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On the Absolute Norlund Summability of
Orthogonal Series

Yasuo Okuyama*®
(Received October 27, 1980)

We investigate the absolute Nérlund summability with index k of orthogonal
series, and give a generalization of various known results, e. g., Uyanov [9],
Wang [117], Tsuchikura [7] and the author [3] and so on. Further we show that
some sufficient conditions for the summability of orthogonal series are the best

possible ones,

1. Let Ya, be a given infinite series with s, as its n~th partial sum. If {p.}
is a sequence of constants, and P,=pe-+p+ - +p, (n=0,1, ), then the Norlund
mean f, of Xa, is defined by
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For a constant £, 1< k<2, if the series
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converges, then the series Ya, is said to be summable |N, p,lz. For the defi-
nition of this summability, the reader is referred to Umar and Khan [10]. The
case k=1 is reduced to the absolute Norlund summability |N, p.|, and further if
po=Tn+a){(a)"(n+1)}, we have the absolute Cesaro summability |C, «f.

Let {¢,(x)} be an orthonormal system defined in the interval (e, ). For a fun-

ction f(x)e L¥a, b) such that f(x)~> Ja.pn(x) we denote by E(f)the best ap-
1=0
proximation to f in the metric of L? by means of polynomials of ¢, -, ¢,-y. It

oo

is well known that EP(f)=la;|?)!2 We write
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In the following, we use the notations :

Lo(t) =1, Li(t)=log ¢, Lp(t)=L(Ly-1(t))=log--log t, (p times)
Lp®(t) = Li(#)--- Ly (ENLp@)*° (20,p=1, 2,--),

where, if the right hand sides are not determined as positive numbers, we replace
them by Is.
ARy =2y —Au-y for any sequence {1,}. A is a positive constant not necessarily

the same at each occurrence.

2. For the trigonometric series, Singh [5] proved the following theorem,
which is an extension of theorems due to Pati [4], Ul'yvanov [9] and Wang [11].

Theorem A. Let {£2,} and {1,} be two positive sequences such that {2,4;°} is a

monotonic increasing sequence and that

(2. 1) Elgzn—l o231

=]

is convergent. If the series
(2. 2) Z|_an|2.Q”
=0

converges, then the trigonometric series D \Anan cos (nx-tay) is summable |C, af (a
=0

>1/2) almost everywhere.
One of the authors [3] established the following theorem.

Theorem B. Let {£,} be a positive sequence such that {2,/n} is a non—increasing
sequence and the series Xn~'Q;' converges. Let {p,} be non-negative and non—
increasing. If the series X|a,|*2, W, converges, then the orthogonal series Za, ¢,(x)
is summable |N, p,| almost everywhere, where W,=WSP is defined by (1. 3).

In this paper, we shall first generalize these two theorems.

Theorem 1. Let 1<k<2 and {A,} be a positive sequence. If {p,} is a positive
sequence and the series

(2. 3) ST P oS P Pucie e g
=] P,,Pﬁ_l i=1 pn ﬁn—j /

converges, then the orthogonal series

(2- 4) Z’/znan¢n(x)

is summable (N, pulr almost everywhere.
This theorem is also a generalization of theorems due to Tsuchikura [7, 8]
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and Banerji [17.
Proof of Theorem 1. Let f£,(x) be the n—th Norlund mean of the series (2. 4).
Then, as Banerji shown,

Atp(x)=t,{x) —1,_1(x)

. D < . P, Pn j
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Using the Holder inequality and the orthogonality,
b b
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and then,
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which is convergent by the assumption and from the Beppo-Lévi lemma we
complete the proof.

3. Now we shall show that Theorem 1 includes Theorems A and B.

Lemma 1. Let w(x) be a positive and non-decreasing function of x over the

interval [N, oo, Then the two series Y \n~'w(n)™ and | n 'wn'”?)~' converge

=N H=N?
or diverge simultaneously.
This lemma is due to Ul'yvanov [9].
For k=1 and p,=I"(n+a){ T (a)"(n+1)3=n*"1/"() the sum (2. 3) is not greater

than

Z s Z} n— ]+1 2a 2]22210 |2}1/2

[nl/2)

AEnaﬂ{Z LS A,ZJ a+1{i W2 =8 4 T,
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say. Under the assumption of Theorem A we have %/%2;<2}/2, and by (2. 2) we
get
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r‘nl/ZJ
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Similarly we have

TSASID] | i DR a0
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1 a
<AZ7 - 1(,2[;11/2].9[”1/2j 'LE (n — 7+ 1)2252|q; 20,3172,

n=1 j=[n1/2]

By the Schwarz inequality and Lemma 1, we get

T<A{E) w0 ey PR {Z MHZ n— 7+ 127252 q,20, 112

=] =1

<A{Z]J la;] 2912(% — j A 1petpeai g

n=j

= A3 e 2,067}
AL Y0P < oo,
J=1

Hence from the assumption of Theorem A we can apply Theorem 1 and we see
that Theorem 1 contains Theorem A.
Theorem B is also deduced from Theorem 1 setting 1,=1 and k=1.

4. Applying Theorem 1 we shall show some generalization of known theorems,
The following Lemma will be proved by easy calculations.

Lemma 2 For p,='(n-+a)/{a)"(n-+1)} («>0) the sum W(.k) is, as j— oo, (i)
OQ1) if 1za>1/2, (@#)O(Li(5)) if a=1/2 and (#)O(5'7%) if 0<a<1/2. (iv) For p, =
Lyn +2)"/{(n + 2) L (n+2)} (r>—1),

W = O(L, () 2% L),
and (v) for p, = (n+ 2)7'L{Y (n 4 2)74,

WO = O(iLews ()72 L))
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Theorem 2. Let 1<R2 and {0,} be a positive sequence such that {2,/n} is

non-increasing and the series En~'Q3;' converges. If {p,} is a positive non-increa-

sing sequence and the series 3|a,|2W P01 converges, then the orthogonal series
2aupn(x) is swmmable |N, pnlp almost everywhere.

Proof. To apply Theorem 1, we shall make an estimation of the sum (2. 3)
with ;=1 (j=1, 2,---). By the Hoélder inequality,

Pn]

=3B Sy (T D)oy ey

== 1P71Pnl j=1
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since Qi-/k'l/j:(()j/j)?/k”‘ 72572 is non-increasing, and then

éA[glajlzwgk)QE/k-ljk/z
which is finite by the assumption, and we complete the proof.
For each sequence {p,} treated in Lemma 2, the above Theorem 2 implies
the following result,
Corollary 1. Let 1<k=<<2 and p be a positive integer.
(1) If the series

(4- l) Zlanlng:)(n)z/k_l

converges for some €>0, then the series Za,Pn(x) is summable |C, «lp almost
everywhere for any 1>a>1/2.

(i) If the series

4. 2) Elanl? Ln) L ()it

converges for some €>0, then Pa,pn(x) is summable |C, 1/2], almost everywhere.
(iii) If the series

(4. 3) Slayl2nt= L%E)(n)‘z/k—l
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converges for some €>0, then Ya,p,(x) is summable |C, «|p almost everywhere
Jor 0<a<1/2.

Further let q be a non-negative integer and s a positive integer.
(iv) Let v> —1 be a real number. If the series

(4. 4 Slay 'L (n)72 "2/ L (n)2~2/k LTy (n)2/et

converges for some €>0, then Xa,pn(x) is summable |N, p,l, almost everywhere
Jor pp=Ldn+2)" {(n+2) L& n-+2)3". '
(v) If the series

(4. 5) Slan|nLosy (0% L)/ L0 (m)r

converges for some >0, then Xa,pn(x) is summable |N, p,|p almost everywhere
Jor pp=1/{(n+2) L (n-+2)3.

For k=1, the cases p=1 and p=2 in this Corollary are the results obtained by
Wang [11] and Ul'vanov [9] respectively; and the case s=g=k=1 and =0 in
(iv) is due to Okuyama [3].

Now, if {2, is a positive non-decreasing sequence with £,=0, then by using
the best approximation, we see that

n=j

(4. 6) Slan? Q= Y349, Yaul = YHED(HY 405,
i=1 7=1

therefore, estimating the corresponding 4£; for the series (4. 1)~(4. 5), we have
easily the following :

Corollary 2. In the Corollary 1 the series (4. 1)~(4. 5) can be replaced by the
Sollowing series (4. 7)~(4. 11) respectively :

4. 7) In7'Ly (m) LY ()R EP(f) P,

(4. 8) Z’n‘lLﬁf’(n)zf’“’{E53>(f)}2_,

4. 9) Y2 L)1 ()P,

(4. 10) I Ly(n) 2 =2k L, (n)*E 1 L () - {EP(F) 1,

“ 1 Loy ()% L2 L, (0 {EPUS) Y.
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For the trigonometric orthogonal system we shall make a remark. Let f(x)e
L*0, 2r=), and denote by 2(5, f) one of the following integral moduli :

w0, £ =sup £ TFG+ 1) = o~ 0FdxYn,
0=t=-J0
w6, )= sup (| LA 420+ Fle —20) — 2f (s},
0=t=,7/0
17(¢ 2%
W 0, )= at| "Lrt+ 0= fle—0TFdxy,
070 0

3 2
W0, f)={=] at| " Tree+2n + fix - 20) = 27 Pdxy
dlo Jo
Let {2,} be a positive monotone sequence such that

ﬁ}j‘zl;-‘ <AnT,
J=n
Then, Leindler [2] proved that the conditions 22;'2(1/n, f)?<co and Z4;'{ESP(f) ¥
<o are equivalent. So that we get easily the following result.
Corollary 3. For the case of trigonometric series, sufficient conditions for the
conclusions (1)~(v) in Corollary 1 arve, for some €>0,

M 206, f)=O(L(1/0)*L(1/3)77%),
(ii) 020, f)=OLS1/5)717*),

(ii1) 200, f)=0(@"* L;E’(i/a)—l/'f),

(iv) Q@, £)=0@"" Ls (o) 18 LE(1/)1051 L§2,(1/3)717%),
) QB, f)= 0@ Ly (1/0)1/% L (1/a)1%=1 LD, (1/5)17%)
respectively.

The case k=1 and p=2 in the results (i)~(iii) are due to Ul'yvanov [9], and
the case s=p=Fk=1 and r=0 in (iv) is due to Okuyama [3].

5. Let {r, (£)} be the Rademacher system. For the series

(5. 1) 22 ult)

instead of general orthogonal series (2. 4), we shall establish an inverse of Theo-
rem 1.

Theorem 3. Let k=1 and let {p,} be a positive sequence such that for any
JSixed integer 7,0, pu-j (Pu/Pn—Pu_jlpn-5)=0Q) for n=2jo=j=1. Suppose that the
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set of points t for which the series (5. 1) is summable |N, pnlp is of positive mea-
sure, then the series (2. 3) converges.

Proof. We may suppose that the [N, p,l, sum of the series (5. 1) is unifor-
mly bounded for all te Ec(0, 1) where m(E)>0. Then,

Dn P,_
JEﬂz‘lpnpn ;—IJZ}pn ]( Dn pn )Zjaﬂ’](t)l dt<00

Let N be a positive integer and replace @i, @, -, an_; in the series (5. 1)
by zeros. This replacement has no influence on the summability, since

Z !Epn ]< * Pn ])21017’](1)[

(= 1P,1Pn 1 =1 Dn Pn_

<as P Sy

w1 PuPE_ | 721

which is finite if 2p,< co, and by Pringsheim’s theorem Xp, P;'P;% < for any
k>0, if 2p,=oc0. Therefore we may suppose that

e Py Pa
(5. 2) JE}ZX}NP”PH -1 IJZ}pn ]< p?l pil— >Z]a]rj(t)l dt<oo

where N=N(E) is determined by the well known Khinchin inequality :

J |Z‘,pn ]< p: —Z’ j)XJaJr,(t){ dt
(5. 3)
>A{2p (£ e )t ey

From (5. 2) and (5. 3) we can conclude the convergence of the series (2. 38), since
repeating the similar argument as above, the integer N may be replaced by 1.

6. We shall show that the positive number ¢ in L§f> (ty is indispensable in
Corollaries 1, 2 and 3 for the case of trigonometric series.

Lemma 3. Let 1<k<2 and {p,} be the same sequence as in Theorem 3. Put
Aj(x)=pj cos (jx-+0;). If the series

N n Pn 3
6. 2 s 2A2 k2
( 1) ;PnPn 1 {EP ]( pﬂ pn ]> (x)}

converges for every x in a set of positive measure, then the series

Du . n _Pn I\e 23k
©. 2) E"*—{p,,p,, : ;pn A=)
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converges. Conversely, the convergence of (6. 2) implies that of (6. 1) for every
x.

Proof. We may suppose that the sum (6. 1) is uniformly bounded by a con-
stant 4 in a set E, m(E)>0 and denote, for the simplicity, a,=p,P' Py, Bu,;

= Prjl Py -—PL—jl. Then we have
pn -7
s n
6. 3) I=3 Y| (3 36h,505005° (jx + 0} 2dx<Am(E).
w=1 JE =1

Using the Minkowski inequality, we get

el n
IgZ}a,,{Z([Eﬁ,,,j pilcos (jx+0;) |dx)?}ee
=] =1L

6. 4)
=3 33165 leos (e + 01dx 3,
j= *

n=]

By the Riemann-Lebesgue theorem, we have

J |cos (jx + ()j){dxgj' cos? (jx + 0;)dx
E E

:ij (1 +cos 2(jx + 0j))dx:~1—m(E) + iJ' cos 2(jx + 0)dx
2J)F 2 2)Ep

gim@,

for sufficiently large j, say j=N.
Therefore, by (6. 4) and (6. 5)

©0 k3 2
IZZ(XH{_Z 18?1 ].‘73 (“]Lm(E)) }k/2
n=1 =N ' 4

oo K
QAZCKH{Z ,B?z,j P_27 }klz.
i=N

i
.
= g
|

By the same reason as in Theorem 3, ‘we replace N by 1 and we conclude the
convergence of (6. 2). The converse is bbvious.

Theorem 4, Let 2>k>1 and let {p,} be the same as in Theorem 3. If the
series (6. 2) converges, them almost all series of

6. 6) 2+(a, cos nx + b, sin nx),

where Ay(x)=p, cos (mx+0,)=a, cos nx-+b, sin nx, are summable |N, pulp for
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almost every x, and if (6. 2) diverges, then almost all series of (6. 6) are non—
summable |N, p,|, for almost every x.

Proof. Considering the series 27,(f) A,(x), the first part is an easy conse-
quence of Theorem 1 putting Za;=Aj{x). The latter part is also a consequence
of Theorem 3 and Lemma 3 following the well known Paley-Zygmund argument.

Corollary 4. Let 1<k<(2. In the assumptions of Corollaries 1, 2 or 3 the po-
sitive number ¢ in Lgf) or Lgi)q is indispensable.

Proof. We treat the case (iv) of Corollary 1, because the other cases can be
shown similarly. It is sufficient to show the existence of a Rademacher-trigono-
metric series Xa,7,(!) cos nx which is non-summable |N, p,|, for almost every
(¢, ) in (0, 1)x(0, 2r) and the series (4. 4) is convergent for &é=0. For this
purpose we put

@n =" L (0)7 1% L, ()14 Ly, ()18,
then as we see easily the series (4. 4) with &=0 is
2nt ng)q (n)~? Ls+(1+1 (n)—z/k

which is convergent for 1=<{k<(2. On the other hand, since p,=n 1L (n)"! L(n)",

we see P,~Lg (n)”** and P,/p,~nL{®(n). Hence it is easy to see that the series

(6. 2) is not smaller than

{Z j)n j( P ) a?}k/z

A Pn

AE
n=1
ZAS Wt LD, ()

which is divergent.

Finally, the author wishes to express his hearty thanks to Prof. T. Tsuchi-
kura for his valuable suggestions and encouragements in the preparation of this
paper. This research was partially supported by Grant-in—Aid for Scientific Rese-
arch, (No. 464042), Ministry of Education
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