 

CI 19970625 5.8 319 89 14 6 

C2 19970626 3.9 139 71 -15 6 

DI 20001006 6.6 150 85 -9 16 

D2 20001006 3.9 159 87 10 16 

Mw and focal mechanism solutions are evaluated by National 
Research Institute for Earth Science and Disaster Prevention, 
Japan. N is number of records. 
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Figure 1. Locations of epicenters and stations used shown 
for the four pairs of a large event and a small event listed in 
Table 1. 

earthquakes and the stations used are shown in Figure 1. The 
large events are strike-slip with Mw =5.8 to 6.6 and the small 
events are also strike-slip with Mw =3.6 to 3.9. The paired 
events have almost the same focal mechanism and hypocenter 
location. We used the spectral ratio of the paired events in 
order to remove the effects of attenuation along the wave 
propagation path and the station site response. We then 
estimated the seismic energy from the source spectra 
estimated from the spectral ratio following the method of 
Venkataraman et al. [2001]. 

We used the accelerograms recorded at K-NET and KIK­
NET stations operated by NIED. The epicentral distances to 
the stations are less than 50 km. We used the transverse 
component records obtained by rotating the two horizontal 
components. We windowed the 70-sec long records from the 
first P-wave arrival. Since S-wave is dominant on the 
transverse component, the Fourier spectra obtained from the 
records are regarded as S-wave spectra of the transverse 
component ground acceleration. 

The observed ground motion spectrum is the product of the 
source spectrum and the transfer function for the wave 
propagation path. Taking the spectral ratio for each paired 
events, we can in effect remove the path effect and the 
radiation pattern effects, because the mechanisms of the 
paired events are very similar. Thus, the spectral ratio of the 
records represents the source spectral ratio of each pair. 
Logarithmic amplitudes of the spectral ratios at all stations are 
averaged for each pair to obtain the observed spectral ratio 
shown in Figure 2. Since the azimuthal coverage of stations 
around the epicenters is good, the directivity effect due to 
rupture propagation along the fault would be averaged out. 

We assume that the source spectrum M(n is expressed as 

(1) 

where M a is the seismic moment, 10 is the comer frequency 
and n is the power for the spectral decay in the frequency 

range above 10 . The spectral ratio for a pair of events is then 
expressed as 

MI(f) = Mal [1+ (f / loY] 
M 2(f) M 02 [1+(f / lOIn 

(2) 

where the suffixes 1 and 2 stand for the large and small events, 
respectively. 

The comer frequencies, 101 and 102' and n are estimated 
by minimizing the sum of squared residuals between the 
logarithmic amplitude of the observed spectral ratio and that 
for the source spectral model. This method for estimating the 
comer frequency is the same as that used by Hough and 
Kanamori [2001]. Since the signal-to-noise ratio for small 
events at long periods is poor, the spectral ratio at frequencies 
lower than 0.5 Hz is not reliable, and the spectral ratio often 
falls in the low frequency range because of the increased 
noise for the small events, as shown in Figure 2. In the high 
frequency range above 5 Hz, the observed spectral ratios for 
the same paired events vary considerably from station to 
station, probably because the path effect cannot be completely 
removed in this frequency range. 

We used the spectral ratio over the frequency range from 
0.5 Hz to 5 Hz to estimate 101,/02 and n using a grid search 
method. The search windows are from 0.02 to 2 Hz for 101 ' 
0.2 to 20 Hz for 102 , and from 1.7 to 2.3 for n . 

The observed and the best fit theoretical spectral ratios are 
shown in Figure 2. The optimal values for 101 ,/02 and n are 
listed in Table 2. 

Seismic Energy-to-Moment Ratio 

Radiated energy for S-wave, ER , is given by 

(3) 

101 

103'.-~~~~ __ ~~~~104,~~~~~ __ ~~~~ 

1 OO'L-~~~.u.U. __ ~~~u:l1 0 'L-~~~.u.U. __ ~~~u:l 
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Figure 2. Source spectral ratio for the four pairs of events. 
The solid curves show observed spectral ratios. The dashed 
curves represent theoretical spectral ratios expressed by 
equation (2) and the parameters in Table 2. 
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Figure 3. Energy-to-moment ratio, ER / M o' as a function of 
Mw . Solid circles show the results from this study. 
TERRAscope/TriNet indicates unpublished results obtained 
from the TERRA scope and TriNet data by the method of 
Kanamori et al. [1993]. TERRAscopelTriNet, Abercrombie 
[1995], and Venkataraman et al. [2001] are the results for 
earthquakes in Southern California. Matsuzawa [2001] is the 
result for shallow earthquakes in the central part of Japan. 

where p is the density and fJ is the S-wave velocity in the 
source region, here assumed to be 2.7 g/cm3 and 3.3 kmls, 
respectively [e.g., Vassiliou and Kanamori, 1982]. We 
assume that the source spectrum is expressed by equation (1) 
and used the parameters listed in Table 2. Although we 
assumed a particular form (equation (1» for the source 
spectrum, the energy is computed by integration of the source 
spectrum, so that the estimate does not depend much on the 
particular form of the source spectrum. 

Since the radiated energy for P-wave from a double-couple 
source is small compared with that for S-wave, it is ignored 
here [Haskell, 1964]. Energy estimation for the large events is 
more reliable than that for the small events, because the 
source spectra for the large events are well approximated by 
the theoretical ones at least in the frequency range up to 5 Hz. 
The theoretical source spectra are extrapolated in the high 
frequency range over 5 Hz in estimating the seismic energy 
for the small events. However, since the comer frequencies 
are lower than 3.2 Hz and n is about 2 (see Table2), this 
extrapolation would not introduce significant errors in energy 
estimates. 

The energy-to-moment ratio, ER / Mo, is between 10.4 to 
10-5 for the large events, and is 10-4 to 10-6 for the small 
events. Figure 3 shows our results together with those from 
several previous studies for earthquakes in Southern 
California. Although the energy-to-moment ratios for the 
earthquakes in Japan are somewhat smaller than those for the 
earthquakes in Southern California, the scale-dependence is 
similar between Japan and California. If we combine our 
results with those from Matsuzawa [2001] and Matsuzawa et 
al. [2001] for small earthquakes in the central part of Japan, 
the similarity in the scale-dependence between Japan and 
California becomes even clear. 

Scale-Dependence of Energy-to-Moment Ratio 

The power for the source spectral decay in the high 
frequency range, n, in Table 2 is very close to 2, which 
suggests that the source spectra for these events are well 
approximated by the oi source spectral model [Aki, 1967]. 
For the ol source spectral model, 

(4) 

Thus, if ER / M 0 is scale independent, then the commonly 
used scaling relation 

(5) 

holds. However, if ER I Mo increases with Mo, as shown in 
Figure 3, this scaling relation no longer holds. For example, if 
ERI Mo oc M; (a> 0) , then Mo oc !o-3/(J-a) • As shown in 
Figure 4, the relationship between Mo and fa ' taken from 
Table 2 exhibits a slope steeper than -3, though the trend is 
marginally significant. 

Ide and Beroza [2001] state that the energy-to-moment 
ratio is almost constant over 17 orders of magnitude in 
seismic moment. However, their conclusion relies heavily on 
the result by Perez-Campos and Beroza [2001] in which the 
energy-to-moment ratio varies over a large range from 3x1O-4 
to 3x1O-7. The large scatter may be due to inclusion of events 
with various fault types in various tectonic environments 
[Choy and Boatwright, 1995]. The energy-to-moment ratio is 
controlled by static and dynamic source process which may 
vary for different tectonic environments. 

Kanamori and Heaton [2000] and Brodsky and Kanamori 
[2001] explained the scale-dependence of energy-to-moment 
ratio in terms of sudden change in friction due to microscopic 
mechanisms such as shear melting, fluid pressurization and 
elastohydrodynamic lubrication. For earthquakes with 
M w larger than 5 to 6, dynamic friction may drop due to shear 
melting, fluid pressurization, and elastohydrodynamic 
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Table 2. Corner frequency and radiated energy 

Event n 10 ER Mo ERIMo 
(Hz) (J) (Nm) (x 10-5) 

Al 2.1 0.27 7.3xlO13 1.40xlOI8 5.2 

A2 2.1 3.2 9.3x109 4.42xlO14 2.1 

BI 1.9 0.20 3.4xlO13 1.22xlO18 2.8 

B2 1.9 3.2 6.3x109 3. 13xlOl4 2.0 

CI 2.1 0.26 1.0x1013 5.66x1017 1.8 

C2 2.1 1.2 1.6x109 8.26x1014 0.19 

DI 1.9 0.12 3.0xlO14 8.62x1018 3.5 

D2 1.9 1.5 4.1xl09 7.59xlO14 0.54 

n is the power for the decay of the source spectrum in the 
frequency range higher than the comer frequency, 10. ER is the 
seismic energy. Mo is evaluated by National Research Institute 
for Earth Science and Disaster Prevention, Japan. ERIMo is the 
energy-to-moment ratio. 

lubrication and the radiated energy per unit area per unit slip 
becomes larger than that for smaller earthquake. Aki [2000] 
argues, on the basis of the size of. breakdown zones and 
barrier intervals on a fault plane, that large (M,.>5) and small 
earthquakes in California are fundamentally different. 
Knopoff [2000] suggests that the inagnitude-frequency 
relationship for southern California earthquakes has two 
segments with different slopes, and suggests that earthquake 
process is scale dependent. The transition occurs at around 
Mw=4.5. The scale-dependence of energy-to-moment ratio in 
Figure 3 does not show a simple proportionality to the 
earthquake size. For events with M,.>5 the ratio is between 
10-4 and 10-5 while the ratio for events with Mw<5 shows a 
larger scatter between 10-4 and 10-6. This result suggests that 
the rupture process of small earthquakes may be controlled by 
various mechanisms. 

The scale-dependence of energy-to-mornent ratio would 
provide an important clue to the difference in dynamic source 
process of large and small earthquakes. Also, regional 
variations in the scale-dependence may reflect the difference 
in seismogenic processes in various tectonic environments. 
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