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On a Theorem Concerning Minimization Problems
on a Network
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In this paper, we give another proof for Iri’s theorem concerning minimization
problems on a network. This proof asserts that a sum of integrals of characteristic
curves which depend on flows, is minimized by some flow on a network, if the
characteristic curves of branches satisfy the following conditions:

(1) every characteristic curve is monotonically increasing outside of some finite
interval;

(2) if a characteristic curve has an upper bound, then the curve is a horizontal
line in the right outside of some finite interval;

(3) if a characteristic curve has a lower bound, then the curve is a horizontal line
in the left outside of some finite interval;

(4) every characteristic curve is bounded on any finite interval,

The proof is short in process and is natural in method. Furthermore, the proof

does not require a deeper understanding of graph theory.

1 Introduction

A network—flow problem is, mathematically, a special case of mathematical
programming problems, in which the constraint relations imposed on variables are
intimately connected with a graph. M. Iri proved a useful theorem concerning
minimization problems on a network in his bookl and his proof requires a
deeper understanding of graph theory. In this paper, we shall prove this theorem
and the proof is slightly simpler than that of Iri’s book. Furthermore, the proof
does not require a deeper understanding of graph theory.

The author would like to express his hearty thanks to Professor Y. NAKA-
MURA for his many valuable advices and encouragements in the course of prepar-
ing this paper, and he is also grateful to professor W. TAKAHASHI for his
enlightening comments and discussions.

2 Preliminaries

We give here the notational conventions and definitions to be used through
this paper.

*Assistant, Department of Information Engineering



12 Yukio TAKEUCHI

The set of real numbers will be denoted by R, and R" will be denoted n—
dimensional Euclidian space.

Let A=(a;;) be an m X n matrix which satisfies the following three conditions:

(1Y for all i,7, laijl=1 or |ai;| =0;

(2) for each j, there exists exactly one i such that ai;j=1;

(3) for each j, there exisis exactly one i such that a;j=—1.

This matrix A can be thought of as a continuous linear transformation of
R™ into R". The null space of this transformation will be denoted by X.

Let fjcje1, o, -, »» be functions of R into R, which are continuous expect on
finitepoints, and which satisfy the following three conditions:

(1) }im fit)=c0 or there exist M;>0 and N;eR such that Fi{t)=N; for all

1=>Mj;
(2) Hm fit)=—o0 or there exist K;>0 and L;e= R such that rit)=L; for all
}——o0
1<—Kj;

(3) for every ¢ >0, there exists Mc >0 such that | fi{)| <M. for all —c<t<c.
We put N= > (M;+ |[Nj)+ >}  (Kj+|Ljl). Then for each j

m fi()%e fim f5(¢)%e—o0

t—roo oo

satisfying lim fj({)=o0, there exists M; >0 such that fi{({)>N-+1 for all t>M/,
f—ro0
and for each j satisfying lim fj{{)=—oco, there exists K; >0 such that fji{f)<—
[—r -0

(N+1) for all t<—Kj'.
Weset L= >} M/+ > K/+(N+1).
tim f7) =00 lim f5(2)= oo
¢
ny be functions of R into R, defined by gj(t)zj Fi(s) ds and

Let gigj=1, o, - .

n
let F be a function of R” into R, defined by the formula F(x)= ) ; gi{(x);) where
=1
(x); is the j-th coordinate of =x.
Let Ij¢j=1, o, .-, »y be closed intervals which take one of the forms [a, b],

(—o0, b1, [a, ), or (—oo, ). We set I=XN{I1 XX -xIx), and assume I3f,
3 A theorem concerning minimization problems on a network

THEOREM. [f in[f F(x)=a>—o0, then there exists a point x,=1 such that
x&

F(xo):a.
Proof. By our assumption of infj F(x)=a>—c, there exists a sequence {x}
e

in I such that F(xg)la. If {xz} has only finitely many points, the conclusion of
our theorem is obvious, so we may assume that {x} has infinitely many distinct
points. Let Bi={j;the sequence {(xr);} in I; has a limit point}. Tt is clear that
there exists M >L which satisfies the following two conditions:
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(1)  for each j=B:, there exists a limit point of {(xr);} in the closed interval
[—(M—1), M—1];

(2) for all j, [—(M~—1), M—171NI;30.

It is also clear that this sequence has a subsequence {yz} which satisfies the
following conditions:

(1) F(y)—a<l;

(2) for all j=By and k, (yr)i€[—M,M];

(3) JSor all j&B,, M<(yr)itoo or —M>(yr)jl—oo.

Let By={i&B:1; fi((y1)i) = fiya)i)=-} and Bs= {J;j&(B1NBy)}, i.e., By=
{7&By Fil(yr)i)too or fil(yr)i)l—oo}.

We now define D and Iy by D=[—n"M,n"M ], Jo=IND and prove that there
exists a sequence {zx} in I, which satisfies the condition F(zr)<<F(yx) for all k.
Let k be a natural number which is fixed throughout this paragraph. We now
construct such a zg. If |{(yr)i|>n"*M for some ji, then by the definition of A
there exist ¢{; and {3 such that ai,;,=—a;,7,0. If there exists no j; such that
713572, @iy550 and |(ye)i, | >n"1M, then

>

D @ini(yi)i > M— (n—1)n" "M >0,

e

@iy i (Ya)i,

}23
D aii(ye)i
7=1

i

which contradicts y,=X. We continue this operation in this manner, and we
have E={Jv, jvs1,**, Ju} and E'={iy, tvs1, -, tu} Q<o<u<n) Which satisfy the following
two conditions:

(1) Jor all jeE, |(yr)il>M;

(2) Gigie="Qips170°F0, Givarjos1=—iverjoer %0, =, @iyjy=—Aiyjy 3 0.

Let a=r§1é%l(yk)j|—M+l and let yz' be a point in R" defined by

()i = w)i—(yu)ja/l(ye)il  if JEE,
(yr)i if J&E.

The fact yr'e1 follows from the definition of M and
Dlaii(yr)i— 2 aiilyr)i= 2 aiil(ye)ia/|(yr)i])=0.
=1 =1 EE

We now show ECB,. It is clear that EFNB;=@. We therefore assume that
there exists a &€ ENDB;, and we deduce a contradiction from this assumption.
By the definition of N, we have

F(yr) — F(yr')

= 21 (gille)i) = g+ 27 (gllye)) — &illy)i))

JEENB: JEENB:
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= — Na + (8i({(yr)io) — &i((¥£')i0))
>—Na+(N+La=a>1,
which implies that F(y:')<F(yr)—1<la. By this contradiction, we have ECDB,.

We now prove that F(y:)<F(yr). We do this by assuming that F(yz')—F(yr)
=bp>0 and by deriving a contradictory equation 129 F(x)=—o0 from this
X

assumption
We define y’k (s=1, 3, -y DY
(Y'r)i=( (yr)i+(yw)iat/|(yi)il if JEE;
(yr)i if I§E.
ytpel is obvious. By ECB,, it is easy to see that
F(y')=F(yr)—bt | —co as t—oco.
If we continue this process at most # times, we get a point zx&< 1, such that
F(z;)<F(yr). This fact shows that 12£ Flx)=a.
x&do

We are now in a position to complete the proof of our theorem. Since I is
compact by Tychonoff’s theorem?’ and since F is continuous, there exists a point
xy& Iy such that F(xy)=a.
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