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1. Definitions and Notations. Let f(f) be a periodic function with period
2z and integrable in the sense of Lebesgue over (— =z, =n).
Let the Fourier series of f(f) be given by
ft)~ %q + > (@, cosnt + b,sinnt) = DA, (1).
=1 =0

We shall use throughout this note the following notations

o) = fx+1) + fx—t) — 2f (%),

¢
o@)=] o0 |du,

5, (1) = ﬁ_,(‘)/ly ).

Let 5% (f) denote the nth Cesaro means of order « (@ > — 1) of the series
>1A.(f). The series )| A, (t) is said to be absolute summable (C, «) with
index k, or simply summable |C, «|, (=1, o> — 1), at i=x, if,

> Ink1 8% (x) —s_y (%) |* < oo

Summability |C, «l; is the same as ordinary absolute Cesaro summability
of order a (¢« >1).
Let 2=1{2,} be a monotone non-decreasing sequence of natural numbers
with 2,,1 — 24, <1 and A = 1.
The sequence-to-sequence transformation
n

V=V, =+ D1 s

Zﬂ y=i—in+1
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defines the sequence {V,(2)} of generalized de la Vallée Poussin means of the
sequence {s,(f)} generated by the sequence {2,}.

The series > }A,() is said to be summable |V, 2|, at ¢ = x, if the series
i

==

E i Vn+1()‘; ZL) _'Vn()‘r t) I

n=1

is convergent at f = x.

A sequence {1,} is said to be convex when

422,20, n=1, 2, 3,
with the notation
A)‘n - )‘n - Zn+17 Az}‘n = A(A)‘n)

K denotes a positive constant not necessarily the same at each occurrence.
2. Introduction. Regarding the absolute Cesaro summability factors of the
Lebesgue Fourier series, various theorems are known. For example Fu Cheng

Hsiang established the following theorem.

Theorem A.D If

as t — 0, then the series

is summable |C, 1|, at t = x, for every a > 0.

In this note we shall show that the theorem due to Fu Cheng Hsiang
mentioned above, is also extended to the theorems concerning |C, 1|, (k>1)
and |V, 2] summability factors, and further is a particular case of more general
theorem due to N. Singh.?®

Also, P. L. Sharma and B. L. Gupta® have given a theorem concerning
|C, 1| summability factors of Fourier series.

In the follwing section we shall show that it is to be easily obtained from
two well-know theorems. 5 k
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3. We shall prove first the following theorem.

Theorem 1. If

[ 1o 1an=00w,

as t — + 0, then the series

= A, (1)
21

=]

is summable |C, 1|, (k=1) for every a > 0.

In order to prove this theorem we require the following lemmas.

1)

Lemma 1.9 Let «> — 1 and let f: (t) be the n-th Cesaro wmean of order

of the sequence {nA,(ty}, then

)y =n{sy () —su_ )7}

Lemma 2.0 Write

Z‘,(n—}-Z—k cos(n + 2 — k)¢,

then
nt~t (nt>1),

U, ({)=0
® {nz (for all t).

Lemma 3.0
K
é{ i1«
knl-«

o

{Z‘,U(M( T }

Proof of Theorem 1. We have

k4

A (x)= %J'O o(t) cosnt di.

(2)

(4)

11

Let z,(x) be the nth Cesiro mean of first order of the sequence {nA4,(x)/n<}.

To prove our theorem it is evident by Lemma 1 that we have only to

©o

T, k
Sl

n=1

(5)
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Now we have

J'fT ® 1 2 (v+2)cos(u+2)tdt'
0

ET = t
7™ nt 1~ o128

By Abel’s transformation, we get

T L P 1 M 1
-,2_7"@)_& () 741 {gm(t)dm}dt
4 1 0,0
e e

= Iln + 12717 say.

Thus, on writing

1/n x
]1n:J +J :[3n+14m say,
0 1/n

we see that, by Lemma 3 and condition (1) of our theorem

1/n

I, =0 "o () dt
Q
:O(n—a)y
and
Al o] 17 ()]
1,,=0( L/n-——dt) + o< J _———dt).

ne t n )y 2

Also, we have by (1)

P e S W W

t 1/n
—0@) +0 (L/ %dt)
= O(logn),

and hence

LI T
1/n p2re 1/n ¢

= 0 (nl~=log n).

No. 31
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Consequently, we have

14, = O(log n/n=).
On the other hand, we write

1/n 3
]Zn_J +J’ :I.'m+[ﬁm say.
0 1/n

Then, by Lemma 2 and condition (1)

and

(e 12 )

= O(log n/n*) .

From the above analysis we obtain that for every a >0,
& 111'71'/5 .
Z—<Oo (Z :37 4’ 51 6)1 kzl
2=} n

Therefore, by Minkowski’s inequality we have

o | 7a (%) [#
"Z=i" 7 <o
This proves theorem 1.
4. We shall prove here the following theorem.

Theorem 2. Let p(x) (x = 0) be a function wmonotone decreasing and satis-
fying the conditon

zj',/,z(n)logn <o
n=2 Rﬂ

(6)

Let {logn/a,} be an ultimately non-increasing sequence,

If

[ 1o 1au=00),
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as t—0, then the series

D) A, (x)

is summable |V, 2| at the point x.

It is easy to see that, by taking x(n)=n"« (¢« >0) and 2, =n, the result
of Fu Cheng Hsiang? follows from our Theorem 2. Further, L. Leindler” has
proved the theorems (i. e., Leindler [8], Theorems 3 and 4) concerning |V, 1|
summability factors, but the resultd® of before-mentioned Fu Cheng Hsiang’s
theorem is not obtained from them.

Proof of Theorem 2. Let V,(2) denote the nth de la Vallée Poussin mean
of the series > p(n) A, (x) and let «,(x) =|V,. (2, ) =V, ;%) |.

In order to prove the theorem, it is sufficient to demonstrate that

2l @) | <o

As easy computation gives that

n+1
Vs () = Vi () = = L — ) ( — 12— 1)+, 2 (k) Ay (5).

’zn}‘m-l k=n—An+2

Using that
2 w
A, (x)= —J o (t) cos nt dt,
T Jo
we have
2 T t s+
=2 L S (= 2) e ) ) ) costt at
T 0 Xn)‘n+1 k=n—An+2
2 1/n =
<[ 1+ =2 rrw+eew), sy,
o 0 1/n T

By the hypotheses we get that

1 n+1 1i/n
S =0M 5 2 L= ) k—n =D+ 2300 o at
7 k=n—dnt2 0
n+1
- 0(1) {('7‘111"1 - 2,,) (k —n— 1) + Zn)fl(k) .

P
A i Tt 2

Let >} be the summation over all n satisfying 2,:=2,; and >)" the
i 7
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summation over all # where 1,,; > A,.
Then, by the hypotheses we have

1 141

SVl =03 =5 2] Al

n n n k=n—Apt2

Rzk—l

k=2 -1

On the other hand, in the case A,,:> 4,
(n+1 n)( _n“l>+)‘n:)‘n+k_n_1’

and n —k+ 4, =24, (n>Fk), so we get that

a1
E” Tt x) ) Z” %} 2 7 {()‘n-l»l_)‘n) (k—%—l) +2n}ﬂ<k)
n 7 ‘n f=are-dn+2
n+1
=0(1) Z” 20 Ap(k)
" Ie n—Ain+2
1
)k /,L .
Z ) 21"

Because in Y there are only the indices # having the property Z,.1 > 4, it

holds

so it is easy to see that
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=0(1).

From the above analysis we obtain that

20wt (@) < oo

7

In the following steps we shall prove that

20 152 @) [ < oo,

Let
= =20 2 232
By Abel’s transformation, we get
w5 = “ 1”/” ;Dxml ,e:::ﬂz{um —2) (k—n—1)+ 2,} k cos kt—/(?d ¢

= o) as D)
= — E kcosktya, " dt
J’1/11 )‘n2n+1 k=nu—Ap+2 ( k

[ 101 Sy 5 e

1/n )‘nln+ 1 k=n—2p+2

N

k4 t ;
-+ J |90< ) ] Syr 201 (t) [24 dt

(]
1/n ;‘n)‘n+1 n—in2

o[ 1015 e a

1/n )‘n’2n+1 7+l

= i+ o+ Js, say,

where

1
S, () =Dk coskt,
k=1

31
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We now discuss > Ji.
We have by hypothesis (7)

J‘l*/nlsﬂ(f idtg{by }1/,1 L/,Ll(pﬁ‘(t)idt

=0(logn).

Hence we have by (4) of §3

ZL ZJ lo () | Z Si(t) 4o dt

1/ Anhnst k=n—dp+2

7

—o@my]Er 4o

7 /2,, k=n—2p+2

{2 +E”} ): Sk

n k=n—2p+2
=0(1) (' +1,"), say.
Then we have first by hypothesis (6)

11' = Z/ IOgn i} k Aa;")

2
22 2" k=n—2ng+2

:leog% - k)m{#(k)_wﬂ(kJrl)}

2
Zﬂ k=n—2,42

H

gz'l"g” S1 e — plk+ 13

n k=n—2in+2

logn logn
<Z’ Oi pln— 2, + 2) +}__}’ Oi p(n+1)

/1 n 2 13
Sé\_‘_l Og__L)‘u(ﬂ — A, 2)—{—2 lofn;z(ﬂ)

An— —Ant-2 i ‘n
=0(1).
On the other hand, Abel’s transformation gives that

7n

n

b Aa(”)g Z] (X(”),
k= 3

k=n~—Ay+2 k=1n—2p+2

so we have by n — 2, >k — 2, (n > k) and our hypotheses
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logn &

" (n)

Il” éz Z 2 k
n n h=n—2p+2

<§_‘,”1°g” 3 o+ b —n 1)

'l k=n—An+2 k

wlogn © (k)
<5V Ayt
Z 2,, k= §n+2 k

—“sz vk E” logn

2
k=2 n=k )‘n

2

i Z log (v + &)

y=2k

A (k) log (Lt k)
=0(1 e
( )kZ:; ke /713

= O(l)iﬂﬁlog k
k=2 A

=0().

From the above analysis we obtain that
Z Ji=0(@).
n

Next we shall discuss 3 /o,

ZfzSZJT le®lg . (el | dt

l/n n n+1

logn "
oW R = Ve,

2\ logn
(3 + 3 ) B e D
n 7 n

=01 (I’ + LI,"), say.

Then

» logn pn— 2, +2)
I = S — A+ DA
: Z P n—2,+ 2

. 31
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1
<3 w4+ 2)

SZ’ log (n — Zn + 2)

M (7@—2,,-*— 2)
7 Zn—x,,+2

Similiarly we have

logn pin—2,+ 2)
L'<>V (m—2,+1)—2 2
2 *“T" A2 n—2,+2

=0(1).
From the above analysis we obtain that

Z/Z 0(1).

Finally, we shall estimate > J,.
Proceedings in the same way, using our hypotheses

n
’”’1 ) n+1

E]aSZJ

1/n A 1n+1

lo 7
O35 (4 a,

- 0(1)21(;g"y(n +1)

=0 (1).

Consequently we have also
4:_] 7.2 (%) | oo,
Collecting above estimations we have
; Iz, (%) Ié; |7t (%) I+; I7,2 (%) |

< oo

19
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Hence we have

DluemA, eV, 2], at t=x.
3

This completes the proof of our Theorem 2.

5. We shall show in this section that Theorem A due to Fu Cheng Hsiang
is a particular case of the following Singh’s theorem.

Theorem B.2 If {1,} is a convex sequence such that Zlnn'l(logn)lﬂ is

convergent, them the series

EMLAIZ(t>

7w (logn +1)°

at t=x, is summable |C, 1|, provided that

J: lo(u) |du = O{t(log%)ﬂ}, ast— +0, 8 =0.

In Singh’s theorem stated above, if we set 4, = %"=, the sequence {i,} is

clearly convex, furthermore

Ay (log n) 1/2
iy 1/2 — e
S Gog mua= 31251

n
oo,

Consequently, Theorem A due to Fu Cheng Hsiang is a particular case in
which 8 =0 of Theorem B stated above.

6. P. L. Sharma and B. L. Gupta demonstrated the following theorem.

Theorem C.? If {4,} be a convex sequence such that Z nl 2, is convergent
then the series Z LA, at t =x, is summable |C, 1|, provided that

d 1 1
lo(u) |du = Ot/(log ), as t — + 0, a>—.
JO { t } “7%

We shall show in this section that this theorem is to be easily obtained
from the following theorems,

Theorem D. ¥ If, for some a>%
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£

[ 1o 1dn=0 t1100g 7))

0

as t— + 0, then

le, —f(x)?=0(n).
If we replace the small order by capital order in the Wang’s theorem,®

we get this theorem.

Theorem E.® If {4,} is a convex sequence such that 2 n-12, is convergent,

and

21s0(0) —f(x) | = O {n(logn)*}, k=0
v=1
as n— oc, then the series

> {log (n+1)}*2, A, (%)

n

is summable |C, 1|.

Proof of Theorem C. By the help of Cauchy’s inequality and Theorem D,
we have

;'S“ }<(Z|s(x) >1/2<§=] >1/2

=0 (n1/2) nl/2
=0(n).

Accordingly, Theorem C is clearly a particular case in which 2= 0 of
Theorem E stated above,
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