Journal of the Faculty of Engineering, Shinshu University, No.43, 1977 1
EMKFTEEMETE 5435

Approximation Property of Functions and the
Absolute Norlund Summability
of Fourier Series
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1. Let > an be a given infinite series with the sequence of partial sums

{Sn}.

Let {p,} be a sequence of constants, real or complex, and let us write
P.,, = pg -+ P14 + Pus P—Ie = p_p = O, for kzl

The sequence {t»}, given by

N

1 1 X
Iy =— E DPu-pSi = "'—"E Pray_p, (Pn3x0),
P’il k=() PH k=0

defines the Norlund means of the sequence {s.} generated by the sequence of

constants {pa,}.
The series E an is said to be absolutely summable (N, p,), or summable |N,

Pal, if the series

E fl‘n - lfn—1|
n=]

is convergent,

In the special cases in which p, =A™ = ("™, and p,=1/(r -+ 1), summa-
bility |, p.| are the same as the summability |C, «| and the absolute harmonic
summability, respectively.

Let f(x) be a periodic function with period 2z and integrable (L) over (0, 2x).
We assume that the Fourier series of f(x) is given by

Z {an cos nx + basinnx) = E An(x).

=0 n=0

Throughout the paper, we use the following notations:
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w(8) =sup | f(x + k) — fx)l,
o< ||=e

on0) =gup (| 176 + = st ra)
EPU) =1l F = Tl Alls

where 1< p = oo and Ta(f) is a trigonometric polynomial of the best approx-
imation of order n for f(x) with respect to the corresponding norm.

Let p' be the conjugate index of p, i. e. 1/p+1/p' =1.
We write dp, = by — Puis.

A will denote a positive constant which will not necessarily be the same at
different occurrences.

2. M. and S. Izumi [3] and S.N. Lal [6] proved the following theorem.
Theorem A. Let {p,} and {4p,} are both non-negative and non-increasing
sequences. If the conditions

Diphntr oo 1< p=2)

=1

and

=y ol/n)
7‘?;1 ntP'p, <o

hold, then the Fourier series of f(x) is summable |N, pyl.
Supplementing the result of Theorem A, S.M. Shah [9] proved the following
theorem, which is closely concerned with Zygmund’s result [16;pp. 241-242].

Theorem B. Let {p,} and {4dp,} are both non-negative and non-increasing
sequences. Let f(x) be a 2z-periodic function of bounded variation over [0, 2z
and suppose that the condition

cnfopn) = P, Scanfen), 0 7r<1/2

holds where c1 and c2 arve fixed positive constants and o(x) is positive on [0, o)
and slowly oscillating in the sense of Karamala.
If the conditions

i wo(1/n) < oo

n=1 n
and Uyt
2y w(l/n)t
,gi’ nPy, Lo

hold, then the Fourier sevies of f(x) is summable |N, b,
On the other hand, S.N. Lal [4, 5] also proved the following theorem.
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Theorem C. Let f(x) be a function belonging to LP (1<p=<2). Let {p,} and
{dp,} are both non-negaiive and non-increasing sequences.
If the conditions

2 oo
=]
and

i wp(ijn)

ni/P Py

=]

hold, then the Fourier series of f(x) is summable |N, p,| almost everywhere.

S.N. Lal assumes the convergence of the series Z‘_, P? -2 in place of the
=]

series » | ph nP~%. But we can easily show that the convergence of the series
=]

> 1 Pi m? is equivalent to that of the series > p2 n*~% under the condition that
n=1 =1
{p»} is non-increasing.

Also, Theorem C is a generalization of Theorem D, which is due to N.
Matsuyama [7].

Theorem D. If f(x) belongs to L? (1< p=<2) and the series

i wp(1/n)

1/p140
n=1 nt/?

converges, then the Fourier sevies of f(x) is summable |C, 6| almost everywhere,

where —1 <3 <1/p.

N. Matsuyama established this theorem as the analogue of Hyslop’s theorem
[2], which is easily deduced from Theorem A.

In this note, the author deduces several results from Theorem C by the same
method as that used by C. Watari and Y. Okuyama [147].

3. The following theorem is well-known.

Theorem of Denjoy-Lusion. If the E An(x) converges absolutely for x belonging

n=0

to a set P of positive measure, then Y (lan| + 0al) converges.
1=}

Using a result by A.Zygmund [15], G. Sunouchi [10] proved the following
Theorem.

Theorem E. There exists a function in L* which is summable |C, 1| in (a, b)
in (0, 27), but not summable |C, 1| almost everywhere in the complementary interval.



4 Yasuo OKUYAMA
To extend this theorem, we require Tsuchikura’s theorem [12, 13], which is
as follows.

Theorem F. If f(x) belongs to L? (1<p=2) and if, for some ¢ >0,
¢ 1\ -~p-¢
[1f+8+ fr— 1) —27)l%dx = 01l log7) )
0 [£]
as t—0, at a point x, then the Fourier series of f(x) is summable |C, o] (6 >1/p)

at the point.

Following Sunouchi’s argument and applying Tsuchikura’s Theorem, we can
obtain the following theorem.

Theorem 1. For §>1/2, there exists a function in L* which is summable |C, 3|
in {a, b) in (0, 2x), but not summable |C, 8| almost everywhere in the complementary
interval.

Thus this theorem shows that the |C, d|-analogue of the Denjoy-Dusin
theorem does not hold for § >>1/2. This theorem is open for 0<{d6=<1/2.

4. One of the fundamental theorems of the constructive theory of function
is a reciprocal relation between EP(f) and wp(l/n), that is to say,

EP(f) = Awp(l/n)
and conversely

op(lin) < A n‘lZ EP ().

Suppose that Z} Ynt*t/pt P, = O(1/RY?'P,). Then we have
=k

2@ (1/%)
nz::l 1131u AZ 1+1/p/p1 ZE(M

fe=] oo 1
ZAYIEP i,
== g k (f)ﬂé;e nlﬂ/pzpﬂ

ED)(f)
SAE kl/plpk ’

Hence, if P,= A2, we assume that 6> —1/p".
Thus Theorem C can be restated as follows.

Theorem 2. Let {p,} and {4dp,} are both non-negative and non-increasing
sequences.
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If the conditions

SVph b < oo (1< p<2)
=1

and

i Egzp)(f) < 00

= ni/P'p,
hold, then the Fouriev series of f(x) is summable |N, p,| almost everywhere.
To reduce several theorems from this theorem, we need a lemma, which is
due to C, Watari and Y. Okuyama [14].
Lemma. Let f(x):f‘_, An(x) € L? and let EP(f)=00"% for some a>0.
Then, for any p<a, th;l:; exists a function fP)Nx) belonging to LP such that

f[ﬂJ(X) ~ Z %ﬁAn(x)

=]
and

EP(f1) = O(n=o+#),

Theorem 3. If EX(f) =0n2),a>0 and p<a, then the seriesi nfAn(x) is
summable |C, 38| almost everywhere, where 8 >1/2+ f—a and 6> —711/12.
Proof. By lemma, we have
ESP (f1F) = O(n=*+F)

and
f[ﬁ](x)’\'z nﬁAn (x)
31==1

Thus we obtain

SVED(F18) - 1
HQW: O(gm) <OO fO?’ 0 > 1/2 -+ ﬁ - a.
By Theorem 2, Theorem 3 is completed.

The case =0 of this theorem is an analogue of the result due to J. M. Hyslop
L2].

Theorem 4. Let p<a. If EP(f)=0(/n) and ES$(f) =0wn"2), then the

series ZnﬁAn(x) is summable |C, 35| almost everywhere, where 6> 8—a/2 and 5>
71=1

—1/2.
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Proof. By Lemma, we have

EP(fB) = O 1*F), ES(fB)) = On-+F)

and
FB(x)~ i nfAn(x).
n=1

Since (Eéi)(fﬁﬁj)yéflE%‘)(f(‘33> ES(F8))(see [14]), we have

< EP(fLA) d 1
g nl2p, =0 (ﬂév:l; %1+5-—ﬁ+a/2) Lo for 6> B — af2.
Hence Theorem 4 is proved by Theorem 2.

Since f{x) € BV (0, 2z) implies E(f)=0(1/n), the case =0 of Theorem 4
is an analogue of results due to H.C. Chow [1].

Theorem 5. Let 1<p=<2. If EP(f)=0wm) («>0) and B <a, then the

series Z_‘,nﬁAn(x) is summable |C, 6| almost everywhere, where 6 >1/p -+ B—«a and

n=]

o> —1/p'.

Proof. By Lemma, we have

EP(FE) = Ow=+F)

and

oo

FB(x)~ >V nf Anlx).

?=]

Thus we obtain

o TP £(B o
Hence we establish Theorem 5 by Theorem 2.

Also, the case =0 of this theorem is an analogue of results due to H.C.
Chow [11.

In the case =0, the reader is referred to H.C.Chow [1] and L. Mcfadden
[8] for the results on the absolute Cesaro summability of Fourier series of a
function which belongs to the class Lip(a, p).

We see from Lusin-Denjoy’s theorem that the following Corollaries 1, 2 and
3 are the results which are deduced from Theorems 3, 4 and 5, respectively.

Corollary 1. EZ (f) = 0w, a>0 and B<a imply f]nﬁ"m (lan] +1bal)<oo.

=]
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Corollary 2. E(f) = O(/n) and ES(f) = O~ together imply, for (0<)
B<a, 3P Ran) + 1bal) < co.

n=1

Corollary 3. Eﬁlf’)(f) =0m ) (@>0), 1<p=2, and g<a—1/p imply

J nﬁ(lanl + bal) < oo,

n=
These corollaries are due to C. Watari and Y.Okuyama [14]. Also see A.
Zygmund [16].
Next, we can obtain the analogue of Theorem B. Our results read as follows:

Theorem 6. Let {p,} and {dp,} are both non-negative and non-increasing
sequences. Let f(x) be a 2z-periodic function of bounded variation over [0, 2z
and suppose that the conditions

2 < oo
n=1
and

= ES( )
n=1 nP’”

hold, then the Fourier series of f(x) is summable |N, pn| almost everywhere.

Since a funcion of bounded variation has the property E(f) = O(i/n),
Theorem 6 is contained in the following theorem.

Theorem 7. Let {p,} and {dp,} are both nown-negative and non-increasing
sequence. If the conditions

ESP(f) = 0(i/n),
E_jf pa < o0
and

o (o) 172
ZE" (f) <

N==] nP n

hold, then the Fourier series of f(x) is summable |N, pu| almost everywhere.

Proof. As stated above, we have

(B2 ) =BG B0,
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Thus we have

Em(f) E;(zw)(f)”q
Z n2p, AZ nP, < e

1=

Hence Theorem 7 is proved by Theorem 2.

5. We assume that a sequence @={¢,} forms a complete orthonormal system
over a set of finite measure and @, is the linear space spanned by the first n
elements of ®. Morever, we suppose that the system @ under consideration has
the following properties:

(1°) (Nikolsky property) For 1=<p<g=o0, and P& ?, we have ||P]|¢=Ax"
P, a=1/p—1/q.

(2°) (de la Vallee Poussin property) There exists a sequence of linear operators
Gn @ L*—@s, such that (i) bounded, (ii) G» leaves the element of @, invariant,
(iii) For 1=p =< o0, we have

1F=Guflls= A EPU) = A inf{llF = Plly: Pe D).

It is well known that these properties are held by the system of trigonometric
functions as well as that of Walsh functions.

Now, we have the following theorem, which is due to C. Watari and Y.
Okuyama [14] for P, = 1.

Theorem 8. Let @ have the properties (1°) and (2°) and let 1<p<g=Zoo. If
we suppose that a sequence {P,} is a positive sequence such that {(n*/?'P,} is non-

n
decreasing and | 2%11/Psk = 0(2"/7]Pan), then we have
f=(

= BSOS EP(f)
;nl/q/pn éAZ/;J: n/pp, .
Proof. As 1/p'<1/q', we see that {n!/?'P,} is non-decreasing. Hence, by

Cauchy’s condensation principle, what we have to prove is

o ZHEP) = 20ER()
Pz" g 4 Z PQn "

71={} =0

This is reduced, by property (2°), to
i 2}7 q (=5}

S = Goflle=

n=0

n=0
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or, by the subadditivity and the property (1°), we see that

0 f = G fllg = SIIGwtnif — Goef Il

k=n

< ]Z} 2k7)|Gatrr f ~ Gatfllp (r=1/p — 1/q)

< S1297|\f — Gasf .

k=n

o onlq
Therefore we have >
1= Ppn

= Geflly

e 2"/{1 oo
<A T M =G f 1l
71=() 2

fe=mn

had k on/q
S A= G Sl )]
k=0 =0 Pgﬂ
s ok/q
< A DT 2RI YD f— Garf |5
=0 Pet
. 2kip
=AY Pr IS — Geifllp. q.e.d.
hmp Lk

Our results are stated in terms of the best approximation, but there is a
rather complete parallelism between the modulus of continuity and the best app-
roximation. Hence the above results can be stated in terms of the modulus of
continuity. From theorem 8, we have

Corollary 4, Let 1< p<g=co. Then

o

Sroulim)_ S+ anlif)

1/q1+0 1/pred
= ot = et

where /g >06 > — 1/p’.

This corollary shows that Matsuyama criterion is best possible at p = 2 for

0<5<1/2.
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